龐亞娜 趙晉楓 董元坤
【摘要】 目的:檢測人肝癌細(xì)胞中LDLR的變異剪接體LDLR-?Exon4、LDLR-?Exon12,HMGCS1的變異剪接體HMGCS1-?Exon2和HMGCR的變異剪接體HMGCR-Exon?13是否受膽固醇的調(diào)節(jié)。方法:建立高膽固醇模型組、低膽固醇模型組及正常組,提取不同模型組的RNA并進(jìn)行反轉(zhuǎn)錄,采用Real-time PCR(RT-PCR)技術(shù)檢測LDLR-?Exon4,LDLR-?Exon12,HMGCS1-?Exon2和HMGCR-Exon?13的mRNA的表達(dá)。結(jié)果:在高膽固醇模型組中,與正常組相比,LDLR-?Exon4、LDLR-?Exon12、HMGCS1-?Exon2及HMGCR-Exon?13的mRNA的表達(dá)量與各基因全長相比均明顯升高(P<0.05);而在低膽固醇模型組中,與正常組相比,上述的變異剪接體mRNA的表達(dá)量與各基因全長相比均明顯下降(P<0.05)。結(jié)論:LDLR-?Exon4、LDLR-?Exon12、HMGCS1-?Exon2及HMGCR-Exon?13等變異剪接體受膽固醇的調(diào)節(jié),并可能參與并調(diào)控膽固醇的代謝。
【關(guān)鍵詞】 選擇性剪接; 膽固醇; 變異剪接體
Cholesterol-regulated Variant Spliceosomes and Their Significance/PANG Yana,ZHAO Jinfeng,DONG Yuankun,et al.//Medical Innovation of China,2018,15(08):018-022
【Abstract】 Objective:To detect whether LDLR,HMGCS1 and HMGCR alternatively spliced variants LDLR-?Exon4,LDLR-?Exon12,HMGCS1-?Exon2 and HMGCR-?Exon13 regulated by cholesterol in human hepatocellular carcinoma cells.Method:The high cholesterol model group and the low cholesterol model group were established,and compared with the normal group.RNA extraction of different model cells was reverse transcribed,and Real-time PCR(RT-PCR) technology was used to detect mRNA expression of LDLR-?Exon4,
LDLR-?Exon12,HMGCS1-?Exon2 and HMGCR-?Exon13.Result:Compared with the normal group,mRNA expression of LDLR-?Exon4,LDLR-?Exon12,HMGCS1-?Exon2 and HMGCR-?Exon13 were increased in the high cholesterol model group(P<0.05).However,mRNA expression of LDLR-?Exon4,LDLR-?Exon12,HMGCS1-?Exon2 and HMGCR-?Exon13 were decreased in the low cholesterol model group compared with the normal group(P<0.05).Conclusion:LDLR-?Exon4,LDLR-?Exon12,HMGCS1-?Exon2 and HMGCR-?Exon13 spliced variants are regulated by cholesterol and may participate in regulating the metabolism of cholesterol.
