鐘歡 張孝瑾 肖俊 唐瞻楊 郭忠寶 羅永巨 周毅
摘要:【目的】深入了解生長激素受體2(GHR2)基因在奧尼雜交羅非魚及其親本(尼羅羅非魚和奧利亞羅非魚)中的表達差異,為研究雜交過程中GHR基因的結(jié)構(gòu)及功能變化提供依據(jù),也為魚類雜交育種提供理論支撐?!痉椒ā坷肧OAPdenovo從奧尼羅非魚肝臟轉(zhuǎn)錄組數(shù)據(jù)中提取GHR2基因序列,采用BioEdit 7.0.5.3比對奧尼羅非魚及其親本的GHR2氨基酸序列差異,以MEGA 4.1進行系統(tǒng)進化分析及構(gòu)建系統(tǒng)發(fā)育進化樹,并利用實時定量PCR分析GHR2基因在奧尼羅非魚不同組織中的表達情況及其在奧尼羅非魚和親本中的表達差異。【結(jié)果】拼接獲得的奧尼羅非魚GHR2基因開放閱讀框為1722 bp,共編碼574個氨基酸,相對分子量為64.18 kD,理論等電點為4.86;奧尼羅非魚GHR2氨基酸序列包含一個保守的信號肽和一段跨膜區(qū)。基于GHR2氨基酸序列構(gòu)建的系統(tǒng)發(fā)育進化樹顯示,奧尼羅非魚與尼羅羅非魚和奧利亞羅非魚存在高度相近的親緣關系,尤其與母本(尼羅羅非魚)的親緣關系最近。GHR2基因在奧尼羅非魚不同組織中均有表達,以在肝臟中的表達量最高,顯著高于除肌肉外的其他組織(P<0.05),其次是肌肉、卵巢、心臟和垂體,在頭腎中的表達最低。GHR2基因在奧尼羅非魚肝臟和肌肉中的表達量明顯高于其雙親(尼羅羅非魚和奧利亞羅非魚)的表達量?!窘Y(jié)論】GHR2基因?qū)儆趶V泛表達基因,在奧尼羅非魚、尼羅羅非魚和奧利亞羅非魚中高度保守;GHR2基因在奧尼羅非魚中的表達優(yōu)勢與其快速生長的雜種優(yōu)勢有關。
關鍵詞: 奧尼羅非魚;生長激素受體2(GHR2);親緣關系;表達差異;非加性表達模式
中圖分類號: S965.125? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?文獻標志碼:A 文章編號:2095-1191(2018)11-2292-06
The sequence and expression characteristic of GHR2 gene in Oreochromis niloticus(♀) × O. aureus(♂)
ZHONG Huan1, ZHANG Xiao-jin1,2, XIAO Jun1, TANG Zhan-yang1,
GUO Zhong-bao1, LUO Yong-ju1,2, ZHOU Yi1*
(1Tilapia Genetic Breeding Center, Guangxi Academy of Fishery Sciences, Nanning? 530021, China; 2College of Fisheries & Life, Shanghai Ocean University, Shanghai? 201306, China)
Abstract: 【Objective】The present study aimed to understand the expression differentiation of growth hormone receptor 2(GHR2) gene in Oreochromis niloticus(♀)×O. aureus(♂) and its parents. This study provided evidence for GHR gene structural and functional changes in hybridization process and supplied theoretical support for cross breeding in fish. 【Method】Using SOAPdenovo software, the GHR2 gene sequence of O. niloticus(♀)×O. aureus(♂) was extracted from liver transcriptome. The alignment analysis between O. niloticus(♀)×O. aureus(♂) and its parents was performed by BioEdit 7.0.5.3 software. MEGA 4.1 package was used to conduct phylogenetic analysis and construct the phylogenetic tree. Realtime quantitative PCR was employed to investigate the GHR2 gene expression in different tissues from O. niloticus(♀)×O. aureus(♂) and the differential expression between O. niloticus(♀)×O. aureus(♂) and its parents. 【Result】The assembled gene GHR2 from O. niloticus(♀)×O. aureus(♂) contained a 1722 bp open reading frame, encoded 574 amino acids. The relative molecular mass was 64.18 kD and the theoretical isoelectric point was 4.86. A conserved signal peptide and a transmembrane region were found in GHR2 amino acid sequence in O. niloticus(♀)×O. aureus(♂). The constructed phylogenetic tree based on GHR2 amino acid sequence revealed high similarity among O. niloticus(♀)×O. aureus (♂), Nile tilapia and Blue tilapia, especially between O. niloticus(♀)×O. aureus(♂) and its maternal(Nile tilapia). GHR2 gene expressions were found in all the tested tissues in Nile tilapia. The highest expression was found in liver, which was signifi-cantly higher than other tissues except muscle(P<0.05). The GHR2 expressions were moderate in muscle, ovary, heart and pituitary. The expression in head-kidney was the lowest. The expressions of GHR2 in liver and muscle were significantly higher than those in its parents(Nile tilapia and blue tilapia). 【Conclusion】Gene GHR2 is a widespread expression gene and is highly conserved in O. niloticus(♀)×O. aureus(♂), Nile tilapia and blue tilapia. The expressive advantage of GHR2 in O. niloticus(♀)×O. aureus(♂) is related to its rapidly growing heterosis.
