李 雨,趙慧春,白 瑩,吳 鋒,吳 川
?
高能量密度層狀富鋰錳基正極材料的改性研究進(jìn)展
李 雨,趙慧春,白 瑩,吳 鋒,吳 川
(北京理工大學(xué)材料學(xué)院,環(huán)境科學(xué)與工程北京市重點(diǎn)實(shí)驗(yàn)室,北京 100081)
純電動(dòng)汽車(chē)以及混合動(dòng)力汽車(chē)的快速發(fā)展使得研發(fā)高能量密度的鋰離子電池正極材料迫在眉睫。層狀富鋰錳基正極材料比容量可達(dá)250 mA·h/g,平均放電電壓高于3.5 V,電化學(xué)特征明顯優(yōu)于鈷酸鋰和磷酸鐵鋰等傳統(tǒng)的正極材料,是實(shí)現(xiàn)300 W·h/kg動(dòng)力鋰離子電池極具潛力的正極材料。不過(guò),此類(lèi)材料循環(huán)性能不佳,并伴隨嚴(yán)重的電壓衰退現(xiàn)象,主要原因是隨著循環(huán)的進(jìn)行材料表面結(jié)構(gòu)重組,晶體結(jié)構(gòu)發(fā)生了由層狀結(jié)構(gòu)向尖晶石結(jié)構(gòu)的不可逆轉(zhuǎn)化,導(dǎo)致鋰離子遷移阻力增大,進(jìn)而嚴(yán)重影響其電化學(xué)性能。為解決這些問(wèn)題,近年來(lái)研究人員開(kāi)展了大量工作,本文主要從體相摻雜、表面包覆、材料微觀結(jié)構(gòu)設(shè)計(jì)以及晶面調(diào)控4個(gè)方面詳細(xì)評(píng)述了鋰離子電池富鋰錳基正極材料改性技術(shù)的研究進(jìn)展。
富鋰錳基正極材料;鋰離子電池;改性;電壓衰退;循環(huán)穩(wěn)定性
鋰離子電池具備體積能量密度高、無(wú)記憶效應(yīng)、工作溫度寬泛等優(yōu)點(diǎn),現(xiàn)已普遍適用于便攜式電子設(shè)備、純電動(dòng)汽車(chē)以及混合動(dòng)力汽車(chē)領(lǐng)域?,F(xiàn)階段已商品化的鋰離子電池負(fù)極材料石墨比容量高達(dá)372 mA·h/g,然而相較之下,正極材料包括層狀LiCoO2、層狀三元材料(NCM和NCA)、橄欖石型LiFeO4和尖晶石形LiMn2O4,實(shí)際比容量在100~180 mA·h/g,很難滿(mǎn)足電動(dòng)汽車(chē)對(duì)高能量密度鋰離子電池的市場(chǎng)需求[1]。此外,科技部“十三五”規(guī)劃提出了單體電池能量密度需達(dá)到300 W·h/kg的指標(biāo),因此發(fā)展高電壓、高比容量的正極材料以提高電池的能量密度成為研究重點(diǎn)。
層狀富鋰錳基正極材料自2001年首次被LU等[2]成功制備以來(lái),便由于其具備250~300 mA·h/g的高比容量而備受關(guān)注。如若將這類(lèi)正極材料與硅基負(fù)極材料相匹配,即將成為最有望達(dá)成300 W·h/kg既定指標(biāo)的下一代鋰離子電池體系。富鋰材料的化學(xué)通式可表示為L(zhǎng)i2MnO3·(1-)LiMO2(M 為 Ni、Co、Mn、Fe、Cr等過(guò)渡金屬),可以看出材料分為兩部分。其中,LiMO2的晶體結(jié)構(gòu)與LiCoO2相同,為-NaFeO2型層狀結(jié)構(gòu),屬六方晶系R3m空間群;而Li2MnO3的晶體結(jié)構(gòu)則由-NaFeO2層狀結(jié)構(gòu)演變而來(lái),Li2MnO3可寫(xiě)作Li[Li1/3Mn2/3]O2,O成立方緊密堆積,Li占據(jù)-NaFeO2結(jié)構(gòu)中的Na位,而Fe位由1/3的Li和2/3的Mn同時(shí)占據(jù),形成LiMn2層,Li+與Mn4+在層間形成超晶格,使晶胞對(duì)稱(chēng)性由六方晶系變?yōu)閱涡本担虼薒i2MnO3組分屬于單斜晶系,C2/m空間群。