【Key words】 Alternative splicing; Cholesterol; Spliced variants
First-authors address:Shanxi Medical University,Taiyuan 030001,China
doi:10.3969/j.issn.1674-4985.2018.08.005
低密度脂蛋白受體(Low density lipoprotein receptor,LDLR)是一種表達(dá)豐富的膜糖蛋白,尤其在肝細(xì)胞中含量最高。LDLR與脂代謝關(guān)系密切,血漿中大部分膽固醇被肝細(xì)胞表面的LDLR清除。因此,該基因的異常可導(dǎo)致血漿膽固醇水平顯著上升。而高膽固醇血癥又是動脈粥樣硬化的首要危險(xiǎn)因素,與冠心病、腦血管病的發(fā)病率直接相關(guān)[1-3]。
人類的羥甲基戊二酰輔酶A(HMGCoA)還原酶(HMGCR)是合成膽固醇的限速酶,膽固醇是糖皮質(zhì)激素類固醇激素的前體,在血壓穩(wěn)態(tài)和高血壓中發(fā)揮著深遠(yuǎn)的作用[4-5]。HMGCR催化HMG-CoA轉(zhuǎn)化為甲羥戊酸,一種合成膽固醇的中間產(chǎn)物,饑餓、激素等因素主要通過對HMGCR的活性及合成的影響而實(shí)現(xiàn)對膽固醇合成的調(diào)節(jié)[6-8]。羥甲基戊二酰輔酶A(HMGCoA)合成酶(HMGCS)催化乙酰乙酰CoA生成HMGCoA,這兩種酶都對膽固醇的調(diào)節(jié)有重要的作用[9-10]。
選擇性剪接(Alternative Splicing,AS)是基因的一個mRNA前體通過不同的剪接方式選擇,不同的剪接位點(diǎn)產(chǎn)生不同的mRNA剪接異構(gòu)體過程,選擇性剪接是高等真核細(xì)胞在轉(zhuǎn)錄后水平調(diào)控基因表達(dá)以及產(chǎn)生蛋白質(zhì)組多樣性的重要機(jī)制[11]。Tveten等[12]在人的8種不同組織和4種不同細(xì)胞系中提取總RNA,使用不同引物(RT-PCR分析)證實(shí)LDLR pre-mRNA存在很多變異剪接體。通過對外顯子1~8及外顯子3~10的分析發(fā)現(xiàn)了外顯子4的缺失,對外顯子7~14和外顯子11~17的分析發(fā)現(xiàn)了外顯子12的不表達(dá)。研究發(fā)現(xiàn)HMGCR經(jīng)歷外顯子13的選擇性剪接,HMG-CoA合酶(HMGCS1),擁有高度復(fù)雜的59 UTR,經(jīng)歷外顯子2跳躍[13-14]。與全長相比,選擇性剪接體結(jié)構(gòu)的變化也會引起蛋白功能的變化,推測LDLR-?Exon4、LDLR-?Exon12、HMGCS1-?Exon2、HMGCR-Exon?13等變異剪接體可能與高膽固醇血癥密切相關(guān)。因此,本實(shí)驗(yàn)選取HepG2細(xì)胞,應(yīng)用PCR技術(shù)檢測,與正常組比較,LDLR-?Exon4,LDLR-?Exon12,HMGCS1-?Exon2,HMGCR-Exon?13等變異剪接體在高膽固醇模型以及低膽固醇模型中,與其基因全長相比較mRNA的表達(dá)差異,初步明確了LDLR-?Exon4、LDLR-?Exon12、HMGCS1-?Exon2、HMGCR-Exon?13與高膽固醇血癥的密切關(guān)系?,F(xiàn)報(bào)道如下。
1 材料與方法
1.1 實(shí)驗(yàn)細(xì)胞 HepG2細(xì)胞系購于中科院昆明細(xì)胞庫。
1.2 主要試劑和器材 MEM培養(yǎng)基,無菌PBS購自武漢博士德生物有限公司,胎牛血清(FBS)購自依科賽生物科技(太倉)有限公司,0.25%胰蛋白酶購自美國Gibco公司,脂蛋白缺乏人血清(LPDS),人低密度脂蛋白(Human LDL)購自上海昂羽生物技術(shù)有限公司,25-Hydroxycholesterol(25-HC)購自美國Sigma-Aldrich公司。4 ℃離心機(jī)購自德國Thermo公司,PCR儀和熒光定量PCR儀購自杭州博日科技有限公司。除GAPDH為引用文獻(xiàn)外,其余引物根據(jù)Pubmed Gene提供的LDLR基因的RNA序列,用Primer Premier軟件設(shè)計(jì),由華大基因合成,引物序列見表1。
1.3 方法