Key words: Oreochromis niloticus(♀)×O. aureus(♂); growth hormone receptor 2(GHR2); phylogenetic relationship; expression differentiation; non-additive expression
0 引言
【研究意義】奧尼羅非魚是尼羅羅非魚(Oreochromis niloticus ♀)與奧利亞羅非魚(O. aureus ♂)雜交獲得的后代(李家樂等,1997),因其具有雄性率高、耐低溫、抗逆性好、生長速度快等雜種優(yōu)勢,已成為我國羅非魚養(yǎng)殖產(chǎn)業(yè)中的主要品種之一。GH-IGF(Growth hormone-insulin-like growth factor)軸是控制魚類生長的關鍵通路。垂體分泌的生長激素(Growth hormone,GH)需與其受體(Growth hormone receptor,GHR)結(jié)合才能將信號傳遞到靶細胞,誘發(fā)其分泌相關生長因子,如胰島素樣生長因子1(IGF-1),從而促進魚類生長發(fā)育(Reinecke et al.,2005)。因此,了解GHR在奧尼羅非魚中的表達特征,對闡明其快速生長的機制具有重要意義?!厩叭搜芯窟M展】奧尼羅非魚具有快速生長的雜種優(yōu)勢,其F1代群體的平均優(yōu)勢為15.1%~30.6%(頡曉勇等,2007)。目前,針對魚類雜種優(yōu)勢的研究已有較多報道。在棕點石斑魚(Epinephelus fuscogutatus ♀)×鞍帶石斑魚(E. lanceolatus ♂)的F1代中,GH-IGF軸關鍵基因具有表達優(yōu)勢,推斷其與雜交石斑魚的雜種優(yōu)勢有關(Sun et al.,2016)。在GH-IGF軸中,GHR是連接GH和IGF-1的關鍵蛋白分子(Reindl and Sheridan,2012),屬于細胞因子受體超家族的成員,是一種跨膜蛋白(Reinecke et al.,2005)。在接受GH時,通過二聚化集合可激活蛋白激酶JAK2信號通路,誘導細胞內(nèi)信號變化(Herrington and Carter-Su,2001)。在靶細胞中,GH與GHR結(jié)合,誘導靶細胞如肌肉和肝臟細胞分泌IGF-1,最終促進機體生長(Moriyama et al.,2000)。已有研究表明,在羅非魚中不同GHR基因型會影響IGF-1的表達水平(Liu et al.,2014)。在尼羅羅非魚中存在兩種GHR(GHR1和GHR2),其肝臟中GHR1的mRNA表達水平在110日齡最高,而GHR2在60日齡時表達最高,提示這兩種GHR在羅非魚生長周期中行使功能的時間存在明顯差異(馬細蘭等,2009)。此外,尼羅羅非魚GHR受性激素調(diào)節(jié)(Yue et al.,2018),且微胞藻應激可改變GHR的表達(Chen et al.,2017)?!颈狙芯壳腥朦c】目前,有關奧尼雜交羅非魚快速生長機制的研究報道較少,尤其是奧尼羅非魚GHR基因序列及其表達特征均有待進一步研究,旨在闡明雜種優(yōu)勢的產(chǎn)生機理?!緮M解決的關鍵問題】通過高通量測序技術提取奧尼羅非魚GHR2基因序列,深入了解該基因在奧尼雜交羅非魚及其親本中的表達差異,為研究雜交過程中GHR基因的結(jié)構(gòu)及功能變化提供依據(jù),也為魚類雜交育種提供理論支撐。
1 材料與方法
1. 1 試驗材料
尼羅羅非魚、奧利亞羅非魚和奧尼羅非魚(1齡)均由廣西水產(chǎn)科學研究院國家級南寧市羅非魚良種場提供。RNA提取試劑盒、cDNA反轉(zhuǎn)錄試劑盒及實時定量PCR所用的SYBR Green均購自寶日醫(yī)生物技術(北京)有限公司;實時定量PCR引物由上海英濰捷基生物公司合成。
1. 2 數(shù)據(jù)來源及生物信息學分析
