国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

基于誘導(dǎo)多能干細(xì)胞技術(shù)的罕見(jiàn)病細(xì)胞模型及其應(yīng)用

2018-05-24 05:10:58崔亞洲韓金祥
協(xié)和醫(yī)學(xué)雜志 2018年3期
關(guān)鍵詞:干細(xì)胞分化基因

時(shí) 良,崔亞洲,韓金祥

1山東省醫(yī)學(xué)科學(xué)院 山東省醫(yī)藥生物技術(shù)研究中心,濟(jì)南 250062 2山東省罕見(jiàn)疾病防治協(xié)會(huì),濟(jì)南 250062

罕見(jiàn)病通常是指患病率低但卻嚴(yán)重威脅生命的疾病。罕見(jiàn)病的定義在立法和政策上有所不同,通常以疾病發(fā)生率或患病率作為標(biāo)準(zhǔn)或臨界值。根據(jù)流行病學(xué)和基因組學(xué)數(shù)據(jù),美國(guó)國(guó)立衛(wèi)生研究院估計(jì)世界各地大約有7000種罕見(jiàn)病。中國(guó)常用世界衛(wèi)生組織對(duì)于罕見(jiàn)病的定義,即患病率低于0.65‰~1‰,然而,這些定義有一個(gè)相對(duì)寬泛的范圍。目前,對(duì)于中國(guó)罕見(jiàn)病的定義尚未統(tǒng)一[1]。盡管如此,中國(guó)作為人口大國(guó),罕見(jiàn)病患者人群龐大,很多罕見(jiàn)病發(fā)病原因未知,且無(wú)有效根治手段,因此基于分子機(jī)制的研究和開(kāi)發(fā)具有重要意義。

超過(guò)80%的罕見(jiàn)病與遺傳密切相關(guān)[2]。誘導(dǎo)多能干細(xì)胞(induced pluripotent stem cells,iPSCs)技術(shù)可以產(chǎn)生疾病特異性iPSCs,進(jìn)而分化為與疾病相關(guān)的功能細(xì)胞用于構(gòu)建疾病模型,體外再現(xiàn)疾病表型、模擬遺傳學(xué)變化和病理過(guò)程,在此基礎(chǔ)上研究發(fā)病機(jī)制、篩選安全有效的藥物、替換患病的細(xì)胞或組織等。最重要的是,iPSCs技術(shù)不像胚胎干細(xì)胞(embryonic stem cells,ESCs)研究一樣飽受倫理學(xué)爭(zhēng)議和免疫排斥的困擾,廣大研究者基于此項(xiàng)技術(shù)已成功建立多種罕見(jiàn)病模型,并進(jìn)行了深入研究。本文主要討論了iPSCs技術(shù)應(yīng)用于罕見(jiàn)病疾病模型的建立及其在藥物篩選、細(xì)胞治療方面的應(yīng)用。

1 利用誘導(dǎo)多能干細(xì)胞技術(shù)建立罕見(jiàn)病疾病模型的優(yōu)勢(shì)

傳統(tǒng)罕見(jiàn)病病因和病理生理機(jī)制研究往往依賴于原代或患者來(lái)源的永生化細(xì)胞系。雖然原始細(xì)胞類型很容易從血液或組織活檢中獲得,但與疾病相關(guān)的細(xì)胞類型如涉及大腦或心臟的細(xì)胞不易獲得,也不可能無(wú)限期增殖。此外,永生化細(xì)胞系隨著培養(yǎng)時(shí)間的延長(zhǎng)往往不能準(zhǔn)確反映原代細(xì)胞的狀態(tài),限制了其在功能研究中的可靠性。同樣,動(dòng)物模型雖然是體內(nèi)研究不可替代的工具,但動(dòng)物和人類之間有相當(dāng)多的解剖學(xué)、胚胎學(xué)和代謝差異,如最常用的動(dòng)物模型小鼠與人類在心臟大小和靜息心率等方面均不同[3];又如將轉(zhuǎn)基因小鼠模型應(yīng)用于阿爾茨海默病的研究中,由于人類和小鼠神經(jīng)細(xì)胞間的種屬差異造成大量神經(jīng)元缺失,因而無(wú)法準(zhǔn)確再現(xiàn)人的病理學(xué)過(guò)程[4],成為基礎(chǔ)研究轉(zhuǎn)化為臨床試驗(yàn)的最大障礙。因此,迫切需要建立人類疾病模型來(lái)彌補(bǔ)生物醫(yī)學(xué)研究中使用動(dòng)物模型的缺陷。

人iPSCs技術(shù)的誕生為建立疾病模型提供了更多選擇。人iPSCs與ESCs高度相似,如可顯示ESCs樣的細(xì)胞形態(tài)、表達(dá)多能干細(xì)胞標(biāo)志物、擁有相似的基因表達(dá)和表觀遺傳學(xué)狀態(tài)且具有體內(nèi)外分化成三胚層的能力[5- 6]。多種易獲得的供體細(xì)胞可重編程為人iPSCs(表1),其可分化為各種功能細(xì)胞,如心肌細(xì)胞、肝細(xì)胞等較難從患者身上直接獲取的疾病相關(guān)細(xì)胞。研究發(fā)現(xiàn),iPSCs中殘存對(duì)供體細(xì)胞的表觀記憶,影響了iPSCs下游分化[7- 8]。但在眾多研究中,同時(shí)用人ESCs與iPSCs建立疾病模型可在體外得到相似的表型,證明了iPSCs技術(shù)用于建立疾病模型的可行性[9]。為了iPSCs的后期應(yīng)用,重編程方法不斷改進(jìn),可采用安全高效、非病毒整合的方法(表2)。

在既往罕見(jiàn)病研究中,將患者特異性的iPSCs或功能細(xì)胞與健康人進(jìn)行比較,然而由于細(xì)胞來(lái)自不同個(gè)體,擁有不同的遺傳背景和基因表達(dá)水平,在一定程度上會(huì)干擾實(shí)驗(yàn)結(jié)果,可能會(huì)影響后期臨床應(yīng)用。隨著基因編輯技術(shù)的快速發(fā)展,借助于基因打靶技術(shù)修正缺陷的基因產(chǎn)生遺傳學(xué)匹配的對(duì)照細(xì)胞用于建立疾病模型,避免細(xì)胞系不同帶來(lái)的遺傳背景差異或偶然性結(jié)果[36- 37]。由于罕見(jiàn)病患者分布分散,不易獲取供體細(xì)胞,iPSCs結(jié)合基因編輯技術(shù)亦可為研究不易獲得的罕見(jiàn)病或基因型開(kāi)辟新的途徑。利用CRISPR/Cas9基因編輯工具能有效引入特定的突變位點(diǎn),僅影響某個(gè)基因的一個(gè)副本,即患者的iPSCs僅在特定位點(diǎn)與正常對(duì)照組iPSCs不同,由此可獲得攜帶致病基因的iPSCs[38- 39]。