1.3.1 細(xì)胞分組 將細(xì)胞置于37 ℃ 5%CO2,95%濕度的細(xì)胞培養(yǎng)箱中培養(yǎng)1 d,待細(xì)胞生長至對數(shù)生長期且融合面積大于70%時(shí),正常組用10%MEM培養(yǎng),低膽固醇模型組用不同濃度的LPDS血清培養(yǎng)24 h,高膽固醇模型組加入不同濃度含25-Hydroxycholesterol的10%MEM培養(yǎng)和含不同濃度的LDL的10%MEM血清培養(yǎng)24 h。
1.3.2 普通PCR 提取正常組細(xì)胞的RNA,反轉(zhuǎn)錄成cDNA后,之后使用特異性引物進(jìn)行普通PCR擴(kuò)增。2%瓊脂糖凝膠,用熒光染料4S Green Plus預(yù)染,取10 μL PCR擴(kuò)增產(chǎn)物電泳,紫外凝膠成像分析儀觀察并拍照,檢測正常細(xì)胞LDLR-?Exon4、LDLR-?Exon12、HMGCS1-?Exon2、HMGCR-?Exon13是否存在。
1.3.3 RT-PCR 提取不同分組細(xì)胞的RNA,反轉(zhuǎn)錄成cDNA后,以cDNA為模板,使用SYBR Premix Ex TaqⅡ試劑盒,設(shè)定程序:95 ℃預(yù)變性30 s,
40個循環(huán)(95 ℃ 5 s,60 ℃ 30 s),熔解曲線(95 ℃ 15 s,60 ℃ 1 min,95 ℃ 15 s)。分別檢測不同分組LDLR-?Exon4、LDLR-?Exon12、HMGCR1-?Exon2、HMGCR-?Exon13 mRNA表達(dá)。
1.4 統(tǒng)計(jì)學(xué)方法 采用SPSS 13.0軟件進(jìn)行統(tǒng)計(jì)分析,用(Mean±SEM)表示所有數(shù)據(jù),高、低膽固醇模型組與正常組比較采用配對t檢驗(yàn)。P<0.05為差異有統(tǒng)計(jì)學(xué)意義。
2 結(jié)果
2.1 HepG2細(xì)胞中LDLR-?Exon4、LDLR-?Exon12、HMGCS1-?Exon2、HMGCR-?Exon13等變異剪接體mRNA表達(dá)檢測 普通PCR檢測結(jié)果HepG2顯示中均有LDLR-?Exon4、LDLR-?Exon12、HMGCS1-?Exon2、HMGCR-Exon?13及其全長的mRNA表達(dá),見圖1。
3 討論
新近的研究表明,表觀遺傳機(jī)制尤其是組蛋白修飾與選擇性剪接有密切的關(guān)系[15-16],組蛋白修飾對于選擇性剪接調(diào)節(jié)的直接證據(jù)來自分析一系列基因的組蛋白修飾與選擇性剪接的關(guān)系[17],研究發(fā)現(xiàn)一些基因的選擇性剪接依賴于多聚嘧啶束結(jié)合蛋白(PTB)剪接因子[18-20]。PTB可以與剪接因子U2AF競爭結(jié)合3剪接位點(diǎn),從而對pre-mRNA的剪接起到負(fù)性調(diào)控作用[21]。有研究顯示,HepG2 細(xì)胞系轉(zhuǎn)染PTB的干擾RNA后,PTB mRNA 表達(dá)下降到68%,蛋白表達(dá)下調(diào)到66%[22]。此時(shí),檢測到選擇性變異剪接體LDLR-?Exon4和LDLR-?Exon12表達(dá)均下調(diào),說明LDLR是PTB作用的靶基因。文獻(xiàn)[23-34]報(bào)道,H3K36me3在基因外顯子上富集與選擇性剪接外顯子的跳躍有關(guān)。在依賴于PTB的選擇性剪接的外顯子中,高濃度的H3K36me3能招募染色質(zhì)鍵合蛋白MRG15,通過蛋白質(zhì)間的相互作用,MRG15招募剪接因子多聚嘧啶序列結(jié)合蛋(Polypyrimidine tract-binding protein,PTB),使PTB結(jié)合到相對較弱的選擇性外顯子上,從而抑制PTB依賴性選擇性外顯子的納入,誘導(dǎo)外顯子跳躍。因此,推測LDLR pre-mRNA的第4、12外顯子缺失,HMGCR pre-mRNA第13外顯子的缺失及HMGCS1 pre-mRNA第2外顯子是由PTB進(jìn)行調(diào)節(jié)的,在高膽固醇血癥時(shí),組蛋白H3K36的三甲基化水平在缺失外顯子周圍水平升高,可與染色質(zhì)結(jié)合蛋白(MRG15)結(jié)合,MRG15又可與PTB相連,通過PTB與剪接因子U2AF競爭結(jié)合3剪接位點(diǎn),從而影響外顯子使其被切除,LDLR-?Exon4,LDLR-?Exon12,HMGCS1-?Exon2和HMGCR-Exon?13產(chǎn)物的比例將明顯上升,各基因全長表達(dá)下降,從而不能有效地降低血膽固醇。簡言之,組蛋白修飾可能在LDLR pre-mRNA的選擇性剪接中發(fā)揮了重要作用。