當(dāng)電壓充至4.5~4.8 V時(shí),富鋰材料中的Li2MnO3組分被活化,Li+從Li2MnO3中脫出,伴隨部分氧釋出[3];放電過(guò)程中,Li2O釋出后在體相留下的空位被表面金屬離子占據(jù),導(dǎo)致Li+無(wú)法完全回嵌至晶格[4]。因此富鋰材料中Li2MnO3組分的活化過(guò)程是提供高比容量的根本原因,也正是這個(gè)過(guò)程引發(fā)了一系列制約其進(jìn)一步產(chǎn)業(yè)化發(fā)展的問(wèn)題。高電壓下,過(guò)渡金屬離子易溶于電解液,同時(shí)電極表面易被電解液生成的HF腐蝕,生成不穩(wěn)定的固體電解質(zhì)界面(SEI)膜,造成界面阻抗增大并伴隨容量衰減[5];首周充電過(guò)程,氧流失使過(guò)渡金屬離子從表面向體相遷移占據(jù)鋰、氧空位,引發(fā)材料表面結(jié)構(gòu)重組,晶體結(jié)構(gòu)發(fā)生由層狀結(jié)構(gòu)向尖晶石結(jié)構(gòu)的不可逆轉(zhuǎn)化,Li+遷移阻力增大,造成電壓衰退以及容量衰減[6-7]。為解決容量衰減和電壓衰退這兩大難題,近年來(lái)研究者們通過(guò)體相摻雜、表面包覆、材料微觀結(jié)構(gòu)設(shè)計(jì)以及晶面調(diào)控等手段,改善了富鋰材料的電化學(xué)性能(表1)。
體相摻雜是提高電極材料電化學(xué)性能的一種有效手段,能夠顯著提高材料的結(jié)構(gòu)穩(wěn)定性和倍率性能。通常選擇與所替換元素的離子半徑相近的元素對(duì)富鋰材料進(jìn)行摻雜改性,以改善材料的導(dǎo)電性,增大晶胞參數(shù),形成更強(qiáng)的M—O鍵,促進(jìn)Li+遷移。摻雜形式有陽(yáng)離子摻雜、陰離子摻雜、陰陽(yáng)離子共摻雜以及聚陰離子摻雜。
表1 富鋰正極材料的典型改性方法與相應(yīng)的電化學(xué)性能
MANTHIRAM等[8]采用Ru4+部分取代Mn4+形成Li1.2Mn0.6-RuNi0.2O2富鋰材料, 電化學(xué)活性的氧化還原電對(duì)Ru4+/5+能夠提高材料比容量。當(dāng)≥0.4時(shí),Li2RuO3以單斜P(pán)12/m對(duì)稱(chēng)結(jié)構(gòu)存在, 形成的Ru-Ru二聚體將Ru:t2g軌道分裂為成鍵/反鍵軌道,降低Ru4+:4d 軌道和O2-:2p 軌道重疊部分,M—O共價(jià)性降低,有效抑制氧流失。AURBACH等[9]采用自燃燒反應(yīng)(SCR,self-combustion reaction)合成Al摻雜的Li1.2Ni0.16Mn0.51Al0.05Co0.08O2富鋰材料,Al摻雜能夠穩(wěn)定材料的層狀結(jié)構(gòu),抑制循環(huán)過(guò)程中層狀向尖晶石結(jié)構(gòu)的轉(zhuǎn)化,同時(shí)有效緩解電壓衰退,0.1 C電流密度下循環(huán)100周后容量保持率高 達(dá)96%。