表 1 產(chǎn)生人誘導(dǎo)多能干細(xì)胞的多種供體來(lái)源

表 2 采用非病毒整合方法獲得誘導(dǎo)多能干細(xì)胞

K:KLF4;L:LIN28;M:c-MYC;O:OCT4;S:SOX2

iPSCs技術(shù)結(jié)合基因編輯技術(shù)對(duì)于研究表型差異較小的散發(fā)性或自發(fā)性疾病尤為重要[40]。常用兩種分析方法來(lái)避免除目的基因外的基因多樣性干擾,在疾病特異性iPSCs中修正疾病相關(guān)基因或在野生型iPSCs中引入致病突變[41]。研究人員利用這種方式建立了C1型尼曼匹克癥疾病模型,與對(duì)照組相比,疾病特異性iPSCs分化而來(lái)的肝細(xì)胞和神經(jīng)細(xì)胞表現(xiàn)出疾病相關(guān)缺陷,比如膽固醇積累和異常的細(xì)胞自噬現(xiàn)象,通過(guò)修正突變基因NPC1,修復(fù)了上述缺陷[42],因此iPSCs技術(shù)為罕見(jiàn)病研究開(kāi)辟了新的途徑。隨著iPSCs技術(shù)的不斷發(fā)展,患者特異性iPSCs的獲取將更加規(guī)范化和規(guī)?;?,疾病模型會(huì)成為一種有效的工具,為新藥篩選、個(gè)性化再生醫(yī)療方案的制定另辟蹊徑。

2 基于誘導(dǎo)多能干細(xì)胞罕見(jiàn)病疾病模型的建立及機(jī)制研究

細(xì)胞重編程可產(chǎn)生基于iPSCs的罕見(jiàn)病疾病模型,從根本上推動(dòng)了對(duì)罕見(jiàn)病病理生理學(xué)和發(fā)病機(jī)制的深入理解,尤其是先前不易獲得的細(xì)胞或組織如心肌細(xì)胞、神經(jīng)細(xì)胞等;另外,iPSCs結(jié)合基因編輯技術(shù),可解決罕見(jiàn)病患者樣本難獲得問(wèn)題。迄今為止,絕大多數(shù)疾病模型針對(duì)以孟德?tīng)栠z傳方式導(dǎo)致的病例而建立,但仍有很多疾病是偶發(fā)性或由多個(gè)位點(diǎn)基因的多態(tài)性導(dǎo)致。轉(zhuǎn)基因動(dòng)物或細(xì)胞系等傳統(tǒng)建模方法極具挑戰(zhàn)性,而iPSCs技術(shù)可解決這一難題,即便有多個(gè)未知突變,疾病特異性iPSCs攜帶患者遺傳背景仍可再現(xiàn)病理表型,并在此基礎(chǔ)上探究疾病發(fā)生的機(jī)制。最近研究者利用iPSCs技術(shù)成功建立了多種罕見(jiàn)病疾病模型,并發(fā)現(xiàn)了其重要機(jī)制或靶點(diǎn)(表3)。

2.1 單基因罕見(jiàn)病

單基因突變?cè)斐傻募膊》Q為單基因病,單基因缺陷引起的新生兒患病率通常小于0.1‰,因而絕大多數(shù)屬于罕見(jiàn)病。iPSCs技術(shù)被廣泛應(yīng)用于建立先天突變的單基因罕見(jiàn)病模型,研究發(fā)現(xiàn)多種單基因疾病來(lái)源的iPSCs通過(guò)合適的下游分化方法得到疾病相關(guān)細(xì)胞類型,可在體外真實(shí)地模擬疾病病理學(xué)過(guò)程[62- 63]。通過(guò)iPSCs技術(shù)可建立單基因罕見(jiàn)病疾病模型,例如與神經(jīng)損傷有關(guān)的疾病(弗里德賴希共濟(jì)失調(diào)、共濟(jì)失調(diào)性毛細(xì)血管擴(kuò)張癥、C1型尼曼匹克癥、柯凱因綜合征等),采用適宜的下游分化方法可得到疾病相關(guān)功能細(xì)胞,深入探究疾病發(fā)病機(jī)制[64- 67]。隨著iPSCs技術(shù)不斷發(fā)展,關(guān)于神經(jīng)發(fā)育障礙罕見(jiàn)病,最近研究者發(fā)現(xiàn)了一種更加高效的建模方法,從尿液收集到獲得神經(jīng)亞型僅需75 d[68]。

脊髓性肌萎縮癥是早發(fā)性罕見(jiàn)病,由于運(yùn)動(dòng)神經(jīng)元1突變導(dǎo)致,將患者特異性iPSCs分化為神經(jīng)細(xì)胞用于模型建立[62]。運(yùn)動(dòng)神經(jīng)元1突變導(dǎo)致運(yùn)動(dòng)神經(jīng)元衰退和肌肉萎縮變性。Ⅰ型脊髓性肌萎縮癥患者通常在出生6個(gè)月內(nèi)表現(xiàn)出癥狀,隨著病情加重, 2歲時(shí)患兒死亡[69]。最初的iPSCs疾病模型,將Ⅰ型脊髓性肌萎縮癥患者成纖維細(xì)胞來(lái)源的iPSCs分化成運(yùn)動(dòng)神經(jīng)元[62]。從患者特異性iPSCs分化而來(lái)的運(yùn)動(dòng)神經(jīng)元與正常組相比存活能力降低。這項(xiàng)研究結(jié)果表明,患者來(lái)源的iPSCs可用于早發(fā)性單基因罕見(jiàn)病模型建立。