本文通過RT-PCR檢測高、低膽固醇模型組與正常組相比,LDLR-?Exon4、LDLR-?Exon12、HMGCS1-?Exon2和HMGCR-Exon?13等變異剪接體表達(dá)確實(shí)受膽固醇的影響,與高膽固醇血癥有著密切關(guān)系,但是這些變化是否由于表觀遺傳修飾引起的,還需要進(jìn)一步的研究。
參考文獻(xiàn)
[1] Lu N,Li Y,Qin H,et al.Gossypin Up-Regulates LDL Receptor through Activation of ERK Pathway:A Signaling Mechanism for the Hypocholesterolemic Effect[J].Journal of Agricultural & Food Chemistry,2008,56(23):11526-11532.
[2] Paulina B,Billadeau D D,Robert F,et al.CCC- and WASH-mediated endosomal sorting of LDLR is required for normal clearance of circulating LDL[J].Nature Communications,2016,7:10961.
[3] Matsui M,Sakurai F,Elbashir S,et al.Activation of LDL receptor expression by small RNAs complementary to a noncoding transcript that overlaps the LDLR promoter[J].Chemistry & Biology,2010,17(12):1344-1355.
[4] Sonawane P J,Sahu B S,Sasi B K,et al.Functional promoter polymorphisms govern differential expression of HMG-CoA reductase gene in mouse models of essential hypertension[J].PLoS One,2011,6(1):e16661.
[5] Hwang S,Hartman I Z,Calhoun L N,et al.Contribution of Accelerated Degradation to Feedback Regulation of 3-Hydroxy-3-methylglutaryl Coenzyme A Reductase and Cholesterol Metabolism in the Liver[J].Journal of Biological Chemistry,2016,291(26):13479.
[6] Medina M W,Gao F,Ruan W,et al.Alternative Splicing of 3-Hydroxy-3-Methylglutaryl Coenzyme A Reductase Is Associated With Plasma Low-Density Lipoprotein Cholesterol Response to Simvastatin[J].Circulation,2008,118(4):355.
[7] DeBose-Boyd R A.Feedback regulation of cholesterol synthesis:sterol-accelerated ubiquitination and degradation of HMG CoA reductase[J].Cell Res,2008,18(6):609-621.
[8] Loregger A,Raaben M,Tan J,et al.Haploid Mammalian Genetic Screen Identifies UBXD8 as a Key Determinant of HMGCR Degradation and Cholesterol Biosynthesis[J].Arterioscler Thromb Vasc Biol,2017,37(11):2064-2074.