奧尼羅非魚GHR2基因序列來自其肝臟轉(zhuǎn)錄組測序結(jié)果,利用SOAPdenovo獲得拼接后的GHR2基因序列;其他用于序列比對和系統(tǒng)進化分析的序列下載于NCBI數(shù)據(jù)庫(https://www.ncbi.nlm.nih.gov),序列號分別為:虹鱒(Oncorhynchus mykiss)AAT76435.2,大西洋鯛(Sparus aurata)AAT76436.1,黑棘鯛(Acanthopagrus schlegelii)AAV83932.4,斜帶石斑魚(Epinephelus coioides)ABM21633.1,鯉魚(Cyprinus carpio)ADC35577.1,黃鰭鯛(Acanthopagrus latus)AEW29012.1,花鱸(Lateolabrax japonicus)AGD 80843.1,鱖魚(Siniperca chuatsi)AHY22366.1,尼羅羅非魚(O. niloticus)AY973233.1,奧利亞羅非魚(O. aureus)KJ845729.1。采用BioEdit 7.0.5.3對尼羅羅非魚、奧利亞羅非魚和奧尼羅非魚的GHR2氨基酸序列進行比對分析,以MEGA 4.1進行系統(tǒng)進化分析并構(gòu)建系統(tǒng)發(fā)育進化樹。
1. 3 RNA提取和第一鏈cDNA合成
尼羅羅非魚、奧利亞羅非魚和奧尼羅非魚不同組織的總RNA均采用RNAiso Plus試劑盒進行提取,并以1%瓊脂糖凝膠電泳檢測其完整性。按照PrimeScriptTM RT reagent Kit with gDNA Eraser(Perfect Real Time)的試劑盒說明合成第一鏈cDNA。
1. 4 實時定量PCR
實時定量PCR引物采用Primer Express v.3.0根據(jù)3種羅非魚的保守序列設計,具體引物序列如下:GHR2-F:5'-CACACCTCGATCTGGACATATTACA-3';GHR2-R:5'-CGGTTGGACAATGTCATTAACAA-3';β-actin-F:5'-CCACAGCCGAGAGGGAAAT-3';β-actin-R:5'-CCATCTCCTGCTCGAAGTC-3'。以β-actin為內(nèi)參基因。反應體系25.0 μL:2×SYBR Premix Ex Taq 12.5 μL,正、反向引物(10 μmol/L)各0.5 μL,cDNA模板2.0 μL,滅菌水9.5 μL。擴增程序:95 ℃預變性30 s;95 ℃ 5 s,60 ℃ 30 s,進行40個循環(huán)。經(jīng)PCR擴增后,進行熔解曲線分析以確定擴增是否特異。相對定量值采用2-ΔΔCt進行計算(Livak and Schmittgen,2001)。
1. 5 統(tǒng)計分析
采用SPSS 16.0進行單因素方差分析(One-way ANOVA)和Tukeys檢驗。
2 結(jié)果與分析
2. 1 GHR2基因序列分析結(jié)果
從轉(zhuǎn)錄組結(jié)果中拼接獲得奧尼羅非魚GHR2基因的cDNA序列,其開放閱讀框為1722 bp,共編碼574個氨基酸,相對分子量為64.18 kD,理論等電點為4.86。GHR2基因的核苷酸及其推導氨基酸序列如圖1所示。從結(jié)構(gòu)上來看,奧尼羅非魚GHR2氨基酸序列包含一個保守的信號肽和一段跨膜區(qū),與目前已報道的尼羅羅非魚和奧利亞羅非魚GHR2氨基酸序列一致。
氨基酸序列比對分析結(jié)果也說明奧尼羅非魚的GHR2與其親本高度相似(圖2)。由構(gòu)建的系統(tǒng)發(fā)育進化樹(圖3)也可看出,3種羅非魚存在高度相近的親緣關系,尤其與母本(尼羅羅非魚)的親緣關系最近。同屬鱸形目的多種魚類聚類為一大分支,而虹鱒和鯉魚與這些鱸形目物種有較遠的親緣關系。
2. 2 GHR2基因組織表達分析結(jié)果