表 3 利用誘導(dǎo)多能干細(xì)胞技術(shù)建立的罕見(jiàn)病疾病模型

2.2 多基因罕見(jiàn)病

在染色體區(qū)域的缺失或重復(fù)稱為多基因病,復(fù)雜罕見(jiàn)病通常涉及多個(gè)或未知的異?;?。如自閉癥因表型和病因異質(zhì)性,建立細(xì)胞模型或動(dòng)物模型存在很大困難,因而揭示潛在的遺傳學(xué)、病理生理學(xué)機(jī)制具有很大挑戰(zhàn)。iPSCs技術(shù)的出現(xiàn)對(duì)于理解復(fù)雜或散發(fā)性罕見(jiàn)病帶來(lái)了新的希望[70],研究人員假設(shè)自閉癥患者中增多的腦體積和神經(jīng)元數(shù)量可能是神經(jīng)祖細(xì)胞增殖率增加的結(jié)果[71],于是將患者特異性iPSCs分化為神經(jīng)祖細(xì)胞,患者的神經(jīng)祖細(xì)胞比正常組增殖速度快,與假設(shè)一致。神經(jīng)元?jiǎng)t表現(xiàn)出異常神經(jīng)發(fā)生和突觸減少,導(dǎo)致神經(jīng)元網(wǎng)絡(luò)的功能缺陷。在哺乳動(dòng)物大腦發(fā)育過(guò)程中,神經(jīng)祖細(xì)胞是受到嚴(yán)格調(diào)控的,如果異常增殖會(huì)導(dǎo)致長(zhǎng)久性分化異常和缺陷,將導(dǎo)致自閉癥的發(fā)生。第一型類胰島素生長(zhǎng)因子(insulin-like growth factor 1,IGF- 1)是一種自然產(chǎn)生的神經(jīng)營(yíng)養(yǎng)因子,對(duì)大腦發(fā)育和可塑性至關(guān)重要[72- 73]。研究人員發(fā)現(xiàn)IGF- 1可改善神經(jīng)網(wǎng)絡(luò)異常,目前正處于臨床試驗(yàn)階段。

2.3 遲發(fā)性罕見(jiàn)病

相比于早發(fā)疾病,細(xì)胞的老化程度是遲發(fā)疾病病理學(xué)研究的重要因素,建立遲發(fā)性罕見(jiàn)病模型更具挑戰(zhàn)性,因?yàn)閕PSCs的特點(diǎn)是具有早期胚胎的基因表達(dá)程序[74]。成功建模的重要方法是人工誘導(dǎo)細(xì)胞的衰老[75- 76]。具體方法如下:(1)氧化應(yīng)激:使用MG- 132和吡唑醚菌酯等化合物,通過(guò)靶向線粒體的功能或蛋白質(zhì)降解途徑,進(jìn)而促進(jìn)細(xì)胞衰老[77- 78];(2)早衰蛋白:由核纖層蛋白截短后產(chǎn)生,可導(dǎo)致過(guò)早老化[75]。

最近發(fā)現(xiàn)的一種更具生理學(xué)意義的方法是采用小分子抑制端粒酶活性,其顯示了衰老的經(jīng)典特征,包括DNA損傷、活性氧增加,酪氨酸羥化酶的下調(diào)[79]。早衰綜合癥的iPSCs模型,如哈欽森-吉爾福德早衰綜合癥,不僅成功地模擬了高速分化和衰老的干細(xì)胞,而且也促進(jìn)了與年齡有關(guān)的標(biāo)志物應(yīng)用于更普遍的遲發(fā)性疾病如帕金森病研究[80]。

迄今為止,多種疾病的建模方案是基于單一的功能細(xì)胞。然而,對(duì)于很多疾病而言,不止一種功能細(xì)胞能準(zhǔn)確模擬疾病發(fā)生,如自閉癥建模,使用的是患者特異性神經(jīng)祖細(xì)胞和神經(jīng)元細(xì)胞。除此之外,為了更精確地再現(xiàn)疾病表型,需將不同類型的細(xì)胞共培養(yǎng)以研究細(xì)胞間的相互作用,如3D組織培養(yǎng)技術(shù)。從傳統(tǒng)的二維分化培養(yǎng)方法逐步發(fā)展為空間模擬人類組織或器官的交互作用。目前采用老鼠和人的組織干細(xì)胞或多能干細(xì)胞可產(chǎn)生多種器官,包括大腦、視網(wǎng)膜、腸道、腎臟、肝臟、肺、胃[81]。人iPSCs分化形成的組織因與內(nèi)源性細(xì)胞組織或器官結(jié)構(gòu)相似,而被廣泛應(yīng)用于模擬人類生理和發(fā)育過(guò)程中細(xì)胞間相互作用。以組織形式存在的多種細(xì)胞比單獨(dú)分化得來(lái)的細(xì)胞功能上更加成熟,主要原因是存在細(xì)胞間的通訊,比如3D結(jié)構(gòu)中神經(jīng)元細(xì)胞和星形膠質(zhì)細(xì)胞。目前已被用于模擬人類器官形成和疾病病理過(guò)程,檢驗(yàn)可用于治療的化合物或進(jìn)行細(xì)胞移植[82- 84]。3D組織培養(yǎng)技術(shù)有待發(fā)掘更加標(biāo)準(zhǔn)化的培養(yǎng)條件和胞外基質(zhì),高效地再現(xiàn)組織系統(tǒng),將更適用于建立精準(zhǔn)疾病模型,進(jìn)而篩選新藥,促進(jìn)再生醫(yī)學(xué)發(fā)展[85]。

3 基于誘導(dǎo)多能干細(xì)胞罕見(jiàn)病模型的應(yīng)用

iPSCs技術(shù)除了上述提到的建立罕見(jiàn)病模型,在發(fā)病機(jī)制和功能上進(jìn)行深入探究外,在藥物篩選、臨床治療等方面亦具有廣泛應(yīng)用。在有效疾病模型的基礎(chǔ)上,探究罕見(jiàn)病的病理生理學(xué)進(jìn)程,利用功能細(xì)胞篩選新型藥物,可推進(jìn)細(xì)胞或組織治療等再生醫(yī)學(xué)的發(fā)展,達(dá)到干細(xì)胞研究的最終目的。結(jié)合基因編輯技術(shù),具體應(yīng)用流程如圖1所示,重編程罕見(jiàn)病患者的體細(xì)胞,誘導(dǎo)得到患者特異性iPSCs,結(jié)合基因編輯工具修正患病基因得到同型對(duì)照組,兩組細(xì)胞系均分化產(chǎn)生大量的功能細(xì)胞,在體外再現(xiàn)疾病表型,在此基礎(chǔ)上發(fā)現(xiàn)新的診斷標(biāo)志物、篩選安全有效的藥物、替換患病的細(xì)胞或組織。這種定制化的治療方法可以避免免疫排斥和倫理學(xué)爭(zhēng)議。