[9] Vannice J C,Skaff D A,Wyckoff G J,et al.Expression in Haloferax volcanii of 3-hydroxy-3-methylglutaryl coenzyme A synthase facilitates isolation and characterization of the active form of a key enzyme required for polyisoprenoid cell membrane biosynthesis in halophilic archaea[J].Journal of Bacteriology,2013,195(17):3854-3862.
[10] Mathews E S,Mawdsley D J,Walker M,et al.Mutation of 3-Hydroxy-3-Methylglutaryl CoA Synthase I Reveals Requirements for Isoprenoid and Cholesterol Synthesis in Oligodendrocyte Migration Arrest, Axon Wrapping, and Myelin Gene Expression[J].Journal of Neuroscience the Official Journal of the Society for Neuroscience,2014,34(9):3402.
[11] Lee Y,Rio D C.Mechanisms and Regulation of Alternative Pre-mRNA Splicing[J].Annual Review of Biochemistry,2015,84(84):291.
[12] Tveten K,Ranheim T,Berge K E,et al. Analysis of alternatively spliced isoforms of human LDL receptor mRNA[J].Clin Chim Acta,2006,373(1-2):151-157.
[13] Gil G,Smith J R,Goldstein J L,et al.Optional exon in the 5-untranslated region of 3-hydroxy-3-methylglutaryl coenzyme A synthase gene:conserved sequence and splicing pattern in humans and hamsters[J].Proceedings of the National Academy of Sciences of the United States of America,1987,84(7):1863.
[14] Yu C Y,Theusch E,Lo K,et al.HNRNPA1 regulates HMGCR alternative splicing and modulates cellular cholesterol metabolism[J].Human Molecular Genetics,2014,23(2):319.
[15] Podlaha O,De S,Gonen M,et al.Histone Modifications Are Associated with Transcript Isoform Diversity in Normal and Cancer Cells[J].PLoS Computational Biology,2014,10(6):e1003611.
[16] Sharma A,Nguyen H,Geng C,et al.Calcium-mediated histone modifications regulate alternative splicing in cardiomyocytes[J].Proceedings of the National Academy of Sciences of the United States of America,2014,111(46):4920-4928.
[17] Llorian M,Schwartz S,Clark T A,et al.Position-dependent alternative splicing activity revealed by global profiling of alternative splicing events regulated by PTB[J].Nature Structural & Molecular Biology,2010,17(9):1114.
[18] Luco R F,Allo M,Schor I E,et al.Epigenetics in alternative pre-mRNA splicing[J].Cell,2011,144(1):16-26.
[19] Gooding C,Edge C,Lorenz M,et al.MBNL1 and PTB cooperate to repress splicing of Tpm1 exon 3[J].Nucleic Acids Research,2013,41(9):4765-4782.
[20] Mickleburgh I,Kafasla P,Cherny D,et al.The organization of RNA contacts by PTB for regulation of FAS splicing[J].Nucleic Acids Research,2014,42(13):8605-8620.
[21] Wagner E J,Garcia-Blanco M A.Polypyrimidine tract binding protein antagonizes exon definition[J].Molecular & Cellular Biology,2001,21(10):3281.
[22] Medina M W,Gao F,Naidoo D,et al.Coordinately Regulated Alternative Splicing of Genes Involved in Cholesterol Biosynthesis and Uptake[J].PLoS One,2011,6(4):e19420.
[23]趙金璇,王芳,徐崢嶸,等,表觀遺傳調(diào)控pre-mRNA的選擇性剪接[J].遺傳,2014,36(3):248-255.
[24] Luco R F,Pan Q,Tominaga K,et al.Regulation of Alternative Splicing by Histone Modifications[J].Science,2010,327(5968):996-1000.
(收稿日期:2017-12-22) (本文編輯:程旭然)
中國醫(yī)學(xué)創(chuàng)新2018年8期