摻雜離子除可替代Mn位置,還可以采用Na+、K+替代Li位。CAO等[10]采用聚合物-熱解法合成Na摻雜的Li1.17Na0.03[Co0.13Ni0.13Mn0.54]O2富鋰材料,Na摻入Li位能夠顯著擴(kuò)大Li層的層間距,促進(jìn)Li+的傳輸,穩(wěn)定層狀結(jié)構(gòu),所得材料在30mA/g電流密度下,容量為307 mA·h/g、100周循環(huán)后容量保持率為89%。在大電流密度2400mA/g下,容量仍有139 mA·h/g。LI等[11]采用含K的α-MnO2作為原材料,原位合成K摻雜的Li1.151K0.013Mn0.552Co0.146Ni0.145O2富鋰材料,摻入鋰層的K能夠穩(wěn)定層狀結(jié)構(gòu),抑制Mn遷移緩解尖晶石結(jié)構(gòu)的形成,所得材料首周容量高達(dá)315 mA·h/g,100周循環(huán)后容量保持率為89%。
此外,目前已經(jīng)報(bào)道的其它陽(yáng)離子摻雜包括Mg[12]、Ti[13]、Mo[14]、Y[15]、Nb[16]、Cr[17]、Fe[18]、Zn[19]、Zr[20]、Sn[21]、B[22]等。
LU等[23]通過(guò)共沉淀法合成F摻雜的Li1.15Mn0.54Ni0.13Co0.13O1.95F0.05富鋰材料,研究發(fā)現(xiàn),材料容量保持率隨摻雜F量的增加而增加,從高分辨率透射電子顯微鏡(HRTEM,high resolution transmission electron microscopy)可以看出,摻雜F能夠降低尖晶石相的產(chǎn)生,從而穩(wěn)定層狀結(jié)構(gòu),所得材料不可逆容量為670 mW·h/g,100周循環(huán)后容量保持率為86%。
近日,CHEN等[24]選取S2-替代O2-位,制得富鋰材料Li1.2Mn0.6Ni0.2O1.97S0.03,該材料展示出至今最高的首周庫(kù)侖效率96.06%,5 C電流密度下,容量為117 mA·h/g。通過(guò)理論計(jì)算表明,未摻雜的富鋰材料脫出和嵌入Li+所需能量相差259.21 eV,而摻雜S的材料脫出和嵌入Li+所需能量分別為-1132.14 eV和-1122.78 eV,二者相差無(wú)幾,說(shuō)明Li+能夠在S摻雜的富鋰材料中可逆穿梭,進(jìn)一步解釋了其為何具備超高的庫(kù)侖效率。
PARK等[28]首次報(bào)道了陰陽(yáng)離子共摻雜,通過(guò)Mg和F共摻雜制備Li1.167Mn0.528Mg0.02Ni0.18Co0.105O1.98F0.02富鋰材料,研究表明,Mg摻雜能夠增大放電容量,但會(huì)影響材料循環(huán)性能;而F摻雜能夠抑制氧流失,改善循環(huán)性能卻降低放電容量。雙元素共摻雜能夠規(guī)避二者的缺點(diǎn),較未摻雜的材料而言,能夠顯著改善材料電化學(xué)性能,200 mA/g電流密度下,材料循環(huán)150周后容量保持率為95%。
可見(jiàn),摻雜改性能夠改善富鋰材料的電化學(xué)性能,但其穩(wěn)定晶體結(jié)構(gòu)并抑制層狀向尖晶石結(jié)構(gòu)轉(zhuǎn)變的機(jī)理尚不明確。當(dāng)引入新的離子時(shí),事實(shí)上會(huì)改變材料整體的原子排列,電子云分布,并在充放電過(guò)程中影響鋰離子和過(guò)渡金屬離子的遷移,涉及到諸多科學(xué)問(wèn)題,因此需要更深層次的研究與挖掘。
表面包覆能夠有效保護(hù)電極材料,減少材料與電解液的副反應(yīng),防止錳離子溶解。同時(shí),表面包覆能夠在一定程度上阻擋氧的釋出,保留鋰、氧空位,穩(wěn)定材料層狀結(jié)構(gòu),提高首周可逆容量,改善循環(huán)性能以及抑制電壓衰退。表面包覆材料主要包括碳材料、導(dǎo)電聚合物、氧化物、氟化物等。此外,近年研究顯示尖晶石相異質(zhì)結(jié)構(gòu)表面包覆能夠顯著改善富鋰材料電化學(xué)性能。