3.1 藥物篩選

罕見(jiàn)病的藥物開(kāi)發(fā)過(guò)程與普通疾病相似,需要大量資源,通常持續(xù)10~12年。952種中國(guó)住院患者可見(jiàn)的罕見(jiàn)病中,50種罕見(jiàn)病有相應(yīng)的孤兒藥在中國(guó)上市、獲得臨床批件或正在進(jìn)行臨床試驗(yàn),95%的罕見(jiàn)病目前尚無(wú)特效治療藥物,患者預(yù)后不佳,給社會(huì)帶來(lái)沉重負(fù)擔(dān)。因罕見(jiàn)病患者基數(shù)小而限制了全面的藥物試驗(yàn),因而準(zhǔn)確測(cè)定患者藥物反應(yīng)和新陳代謝情況以降低不良反應(yīng)對(duì)罕見(jiàn)病患者的治療至關(guān)重要。考慮到整體市場(chǎng)份額不足,藥品開(kāi)發(fā)對(duì)制藥公司通常缺乏吸引力。直到1983年,《孤兒藥法案》才將美國(guó)食品藥品監(jiān)督管理局(Food and Drug Administration,F(xiàn)DA)批準(zhǔn)的罕見(jiàn)病藥物份額提高至35%左右[2]?;趇PSCs的罕見(jiàn)病模型為發(fā)現(xiàn)罕見(jiàn)病可用藥物帶來(lái)了新的希望。家族性自主神經(jīng)功能障礙是單基因遺傳的早發(fā)性疾病,影響神經(jīng)嵴細(xì)胞系,由IKBKAP編碼核因子抑制劑κB激酶復(fù)合物相關(guān)蛋白突變引起,表現(xiàn)為神經(jīng)系統(tǒng)缺陷和小纖維感覺(jué)神經(jīng)元功能障礙。在iPSCs模型的基礎(chǔ)上,分選并純化自主神經(jīng)元的神經(jīng)嵴細(xì)胞前體。研究小組檢測(cè)了6912個(gè)小分子化合物,發(fā)現(xiàn)8個(gè)化合物可恢復(fù)IKBKAP的表達(dá),其中SKF- 86466可改善異常剪接[86]。這是使用基于人iPSCs疾病模型進(jìn)行高通量藥物篩選的第一個(gè)研究成果。

圖1誘導(dǎo)多能干細(xì)胞技術(shù)用于罕見(jiàn)病研究流程圖

疾病特異性iPSCs的另一個(gè)應(yīng)用是藥物重新定位,即在現(xiàn)有的已被批準(zhǔn)用于特定疾病的藥物中,找到其在其他疾病中新的應(yīng)用。研究α- 1抗胰蛋白酶缺乏癥的學(xué)者,從iPSCs分化得到肝細(xì)胞,利用已建立的臨床化合物數(shù)據(jù)庫(kù),篩選了3131種臨床批準(zhǔn)的化合物(2800種藥物已被美國(guó)FDA/國(guó)外同行批準(zhǔn)或已進(jìn)入第二階段臨床試驗(yàn)),確定5種可改善該疾病表型的臨床藥物,繞過(guò)臨床前和臨床研究早期階段,直接作為臨床療法迅速進(jìn)行臨床試驗(yàn)[87]。軟骨發(fā)育不全由成纖維細(xì)胞生長(zhǎng)因子受體3突變導(dǎo)致,日本京都大學(xué)研究人員成功獲得軟骨發(fā)育不全患者的iPSCs,并在體外再現(xiàn)了異常的軟骨形成過(guò)程;在此基礎(chǔ)上,通過(guò)大量化合物篩選,研究者驚喜地發(fā)現(xiàn)他汀類藥物可明顯恢復(fù)骨骼生長(zhǎng),改善軟骨發(fā)育不全的癥狀[88]。他汀類藥物因有降低膽固醇的功效而被廣泛用于治療心血管疾病,如果臨床試驗(yàn)成功,將意味著擴(kuò)大了他汀類藥物的適用范圍。已批準(zhǔn)的藥物被確定可治療其他疾病并可在臨床試驗(yàn)中進(jìn)一步評(píng)估,而無(wú)需長(zhǎng)時(shí)間的臨床前開(kāi)發(fā)。此外,由于這些藥物的作用靶點(diǎn)已知(如激酶抑制劑或蛋白酶),有助于其在新的疾病中確定新的藥物靶點(diǎn)和治療方法。

通過(guò)以上研究,證明了與使用永生化細(xì)胞系和動(dòng)物模型相比,患者特異性iPSCs分化得到的疾病相關(guān)細(xì)胞更能準(zhǔn)確反映藥物的療效。此外,已批準(zhǔn)的藥物通過(guò)iPSCs罕見(jiàn)病模型可發(fā)現(xiàn)新的適應(yīng)癥。

3.2 藥物毒性試驗(yàn)

新藥開(kāi)發(fā)需要高額的經(jīng)費(fèi),主要用于臨床試驗(yàn)后期出現(xiàn)的無(wú)法預(yù)測(cè)的副作用[89]。然而,iPSCs模型能有效預(yù)測(cè)候選藥物可能引起嚴(yán)重副作用,從而使候選藥物在后期毒性試驗(yàn)中失敗率大大降低。例如,西沙必利原本用于治療胃食管反流病,因?qū)π呐K有毒性而退出市場(chǎng)。研究人員將遺傳性長(zhǎng)QT綜合征、家族性肥厚性心肌病、家族性擴(kuò)張型心肌病患者的iPSCs分化為心肌細(xì)胞,這些心肌細(xì)胞再現(xiàn)了疾病表型如電生理功能障礙,在此基礎(chǔ)上用已知化合物包括西沙必利檢測(cè)對(duì)心臟毒性的反應(yīng),發(fā)現(xiàn)患者來(lái)源的心肌細(xì)胞比正常組對(duì)西沙必利導(dǎo)致的異常更加敏感[90]。鑒于多種藥物因?qū)θ梭w產(chǎn)生副作用而被撤出市場(chǎng),可能是當(dāng)前不全面的評(píng)估方法導(dǎo)致,iPSCs模型可進(jìn)一步證實(shí)和補(bǔ)充。