采用實時定量PCR分析奧尼羅非魚不同組織中GHR2基因的表達水平,結(jié)果表明,GHR2基因在所檢測的10個組織中均有表達(圖4),屬于廣泛表達的基因。其中,在肝臟中的表達量最高,顯著高于除肌肉外的其他組織(P<0.05,下同);其次是肌肉、卵巢、心臟和垂體,在頭腎中的表達量最低。
2. 3 奧尼羅非魚與親本的GHR2基因表達比較
采用實時定量PCR對比分析GHR2基因在奧尼羅非魚和親本(尼羅羅非魚和奧利亞羅非魚)肝臟中的表達情況,結(jié)果顯示,GHR2基因在雄性羅非魚肝臟中的表達量排序為奧尼羅非魚>奧利亞羅非魚>尼羅羅非魚,且在奧尼羅非魚的表達量顯著高于其親本(圖5-A);在雌性羅非魚肝臟中,尼羅羅非魚和奧尼羅非魚的GHR2基因表達量較高,二者間無顯著差異(P>0.05,下同),但顯著高于奧利亞羅非魚的表達量(圖5-B)。
GHR2基因在奧尼羅非魚和親本(尼羅羅非魚和奧利亞羅非魚)肌肉中的表達情況表現(xiàn)為:GHR2基因在雄性尼羅羅非魚、奧利亞羅非魚和奧尼羅非魚肌肉中的表達無顯著差異(圖6-A),其表達量排序為奧尼羅非魚>奧利亞羅非魚>尼羅羅非魚;在雌性羅非魚肌肉中,以奧尼羅非魚肌肉中的GHR2基因表達量最高,顯著高于其親本肌肉中的表達量(圖6-B)。
3 討論
魚類的生長受下丘腦—垂體—肝臟軸所調(diào)節(jié)。其中,下丘腦分泌促生長激素釋放激素(Growth hormone releasing hormone,GHRH),與垂體中的受體GHRHR結(jié)合后,刺激垂體中的GH分泌;GH隨循環(huán)系統(tǒng)釋放到各器官組織中,與其受體GHR結(jié)合,促進靶細胞分泌IGF-1。IGF-1是生長軸下游的多肽類激素,主要由肝臟分泌(Berryman et al.,2008),通過與其受體IGFR結(jié)合而促進組織生長發(fā)育??梢姡@些生理功能的發(fā)揮必須依靠與激素受體的特異性結(jié)合才能實現(xiàn)。目前,已在魚類中克隆獲得兩種GHR(GHR1和GHR2),如在尼羅羅非魚(Pierce et al.,2012)和桑給巴爾羅非魚(O. hornorum)(Gao et al.,2011)中已克隆獲得GHR1和GHR2的基因全序列。在奧利亞羅非魚中僅限于GHR2,尚無GHR1的相關報道(Liu et al.,2014)。本研究通過高通量測序技術提取奧尼羅非魚GHR2基因序列,結(jié)果發(fā)現(xiàn)奧尼羅非魚GHR2基因序列中含有典型的跨膜結(jié)構(gòu),且其跨膜區(qū)域的氨基酸序列與尼羅羅非魚和奧利亞羅非魚的序列高度一致,揭示了奧尼羅非魚中GHR2結(jié)構(gòu)的保守性。從基于GHR2氨基酸序列構(gòu)建的系統(tǒng)發(fā)育進化樹也可看出,3種羅非魚存在高度相近的親緣關系,尤其與母本(尼羅羅非魚)的親緣關系最近。雜交是快速獲得優(yōu)良變異后代的主要方式之一,基因組快速融合是雜種優(yōu)勢的驅(qū)動力,因此奧尼羅非魚GHR2基因序列的變化可能與其快速生長優(yōu)勢有關。
GH作用的靶組織非常廣泛,因此GHR分布于各組織細胞的細胞膜上,能啟動下游磷酸化級聯(lián)反應和基因表達。在尼羅羅非魚(Ma et al.,2007)、桑給巴爾羅非魚(Gao et al.,2011)和暗紋東方鲀(Takifugu obscurus)(Cheng et al.,2015)中,GHR2已被證實在各組織中均有表達,且以肝臟中的表達量最高。本研究結(jié)果表明,GHR2基因在奧尼羅非魚肝臟和肌肉中的表達量較高,與其他魚類的研究結(jié)果一致,間接證明GHR2在功能上的保守性。GHR表達水平與機體生長存在明顯的相關性。在羅非魚中,GHR2與IGF-1和IGF-2的表達存在相關性(Phumyu et al.,2012),說明GHR2除了能與GH結(jié)合外,還參與調(diào)節(jié)GH-IGF軸。在莫桑比克羅非魚中,雌性個體的GHR2基因表達水平低于雄性個體,即GHR2的表達優(yōu)勢與雄性莫桑比克羅非魚的生長優(yōu)勢相關(Davis et al.,2008)。