碳材料具備較強(qiáng)的電子電導(dǎo),將其用作富鋰的包覆層能夠提高材料顆粒間的電導(dǎo)性,包括導(dǎo)電碳、石墨烯以及碳納米管等。同時(shí)碳的強(qiáng)還原性能夠?qū)⒉牧媳砻娴腗n4+部分還原至Mn3+,形成三維立方大通道的尖晶石相,有助于Li+的傳輸,提升材料的倍率性能[30]。
ZHANG等[31]采用靜電紡絲法合成了碳納米纖維包覆的富鋰材料Li1.2Mn0.54Ni0.13Co0.13O2,碳納米纖維提供了完整的導(dǎo)電網(wǎng)絡(luò),能夠?qū)崿F(xiàn)快速的電子和離子傳輸,同時(shí)碳包覆層能夠保護(hù)富鋰材料免受HF的腐蝕,顯著提升了材料的電化學(xué)性能,在1 C電流密度下,容量為263.7 mA·h/g。
導(dǎo)電聚合物是由具有共軛π-鍵的高分子經(jīng)一對(duì)陰/陽(yáng)離子“摻雜”使其由絕緣體轉(zhuǎn)變?yōu)閷?dǎo)體的一類(lèi)高分子材料。這類(lèi)材料具備較高的電子電導(dǎo)率,將其用于電極材料的包覆層能夠改善材料的電子電導(dǎo)。WANG等[32]采用聚酰胺酸處理富鋰材料Li1.2Ni0.13Mn0.54Co0.13O2,使其表面形成約3 nm的聚酰亞胺(polyimide,PI)包覆層,光電子能譜(XPS,X-ray photoelectron spectroscopy)結(jié)果顯示部分Mn(IV)被還原為Mn(III),有助于極化子的遷移,顯著改善了富鋰材料的倍率性能和循環(huán)性能,這主要由于PI包覆層能夠保護(hù)正極材料免于與電解液發(fā)生副反應(yīng),穩(wěn)定高電壓下的固液界面。LI等[33]采用聚3,4-乙烯二氧噻吩∶聚苯乙烯磺酸[poly(3,4- ethylenedioxythiophene)∶poly(styrenesulfonate),PEDOT∶PSS]包覆富鋰材料Li1.2Ni0.2Mn0.6O2,包覆層能夠有效抑制生成過(guò)厚的SEI膜,PEDOT∶PSS較高的電子電導(dǎo)大幅提升了富鋰材料的放電容量,1 C電流密度下循環(huán)100周,容量穩(wěn)定在146.9 mA·h/g。
一般說(shuō)來(lái)氧化物穩(wěn)定性好,適量的氧化物包覆能夠起到穩(wěn)定活性材料和電解液界面的作用,并可以抑制氧流失,穩(wěn)定材料的層狀結(jié)構(gòu),目前已經(jīng)報(bào)道的氧化物包覆材料包括Al2O3[34]、TiO2[35]、SiO2[36]、MnO2[37]、ZrO[38]2、MgO[39]、CeO2[40]、RuO2[41]、MoO3、Sm2O3[42]、V2O5[43]、P2O5[44]等。
隨循環(huán)的進(jìn)行,氧化物包覆層會(huì)受到HF的腐蝕從而影響材料性能,而氟化物不會(huì)與HF反應(yīng),已報(bào)道的氟化物包覆材料包括AlF3[45]、NH4F[46]、LiF/FeF3[47]、CaF2[48]、CoF2[49]、YF3[50]等。ZHANG等[51]采用像差校正掃描/透射電子顯微鏡(aberration corrected scanning/transmission electron microscopy,S/TEM)以及電子能量損失能譜(electron energy loss spectroscopy,EELS)確定了AlF3包覆富鋰材料Li1.2Ni0.15Co0.10Mn0.55O2的機(jī)理:AlF3包覆層能夠阻止活性材料和電解液的直接接觸,大大降低過(guò)厚SEI膜的形成;AlF3包覆能夠加強(qiáng)材料結(jié)構(gòu)的穩(wěn)定性,減緩層狀向尖晶石的轉(zhuǎn)化,抑制電壓衰退;盡管隨著循環(huán)的進(jìn)行,材料表面生成尖晶石相,但AlF3包覆層仍能繼續(xù)保護(hù)尖晶石相免受電解液的 腐蝕。