3.3 細(xì)胞治療

利用iPSCs技術(shù)促進(jìn)再生醫(yī)學(xué)(內(nèi)源再生過(guò)程或細(xì)胞移植后替代受損組織)的發(fā)展引起了人們極大興趣。2014年Takahashi研究小組進(jìn)行了第一次iPSCs臨床試驗(yàn),其將老年性黃斑變性患者自身iPSCs來(lái)源的視網(wǎng)膜色素上皮細(xì)胞進(jìn)行自體移植治療,治療結(jié)果為陽(yáng)性,阻止黃斑變性并改善了患者的視力[91],雖然由于第2個(gè)患者iPSCs與供體成纖維細(xì)胞相比,存在3個(gè)單核苷酸變異和3個(gè)拷貝數(shù)變異而終止了下一步移植,但預(yù)計(jì)會(huì)重新開(kāi)始細(xì)胞治療[92]?;颉⒈碛^遺傳、染色體的變化往往是由iPSCs體外培養(yǎng)導(dǎo)致[93],目前尚不完全清楚這些突變是否由重編程過(guò)程引起。盡管目前干細(xì)胞移植存在局限性,但其為罕見(jiàn)病治療開(kāi)辟了新的道路,而人類干細(xì)胞治療罕見(jiàn)病的臨床試驗(yàn)已經(jīng)開(kāi)始[94]。

利用iPSCs技術(shù)進(jìn)行細(xì)胞治療具有很多優(yōu)勢(shì):(1)iPSCs能夠自我更新,可獲得足夠數(shù)量的細(xì)胞,隨后在體外可分化成任何類型的細(xì)胞;(2)iPSCs來(lái)源于患者自身供體細(xì)胞,避免尋找與組織相容性抗原兼容的細(xì)胞供體和使用免疫抑制劑。

然而,將iPSCs技術(shù)真正用于人類細(xì)胞治療,仍有很多困難需要克服:(1)iPSCs的致瘤性[95],為確保最終分化得到的細(xì)胞中不含未分化的iPSCs,研究人員發(fā)現(xiàn)小分子抑制劑可進(jìn)行篩選,使未分化的iPSCs死亡而不影響分化的細(xì)胞,降低了致瘤風(fēng)險(xiǎn)[96]。(2)由于iPSCs在體外培養(yǎng)時(shí)間較長(zhǎng),會(huì)導(dǎo)致異常核型和拷貝數(shù)變異[97],因此,在投入臨床治療前,需仔細(xì)排查iPSCs來(lái)源的細(xì)胞是否存在潛在的遺傳變異風(fēng)險(xiǎn),進(jìn)行嚴(yán)格的鑒定以確保其純度、質(zhì)量和無(wú)菌。人類iPSCs平臺(tái)與基因編輯、3D組織培養(yǎng)技術(shù)相結(jié)合,可讓iPSCs技術(shù)為以干細(xì)胞為基礎(chǔ)的細(xì)胞療法提供更強(qiáng)大的細(xì)胞資源。

4 總結(jié)與展望

罕見(jiàn)病嚴(yán)重影響人類健康,相關(guān)研究已引起全球重視。盡管如此,罕見(jiàn)病仍然面臨著難診斷、難治療的挑戰(zhàn),并發(fā)癥的存在亦增加了其診治難度。為了推動(dòng)中國(guó)罕見(jiàn)病政策的制定、深入發(fā)現(xiàn)遺傳機(jī)制、提升臨床診療水平,2016年“精準(zhǔn)醫(yī)學(xué)研究”重點(diǎn)專項(xiàng)“罕見(jiàn)病臨床隊(duì)列研究”的重要內(nèi)容即是建立全國(guó)統(tǒng)一的罕見(jiàn)病注冊(cè)登記系統(tǒng),完善可共享的臨床隊(duì)列和樣本庫(kù),整合臨床診療信息,進(jìn)而建立可開(kāi)展預(yù)后研究的隨訪數(shù)據(jù)庫(kù)體系?;诖?,2017年3月1日山東省罕見(jiàn)病注冊(cè)登記系統(tǒng)正式上線,目前已注冊(cè)罕見(jiàn)病病例850例。在十三五國(guó)家重點(diǎn)研發(fā)計(jì)劃“罕見(jiàn)病臨床隊(duì)列研究項(xiàng)目”的指導(dǎo)下,建立的中國(guó)國(guó)家罕見(jiàn)病注冊(cè)體系,將為中國(guó)罕見(jiàn)病精準(zhǔn)診斷與轉(zhuǎn)化醫(yī)學(xué)提供強(qiáng)大動(dòng)力。

在此平臺(tái)的支撐下,采用人的疾病模型來(lái)模擬這些復(fù)雜、多樣的癥狀,可更深入剖析發(fā)病機(jī)制、開(kāi)發(fā)新的治療方法。iPSCs技術(shù)在罕見(jiàn)病建模方面具有獨(dú)特優(yōu)勢(shì),并成功建立了單基因、多基因、遲發(fā)性罕見(jiàn)病疾病模型,該模型已成為藥物篩選、藥物毒性研究、個(gè)性化細(xì)胞治療的有效工具,推動(dòng)了精準(zhǔn)醫(yī)學(xué)的發(fā)展。隨著高通量測(cè)序、基因編輯技術(shù)和小分子篩選技術(shù)的突破,與這些技術(shù)結(jié)合起來(lái),開(kāi)發(fā)罕見(jiàn)病的治療干預(yù)措施,將為罕見(jiàn)病患者的診治帶來(lái)前所未有的希望。

參 考 文 獻(xiàn)

[1] Cui Y, Han J. Defining rare diseases in China[J]. Intractable Rare Dis Res, 2017, 6:148- 149.

[2] Melnikova I. Rare diseases and orphan drugs[J]. Nat Rev Drug Discov, 2012, 11:267- 268.

[3] Hamlin RL, Altschuld RA. Extrapolation from mouse to man[J]. Circ Cardiovasc Imaging, 2011, 4:2- 4.

[4] Onos KD, Sukoff Rizzo SJ, Howell GR, et al. Toward more predictive genetic mouse models of Alzheimer’s disease[J]. Brain Res Bull, 2016, 122:1- 11.

[5] Takahashi K, Tanabe K, Ohnuki M, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors[J]. Cell, 2007, 131:861- 872.

[6] Yu J, Vodyanik MA, Smuga-Otto K, et al. Induced pluri-potent stem cell lines derived from human somatic cells[J]. Science, 2007, 318:1917- 1920.

[7] Kim K, Zhao R, Doi A, et al. Donor cell type can influence the epigenome and differentiation potential of human induced pluripotent stem cells[J]. Nat Biotechnol, 2011, 29:1117- 1119.

[8] Ohi Y, Qin H, Hong C, et al. Incomplete DNA methylation underlies a transcriptional memory of somatic cells in human iPS cells[J]. Nat Cell Biol, 2011,13:541- 549.

[9] Avior Y, Sagi I, Benvenisty N. Pluripotent stem cells in disease modelling and drug discovery[J]. Nat Rev Mol Cell Biol, 2016, 17:170- 182.