本研究中,GHR2基因在雄性和雌性奧尼羅非魚肝臟中均呈高水平表達,且表達水平明顯高于親本。肝臟是IGF-1的主要分泌部位,在GHR接受到GH信號后,肝臟細胞啟動級聯(lián)反應并誘導IGF-1分泌。肌肉是魚類生長的關鍵組織,雖然GHR2基因在雄性奧尼羅非魚肌肉中未表現(xiàn)出明顯的表達優(yōu)勢,但在肝臟中呈現(xiàn)明顯優(yōu)勢。GH-IGF軸是一個整體的內(nèi)分泌調(diào)控軸,除了GHR2外,還有GH、IGF-1等多個因子共同作用,因此GH和IGF-1在雄性奧尼羅非魚的表達優(yōu)勢有待進一步探究。
雜種優(yōu)勢的產(chǎn)生源于兩個不同親本基因組融合后的序列整合及表達調(diào)控變化,其中關鍵表型基因的非加性表達是導致雜種優(yōu)勢表現(xiàn)的機制之一。非加性表達模式即雜交子代中的表達水平不等于兩親本該基因平均表達水平的基因表達模式。本研究結(jié)果表明,奧尼羅非魚肝臟和肌肉中的GHR2基因表達水平與兩親本的平均表達水平存在明顯差異,可能是導致其雜交子代生長優(yōu)勢的主要原因,但是否與非編碼RNA和甲基化組等表觀遺傳學調(diào)控方式有關,仍需進一步研究證實。
4 結(jié)論
GHR2基因?qū)儆趶V泛表達基因,在奧尼羅非魚、尼羅羅非魚和奧利亞羅非魚中高度保守;GHR2基因在奧尼羅非魚中的表達優(yōu)勢與其快速生長的雜種優(yōu)勢有關。
參考文獻:
李家樂,李晨虹,李思發(fā),葉衛(wèi),梁德進. 1997. 不同組合尼羅羅非魚(♀)×奧利亞羅非魚(♂)養(yǎng)殖性能差異研究[J]. 上海水產(chǎn)大學學報,6(2):96-101. [Li J L,Li C H,Li S F,Ye W,Liang D J. 1997. Culture performance of hybrids from different strain combinations of Oreochrmis niloticus×O. Aureus[J]. Journal of Shanghai Fisheries University,6(2):96-101.]
馬細蘭,張勇,劉曉春,林浩然. 2009. 雄尼羅羅非魚肝臟2種生長激素受體基因表達的發(fā)育性變化[J]. 中國水產(chǎn)科學,16(1):1-7. [Ma X L,Zhang Y,Liu X C,Lin H R. 2009. Developmental changes of two hepatic growth hormone receptors mRNA expression in male Nile tilapia (Oreochromis niloticus)[J]. Journal of Fishery Sciences of China,16(1):1-7.]
頡曉勇,李思發(fā),蔡完其,葉衛(wèi),陳輝崇,喻達輝. 2007. 羅非魚主要生長性狀的雜種優(yōu)勢分析[J]. 南方水產(chǎn),3(3):1-7. [Xie X Y,Li S F,Cai W Q,Ye W,Chen H C,Yu D H. 2007. Heterosis analysis of main growth-related traits of tilapia[J]. South China Fisheries Science,3(3):1-7.]
Berryman D E,Christiansen J S,Johannsson G,Thorner M O,Kopchick J J. 2008. Role of the GH/IGF-1 axis in lifespan and healthspan:Lessons from animal models[J]. Growth Hormone & IGF Research,18(6):455-471.