近年來(lái),設(shè)計(jì)層狀-尖晶石復(fù)合異質(zhì)結(jié)構(gòu)的富鋰材料成為研究熱點(diǎn)[52-54],尖晶石相具備三維大通道,有利于離子和電子的傳輸,能夠顯著改善材料的倍率性能。CAO等[55]采用多元醇法合成異質(zhì)結(jié)構(gòu)富鋰材料的前驅(qū)體,隨后進(jìn)行500~900 ℃的煅燒,不同煅燒溫度得到的層狀-尖晶石組分不同,富鋰材料中形成適量的尖晶石相不會(huì)影響到層狀材料顆粒內(nèi)部的結(jié)構(gòu),研究表明,當(dāng)煅燒溫度為700 ℃時(shí),材料電化學(xué)性能最佳,0.2 C電流密度下循環(huán)60周容量保持在214mA·h/g。HUANG等[56]通過(guò)控制混鋰量,合成了外延生長(zhǎng)的尖晶石/層狀異質(zhì)結(jié)構(gòu)微米球形富鋰材料Li1.26-Ni0.11Co0.04Mn0.59O2(0<<0.3),層狀和尖晶石兩相界面形成對(duì)齊的Li+擴(kuò)散通道,顯著改善了材料的電化學(xué)性能,在0.2 C電流密度下循環(huán)100周后,可逆容量為286 mA·h/g。
納米材料在電池儲(chǔ)能領(lǐng)域得到了廣泛的應(yīng)用,其具備諸多優(yōu)點(diǎn),如縮短了鋰離子在體相內(nèi)的遷移路徑,比表面積大則意味著反應(yīng)活性位點(diǎn)更多,制備過(guò)程中納米材料的元素分布均勻,結(jié)晶性好。然而,納米顆粒更易與電解液發(fā)生副反應(yīng),影響材料晶體結(jié)構(gòu),導(dǎo)致循環(huán)穩(wěn)定性變差,且納米材料振實(shí)密度較低,限制了其實(shí)際應(yīng)用。微米材料不易被電解液腐蝕,結(jié)構(gòu)穩(wěn)定性好,但是與電解液浸潤(rùn)性差,活化時(shí)間長(zhǎng),且倍率性能較差。
因此,設(shè)計(jì)分級(jí)微納結(jié)構(gòu)的電極材料成為近年研究熱點(diǎn)。分級(jí)結(jié)構(gòu)指的是材料具備兩種尺度及以上的結(jié)構(gòu),通常材料是由一次納米顆粒組裝而成的微米二次顆粒。這樣一來(lái),材料能夠兼得納米和微米材料的共同優(yōu)點(diǎn),既能保證較短的離子和電子擴(kuò)散通道,又能提供良好的結(jié)構(gòu)穩(wěn)定性,從而顯著提升材料的倍率性能和循環(huán)穩(wěn)定性。
CHO等[57]采用水合肼處理富鋰材料Li1.2Ni0.2Mn0.6O2,如圖1(a)所示,該材料是由亞微米片狀一次顆粒構(gòu)成的10 μm的二次顆粒,這一特殊的形貌有效解決了大微米顆粒中Li2MnO3難以活化的問(wèn)題,片狀一次顆粒有助于離子和電子的擴(kuò)散,使得材料具備低比表面積的同時(shí)不影響倍率性能,有效抑制了電壓衰退和容量衰減,600周循環(huán)后材料能量保持率為93%。WU等[58]采用離子混合法合成了高倍率、循環(huán)穩(wěn)定的分級(jí)球形富鋰材料Li1.2Ni0.13Mn0.54Co0.13O2[圖1(b)],該材料在1 C、2 C和5 C倍率下,容量分別為228.6 mA·h/g、202.9 mA·h/g和180.6 mA·h/g。