[10] Wada N, Wang B, Lin NH, et al. Induced pluripotent stem cell lines derived from human gingival fibroblasts and periodontal ligament fibroblasts[J]. J Periodontal Res, 2011, 46:438- 447.

[11] Aasen T, Raya A, Barrero MJ, et al. Efficient and rapid generation of induced pluripotent stem cells from human keratinocytes[J]. Nat Biotechnol, 2008, 26:1276- 1284.

[12] Giorgetti A, Montserrat N, Aasen T, et al. Generation of induced pluripotent stem cells from human cord blood using OCT4 and SOX2[J]. Cell Stem Cell, 2009, 5:353- 357.

[13] Haase A, Olmer R, Schwanke K, et al. Generation of induced pluripotent stem cells from human cord blood[J]. Cell Stem Cell, 2009, 5:434- 441.

[14] Seki T, Yuasa S, Fukuda K. Generation of induced pluripotent stem cells from a small amount of human peri-pheral blood using a combination of activated T cells and Sendai virus[J]. Nat Protoc, 2012, 7:718- 728.

[15] Simara P, Tesarova L, Rehakova D, et al. Reprogramming of adult peripheral blood cells into human induced pluripotent stem cells as a safe and accessible source of endothelial cells[J]. Stem Cells Dev, 2018, 27:10- 22.

[16] Aoki T, Ohnishi H, Oda Y, et al. Generation of induced pluripotent stem cells from human adipose-derived stem cells without c-MYC[J]. Tissue Eng Part A, 2010, 16:2197- 2206.

[17] Sugii S, Kida Y, Kawamura T, et al. Human and mouse adipose-derived cells support feeder-independent induction of pluripotent stem cells[J]. Proc Natl Acad Sci USA, 2010, 107:3558- 3563.

[18] Kim JB, Greber B, Arauzo-Bravo MJ, et al. Direct reprogramming of human neural stem cells by OCT4[J]. Nature, 2009, 461:649- 653.

[19] Cai J, Li W, Su H, et al. Generation of human induced pluripotent stem cells from umbilical cord matrix and amniotic membrane mesenchymal cells[J]. J Biol Chem, 2010, 285:11227- 11234.

[20] Li C, Zhou J, Shi G, et al. Pluripotency can be rapidly and efficiently induced in human amniotic fluid-derived cells[J]. Hum Mol Genet, 2009, 18:4340- 4349.

[21] Liu H, Ye Z, Kim Y, et al. Generation of endoderm-derived human induced pluripotent stem cells from primary hepato-cytes[J]. Hepatology, 2010, 51:1810- 1819.

[22] Zhou T, Benda C, Dunzinger S, et al. Generation of human induced pluripotent stem cells from urine samples[J]. Nat Protoc, 2012, 7:2080- 2089.

[23] Uhm KO, Jo EH, Go GY, et al. Generation of human induced pluripotent stem cells from urinary cells of a healthy donor using a non-integration system[J]. Stem Cell Res, 2017, 21:44- 46.

[24] Fusaki N, Ban H, Nishiyama A, et al. Efficient induction of transgene-free human pluripotent stem cells using a vector based on Sendai virus, an RNA virus that does not integrate into the host genome[J]. Proc Jpn Acad Ser B Phys Biol Sci, 2009, 85:348- 362.

[25] Stadtfeld M, Nagaya M, Utikal J, et al. Induced pluripotent stem cells generated without viral integration[J]. Science, 2008, 322:945- 949.

[26] Si-Tayeb K, Noto FK, Sepac A, et al. Generation of human induced pluripotent stem cells by simple transient transfection of plasmid DNA encoding reprogramming factors[J]. BMC Dev Biol, 2010, 10:81.

[27] Lorenzo IM, Fleischer A, Bachiller D. Generation of mouse and human induced pluripotent stem cells (iPSC) from primary somatic cells[J]. Stem Cell Rev, 2013, 9:435- 450.

[28] Xue Y, Cai X, Wang L, et al. Generating a non-integrating human induced pluripotent stem cell bank from urine-derived cells[J]. PLoS One, 2013, 8:e70573.

[29] Woltjen K, Michael IP, Mohseni P, et al. piggyBac transposition reprograms fibroblasts to induced pluripotent stem cells[J]. Nature, 2009, 458:766- 770.

[30] Zhou H, Wu S, Joo JY, et al. Generation of induced pluripotent stem cells using recombinant proteins[J]. Cell Stem Cell, 2009, 4:381- 384.

[31] Kim D, Kim CH, Moon JI, et al. Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins[J]. Cell Stem Cell, 2009, 4:472- 476.

[32] Ichida JK, Blanchard J, Lam K, et al. A small-molecule inhibitor of tgf-Beta signaling replaces sox2 in reprogramming by inducing nanog[J]. Cell Stem Cell, 2009, 5:491- 503.

[33] Zhu S, Li W, Zhou H, et al. Reprogramming of human primary somatic cells by OCT4 and chemical compounds[J]. Cell Stem Cell, 2010, 7:651- 655.

[34] Warren L, Manos PD, Ahfeldt T, et al. Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA[J]. Cell Stem Cell, 2010, 7:618- 630.

[35] Miyoshi N, Ishii H, Nagano H, et al. Reprogramming of mouse and human cells to pluripotency using mature microRNAs[J]. Cell Stem Cell, 2011, 8:633- 638.

[36] Kwart D, Paquet D, Teo S, et al. Precise and efficient scarless genome editing in stem cells using CORRECT[J]. Nat Protoc, 2017, 12:329- 354.

[37] Park CY, Sung JJ, Choi SH, et al. Modeling and correction of structural variations in patient-derived iPSCs using CRISPR/Cas9[J]. Nat Protoc, 2016, 11:2154- 2169.

[38] Paquet D, Kwart D, Chen A, et al. Efficient introduction of specific homozygous and heterozygous mutations using CRISPR/Cas9[J]. Nature, 2016, 533:125- 129.

[39] Zhang Y, Schmid B, Nielsen TT, et al. Generation of a human induced pluripotent stem cell line via CRISPR-Cas9 mediated integration of a site-specific heterozygous mutation in CHMP2B[J]. Stem Cell Res, 2016,17:148- 150.

[40] Hockemeyer D, Jaenisch R. Induced pluripotent stem cells meet genome editing[J]. Cell Stem Cell, 2016, 18:573- 586.

[41] Suh W. A new era of disease modeling and drug discovery using induced pluripotent stem cells[J]. Arch Pharm Res, 2017, 40:1- 12.