Chen J,Meng S,Xu H,Zhang Z,Wu X. 2017. Effects of microcystis on hypothalamic-pituitary-gonadal-liver axis in Nile tilapia(Oreochromis niloticus)[J]. Bulletin of Environmental Contamination and Toxicology,98(4):562-566.
Cheng C H,Yang F F,Liao S A,Miao Y T,Ye C X,Wang A L. 2015. Effect of acute ammonia exposure on expression of GH/IGF axis genes GHR1,GHR2 and IGF-1 in pufferfish(Takifugu obscurus)[J]. Fish Physiology and Bioche-mistry,41(2):495-507.
Davis L K,Pierce A L,Hiramatsu N,Sullivan C V,Hirano T,Grau E G. 2008. Gender-specific expression of multiple estrogen receptors,growth hormone receptors,insulin-like growth factors and vitellogenins,and effects of 17 beta-estradiol in the male tilapia(Oreochromis mossambicus)[J]. General and Comparative Endocrinology,156(3):544-551.
Gao F Y,Lu M X,Ye X,Huang Z H,Wang H,Zhu H P,Yang L P. 2011. Identification and expression analysis of two growth hormone receptors in zanzibar tilapia(Oreochromis hornorum)[J]. Fish Physiology and Biochemistry,37(3):553-565.
Herrington J,Carter-Su C. 2001. Signaling pathways activated by the growth hormone receptor[J]. Trends in Endocrinology & Metabolism,12(6):252-257.
Liu F,Sun F,Xia J H,Li J,F(xiàn)u G H,Lin G,Tu R J,Wan Z Y,Quek D,Yue G H. 2014. A genome scan revealed significant associations of growth traits with a major QTL and GHR2 in tilapia[J]. Scientific Reports,4:7256. doi:10.1038/srep07256.
Livak K J,Schmittgen T D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2?ΔΔCT method[J]. Methods,25(4):402-408.
Ma X L,Liu X C,Zhang Y,Zhu P,Ye W,Lin H R. 2007. Two growth hormone receptors in Nile tilapia(Oreochromis niloticus):Molecular characterization,tissue distribution and expression profiles in the gonad during the reproductive cycle[J]. Comparative Biochemistry and Phy-siology,147(2):325-339.
Moriyama S,Ayson F G,Kawauchi H. 2000. Growth regulation by insulin-like growth factor-I in fish[J]. Bioscience,Biotechnology,and Biochemistry,64(8):1553-1562.
Phumyu N,Boonanuntanasarn S,Jangprai A,Yoshizaki G,Na-Nakorn U. 2012. Pubertal effects of 17 α-methyltestosterone on GH-IGF-related genes of the hypothalamic-pitui-tary-liver-gonadal axis and other biological parameters in male,female and sex-reversed Nile tilapia[J]. General and Comparative Endocrinology,177(2):278-292.
Pierce A L,Breves J P,Moriyama S,Uchida K,Grau E G. 2012. Regulation of growth hormone(GH) receptor(GHR1 and GHR2) mRNA level by GH and metabolic hormones in primary cultured tilapia hepatocytes[J]. General and Comparative Endocrinology,179(1):22-29.
Reindl K M,Sheridan M A. 2012. Peripheral regulation of the growth hormone-insulin-like growth factor system in fish and other vertebrates[J]. Comparative Biochemistry and Physiology,163(3-4):231-245.
Reinecke M,Bj?rnsson B T,Dickhoff W W,McCormick S D,Navarro I,Power D M,Gutiérrez J. 2005. Growth hormone and insulin-like growth factors in fish:Where we are and where to go[J]. General and Comparative Endocrinology,142(1-2):20-24.
Sun Y,Guo C Y,Wung K,Li X F,Xiao L,Zhang X H,You X X,Shi Q,Hu G J,F(xiàn)ang C,Lin H R,Zhang Y. 2016. Transcriptome analysis reveals the molecular mechanisms underlying growth superiority in a novel grouper hybrid(Epinephelus fuscogutatus ♀×E. lanceolatus ♂)[J]. BMC Genetics,17:24. doi:10.1186/s12863-016-0328-y.
Yue M M,Zhao J L,Tang S J,Zhao Y. 2018. Effects of estradiol and testosterone on the expression of growth-related genes in female and male Nile tilapia,Oreochromis niloticus[J]. Journal of the World Aquaculture Society,49:216-228.