LI等[59]通過(guò)優(yōu)化水熱反應(yīng)時(shí)間,制備了三維紡錘形分級(jí)微納結(jié)構(gòu)的富鋰材料Li1.2Ni0.2Mn0.6O2[圖1(c)]。相比于球形材料,紡錘的幾何構(gòu)型更為穩(wěn)定,縱橫比和比表面積更高,所得材料倍率性能良好且循環(huán)性能穩(wěn)定。0.1 C下,首周放電容量高達(dá)286.9 mA·h/g,循環(huán)100周后,容量保持率高達(dá)94%。在5 C大倍率下循環(huán),首周容量為166.8 mA·h/g。同時(shí),材料穩(wěn)定的幾何構(gòu)型,均勻的元素分布和緊實(shí)的二次顆粒,減緩了材料由層狀結(jié)構(gòu)向尖晶石結(jié)構(gòu)的轉(zhuǎn)化,有效抑制了富鋰材料的電壓衰退現(xiàn)象。此外,如圖1(d)所示,采用冰模板調(diào)控法[60],可以獲得介孔分級(jí)富鋰材料Li[Li0.2Ni0.2Mn0.6]O2,材料具備穩(wěn)定的循環(huán)性能以及良好的倍率性能,在0.1 C、2 C和5 C下,首周放電比容量分別為280.1mA·h/g、207.1mA·h/g和157.4mA·h/g。
圖1 分級(jí)微納結(jié)構(gòu)的設(shè)計(jì):(a)由亞微米片組裝而成的分級(jí)結(jié)構(gòu)富鋰材料Li1.2Ni0.2Mn0.6O2[57];(b)球形分級(jí)結(jié)構(gòu)富鋰材料Li1.2Ni0.13Mn0.54Co0.13O2[58];(c)紡錘形分級(jí)結(jié)構(gòu)富鋰材料Li1.2Ni0.2Mn0.6O2[59];(d)介孔分級(jí)結(jié)構(gòu)富鋰材料Li[Li0.2Ni0.2Mn0.6]O2[60]
富鋰材料的活性晶面(010)擇優(yōu)生長(zhǎng)有助于Li+擴(kuò)散,大幅提升體相Li+的脫嵌動(dòng)力學(xué)性能。通常,材料的活性晶面具備較高的表面能,在晶體成長(zhǎng)的過(guò)程中,晶面表面能越高,原子堆積速度越快,則垂直于該晶面方向的生長(zhǎng)越快,這樣一來(lái),高表面能的晶面在生長(zhǎng)中趨近于消失而晶體主要沿著垂直于其方向的晶面生長(zhǎng)。因此,合成活性晶面(010)擇優(yōu)生長(zhǎng)的富鋰材料較為困難。
SUN等[61]通過(guò)水熱法合成納米片狀富鋰材 料Li(Li0.15Ni0.25Mn0.6)O2,如圖2(a)所示,如若沿[001]晶面垂直生長(zhǎng),則納米片主要暴露(001)晶面,不利于Li+穿梭;如若沿[010]晶面垂直生長(zhǎng),則納米片主要暴露(010)活性晶面,有利于Li+穿梭。其所得納米片主要沿活性晶面垂直方向生長(zhǎng),材料展示出良好的倍率性能,6 C下容量高達(dá)200 mA·h/g。
SU等[62]采用氫氧化物沉淀法合成由一次顆粒徑向排列組裝而成的微米球,其一次顆粒由晶系晶面{010}占據(jù),顯著提升電子、離子的傳輸能力,該材料具備良好的倍率性能和循環(huán)性能,在1 C、2 C、5 C、10 C和20 C電流密度下,容量分別為230.8 mA·h/g、216.5 mA·h/g、188.2 mA·h/g、163.2 mA·h/g和141.7 mA·h/g[圖2(b)]。
圖2 活性晶面擇優(yōu)生長(zhǎng):(a)(010)納米片顯著增多的富鋰材料Li(Li0.17Ni0.25Mn0.58)O2[61];(b){010}平面暴露的分級(jí)富鋰材料Li1.2Mn0.6Ni0.2O2[62]