[42] Maetzel D, Sarkar S, Wang H, et al. Genetic and chemical correction of cholesterol accumulation and impaired autophagy in hepatic and neural cells derived from Niemann-Pick Type C patient-specific iPS cells[J]. Stem Cell Reports, 2014, 2:866- 880.

[43] Hall CE, Yao Z, Choi M, et al. Progressive motor neuron pathology and the role of astrocytes in a human stem cell model of VCP-related ALS[J]. Cell Rep, 2017, 19:1739- 1749.

[44] Yoshida M, Kitaoka S, Egawa N, et al. Modeling the early phenotype at the neuromuscular junction of spinal muscular atrophy using patient-derived iPSCs[J]. Stem Cell Reports, 2015, 4:561- 568.

[45] Okuno H, Renault Mihara F, Ohta S, et al. CHARGE syndrome modeling using patient-iPSCs reveals defective migra-tion of neural crest cells harboring CHD7 mutations[J]. Elife, 2017, 6.

[46] Chailangkarn T, Muotri AR. Modeling Williams syndrome with induced pluripotent stem cells[J]. Neurogenesis, 2017, 4:e1283187.

[47] Aflaki E, Borger DK, Moaven N, et al. A new glucocerebrosidase chaperone reduces alpha-synuclein and glycolipid levels in iPSC-derived dopaminergic neurons from patients with Gaucher disease and Parkinsonism[J]. J Neurosci, 2016, 36:7441- 7452.

[48] Awad O, Sarkar C, Panicker LM, et al. Altered TFEB-mediated lysosomal biogenesis in Gaucher disease iPSC-derived neuronal cells[J]. Hum Mol Genet, 2015, 24:5775- 5788.

[49] Chou SJ, Yu WC, Chang YL, et al. Energy utilization of induced pluripotent stem cell-derived cardiomyocyte in Fabry disease[J]. Int J Cardiol, 2017, 232:255- 263.

[50] Sato Y, Kobayashi H, Higuchi T, et al. TFEB overexpression promotes glycogen clearance of Pompe disease iPSC-derived skeletal muscle[J]. Mol Ther Methods Clin Dev, 2016, 3:16054.

[51] Yoshida S, Nakanishi C, Okada H, et al. Characteristics of induced pluripotent stem cells from clinically divergent female monozygotic twins with Danon disease[J]. J Mol Cell Cardiol, 2017, 114:234- 242.

[52] HD iPSC Consortium. Developmental alterations in Huntington’s disease neural cells and pharmacological rescue in cells and mice[J]. Nat Neurosci, 2017, 20:648- 660.

[53] Lukovic D, Artero Castro A, Delgado AB, et al. Human iPSC derived disease model of MERTK-associated retinitis pigmentosa[J]. Sci Rep, 2015, 5:12910.

[54] Ramsden CM, Nommiste B, A RL, et al. Rescue of the MERTK phagocytic defect in a human iPSC disease model using translational read-through inducing drugs[J]. Sci Rep, 2017, 7:51.

[55] Matsumoto Y, Ikeya M, Hino K, et al. New protocol to optimize iPS cells for genome analysis of fibrodysplasia ossificans progressiva[J]. Stem Cells, 2015,33:1730- 1742.

[56] Barruet E, Morales BM, Lwin W, et al. The ACVR1 R206H mutation found in fibrodysplasia ossificans progressiva increases human induced pluripotent stem cell-derived endothelial cell formation and collagen production through BMP-mediated SMAD1/5/8 signaling[J]. Stem Cell Res Ther, 2016, 7:115.

[57] Yi F, Qu J, Li M, et al. Establishment of hepatic and neural differentiation platforms of Wilson’s disease specific induced pluripotent stem cells[J]. Protein Cell, 2012, 3:855- 863.

[58] Granata A, Serrano F, Bernard WG, et al. An iPSC-derived vascular model of Marfan syndrome identifies key mediators of smooth muscle cell death[J]. Nat Genet, 2017, 49:97- 109.

[59] Park JW, Yan L, Stoddard C, et al. Recapitulating and correcting Marfan syndrome in a cellular model[J]. Int J Biol Sci, 2017, 13:588- 603.

[60] Fink JJ, Robinson TM, Germain ND, et al. Disrupted neuronal maturation in Angelman syndrome-derived induced pluripotent stem cells[J]. Nat Commun, 2017, 8:15038.

[61] Francis KR, Ton AN, Xin Y, et al. Modeling Smith-Lemli-Opitz syndrome with induced pluripotent stem cells reveals a causal role for Wnt/beta-catenin defects in neuronal choles-terol synthesis phenotypes[J]. Nat Med, 2016, 22:388- 396.

[62] Ebert AD, Yu J, Rose FF Jr, et al. Induced pluripotent stem cells from a spinal muscular atrophy patient[J]. Nature, 2009, 457:277- 280.

[63] Itzhaki I, Maizels L, Huber I, et al. Modelling the long QT syndrome with induced pluripotent stem cells[J]. Nature, 2011, 471:225- 259.

[64] Carlessi L, Fusar Poli E, Bechi G, et al. Functional and molecular defects of hiPSC-derived neurons from patients with ATM deficiency[J]. Cell Death Dis, 2014, 5:e1342.

[65] Long Y, Xu M, Li R, et al. Induced pluripotent stem cells for disease modeling and evaluation of therapeutics for Niemann-Pick disease type A[J]. Stem Cells Transl Med, 2016, 5:1644- 1655.

[66] Trilck M, Hubner R, Seibler P, et al. Niemann-Pick type C1 patient-specific induced pluripotent stem cells display disease specific hallmarks[J]. Orphanet J Rare Dis, 2013, 8:144.

[67] Vessoni AT, Herai RH, Karpiak JV, et al. Cockayne syndrome-derived neurons display reduced synapse density and altered neural network synchrony[J]. Hum Mol Genet, 2016, 25:1271- 1280.

[68] Bell S, Peng H, Crapper L, et al. A rapid pipeline to model rare neurodevelopmental disorders with simultaneous CRISPR/Cas9 gene editing[J]. Stem Cells Transl Med, 2017, 6:886- 896.

[69] Munsat TL, Davies KE. International SMA consortium meeting[J]. Neuromuscul Disord,1992, 2:423- 428.

[70] DeRosa BA, Van Baaren JM, Dubey GK, et al. Derivation of autism spectrum disorder-specific induced pluripotent stem cells from peripheral blood mononuclear cells[J]. Neurosci Lett, 2012, 516:9- 14.

[71] Marchetto MC, Belinson H, Tian Y, et al. Altered proli-feration and networks in neural cells derived from idiopathic autistic individuals[J]. Mol Psychiatry, 2017, 22:820- 835.

[72] Ciucci F, Putignano E, Baroncelli L, et al. Insulin-like growth factor 1 (IGF- 1) mediates the effects of enriched environment (EE) on visual cortical development[J]. PLoS One, 2007, 2:e475.

[73] Cheng CM, Reinhardt RR, Lee WH, et al. Insulin-like growth factor 1 regulates developing brain glucose metabolism[J]. Proc Natl Acad Sci USA, 2000, 97:10236- 10241.

[74] Studer L, Vera E, Cornacchia D. Programming and reprogramming cellular age in the era of induced pluripotency[J]. Cell Stem Cell, 2015, 16:591- 600.

[75] Miller JD, Ganat YM, Kishinevsky S, et al. Human iPSC-based modeling of late-onset disease via progerin-induced aging[J]. Cell Stem Cell, 2013,13:691- 705.

[76] Cooper O, Seo H, Andrabi S, et al. Pharmacological rescue of mitochondrial deficits in iPSC-derived neural cells from patients with familial Parkinson’s disease[J]. Sci Transl Med, 2012, 4:141ra90.

[77] Pearson BL, Simon JM. Identification of chemicals that mimic transcriptional changes associated with autism, brain aging and neurodegeneration[J]. Nat Commun, 2016, 7:11173.

[78] Nguyen HN, Byers B, Cord B, et al. LRRK2 mutant iPSC-derived DA neurons demonstrate increased susceptibility to oxidative stress[J]. Cell Stem Cell, 2011, 8:267- 280.

[79] Vera E, Bosco N, Studer L. Generating late-onset human iPSC-based disease models by inducing neuronal age-related phenotypes through telomerase manipulation[J]. Cell Rep, 2016, 17:1184- 1192.

[80] Liu GH, Barkho BZ, Ruiz S, et al. Recapitulation of premature ageing with iPSCs from Hutchinson-Gilford progeria syndrome[J]. Nature, 2011, 472:221- 225.

[81] Lancaster MA, Knoblich JA. Organogenesis in a dish: modeling development and disease using organoid technologies[J]. Science, 2014, 345:1247125.

[82] Camp JG, Badsha F, Florio M, et al. Human cerebral organoids recapitulate gene expression programs of fetal neocor-tex development[J]. Proc Natl Acad Sci USA, 2015, 112:15672- 15677.

[83] Otani T, Marchetto MC, Gage FH, et al. 2D and 3D stem cell models of primate cortical development identify species-specific differences in progenitor behavior contributing to brain size[J]. Cell Stem Cell, 2016, 18:467- 480.

[84] Takasato M, Er PX, Chiu HS, et al. Kidney organoids from human iPS cells contain multiple lineages and model human nephrogenesis[J]. Nature, 2015, 526:564- 568.

[85] Fatehullah A, Tan SH, Barker N. Organoids as an in vitro model of human development and disease[J]. Nat Cell Biol, 2016, 18:246- 254.

[86] Lee G, Ramirez CN, Kim H, et al. Large-scale screening using familial dysautonomia induced pluripotent stem cells identifies compounds that rescue IKBKAP expression[J]. Nat Biotechnol, 2012, 30:1244- 1248.

[87] Choi SM, Kim Y, Shim JS, et al. Efficient drug screening and gene correction for treating liver disease using patient-specific stem cells[J]. Hepatology, 2013, 57:2458- 2468.

[88] Yamashita A, Morioka M, Kishi H, et al. Statin treatment rescues FGFR3 skeletal dysplasia phenotypes[J]. Nature, 2014, 513:507- 511.

[89] DiMasi JA, Grabowski HG, Hansen RW. Innovation in the pharmaceutical industry: New estimates of R&D costs[J]. J Health Econ, 2016, 47:20- 33.

[90] Liang P, Lan F, Lee AS, et al. Drug screening using a library of human induced pluripotent stem cell-derived cardiomyocytes reveals disease-specific patterns of cardiotoxicity[J]. Circulation, 2013, 127:1677- 1691.

[91] Kimbrel EA, Lanza R. Current status of pluripotent stem cells: moving the first therapies to the clinic[J]. Nat Rev Drug Discov, 2015, 14:681- 692.

[92] Trounson A, DeWitt ND. Pluripotent stem cells progressing to the clinic[J]. Nat Rev Mol Cell Biol, 2016, 17:194- 200.

[93] Pera MF. Stem cells: The dark side of induced pluripotency[J]. Nature, 2011, 471:46- 47.

[94] Thomsen GM, Gowing G, Svendsen S, et al. The past, present and future of stem cell clinical trials for ALS[J]. Exp Neurol, 2014, 262 Pt B:127- 137.

[95] Lee AS, Tang C, Rao MS, et al. Tumorigenicity as a clinical hurdle for pluripotent stem cell therapies[J]. Nat Med, 2013, 19:998- 1004.

[96] Lee MO, Moon SH, Jeong HC, et al. Inhibition of pluripotent stem cell-derived teratoma formation by small molecules[J]. Proc Natl Acad Sci USA, 2013, 110:E3281- 3290.

[97] Lund RJ, Narva E, Lahesmaa R. Genetic and epigenetic stability of human pluripotent stem cells[J]. Nat Rev Genet, 2012, 13:732- 744.

猜你喜歡
干細(xì)胞分化基因
干細(xì)胞:“小細(xì)胞”造就“大健康”
兩次中美貨幣政策分化的比較及啟示
Frog whisperer
分化型甲狀腺癌切除術(shù)后多發(fā)骨轉(zhuǎn)移一例
造血干細(xì)胞移植與捐獻(xiàn)
修改基因吉兇未卜
奧秘(2019年8期)2019-08-28 01:47:05
干細(xì)胞產(chǎn)業(yè)的春天來(lái)了?
創(chuàng)新基因讓招行贏在未來(lái)
商周刊(2017年7期)2017-08-22 03:36:21
基因
干細(xì)胞治療有待規(guī)范
桃源县| 安塞县| 朝阳市| 上犹县| 翁牛特旗| 太湖县| 黄大仙区| 石家庄市| 沐川县| 黄骅市| 南通市| 莒南县| 六枝特区| 罗城| 香河县| 贵溪市| 大悟县| 来安县| 灌云县| 顺义区| 富平县| 长沙市| 南靖县| 右玉县| 盘山县| 乳源| 彭州市| 黄冈市| 外汇| 新余市| 裕民县| 成武县| 同仁县| 茌平县| 西和县| 凉城县| 句容市| 博罗县| 堆龙德庆县| 天津市| 雷山县|