富鋰材料充至高電壓時(shí),Li2MnO3活化產(chǎn)生的氧會(huì)加重電解液與電極材料表面的副反應(yīng),產(chǎn)生過(guò)厚的SEI膜并不斷增大電池阻抗,導(dǎo)致容量衰減電壓衰退。適當(dāng)?shù)碾娊庖禾砑觿┠軌蛟陔姌O表面生成較為穩(wěn)定的SEI膜,改善固液界面穩(wěn)定性,包括硼酸鹽[63-64]、磷酸鹽[65]、亞磷酸鹽[66]、氟代碳酸酯[67-68]等。此外,基于離子液體[69]、腈類(lèi)[70]以及砜類(lèi)[71]等溶劑的電解液也能夠起到改善富鋰材料電化學(xué)性能的作用。
在近期的一些研究中,黏結(jié)劑對(duì)富鋰材料電化學(xué)性能的影響材料也引起了關(guān)注。LI等[72]采用瓜爾豆膠(GG,guar gum)作為富鋰材料Li1.14Ni0.18Mn0.62O2的黏結(jié)劑,GG能夠緊實(shí)包覆富鋰材料,避免與電解液發(fā)生副反應(yīng),穩(wěn)定Ni2+/Ni4+的氧化還原反應(yīng),與聚偏氟乙烯[PVDF,poly(vinylidene fluoride)]黏結(jié)劑對(duì)比發(fā)現(xiàn),GG黏結(jié)劑能夠顯著抑制富鋰材料的電壓衰退。LU等[73]采用聚丙烯腈(PAN,polyacrylonitrile)和PVDF復(fù)合物作為富鋰材料的黏結(jié)劑。PAN在高電壓下較為穩(wěn)定且抗膨脹性強(qiáng);PVDF在電解液中浸潤(rùn)性好,能夠保證活性材料和電解液充分接觸。PAN-PVDF復(fù)合黏結(jié)劑結(jié)合了二者的優(yōu)點(diǎn),改善了富鋰材料的電化學(xué)性能。
層狀富鋰錳基材料經(jīng)過(guò)改性后,首周不可逆容量、循環(huán)性能、倍率性能以及電壓衰退現(xiàn)象均可以得到一定的改善。但通常情況下,改性技術(shù)工藝復(fù)雜,很難完全沿用至實(shí)際生產(chǎn)中。尋求易操作、低成本的改性技術(shù),并能將基礎(chǔ)研究與產(chǎn)業(yè)化發(fā)展無(wú)縫銜接是富鋰錳基材料實(shí)現(xiàn)跨越式發(fā)展的當(dāng)務(wù)之急。這需要研究者們深入剖析改性方法中的一般規(guī)律,借助前沿的表征手段以及界面分析技術(shù),清晰理解摻雜、包覆、微觀形貌以及晶體結(jié)構(gòu)影響富鋰材料性能的改性機(jī)理。此外,研發(fā)與富鋰材料相匹配的高電壓電解液、黏結(jié)劑以及基于富鋰材料的全電池的研究也需要全面開(kāi)展。
[1] WANG J, HE X, PAILLARD E, et al. Lithium- and manganese-rich oxide cathode materials for high-energy lithium ion batteries[J]. Advanced Energy Materials, 2016, 6(21): 1600906.
[2] LU Z H, MACNEIL D D, DAHN J R. Layered cathode materials LiNiLi(1/3-2x/3)Mn(2/3-/3)O2for lithium-ion batteries[J]. Electrochemical and Solid State Letters, 2001, 4(11): A191-A194.
[3] ARMSTRONG A R, HOLZAPFEL M, NOVAK P, et al. Demonstrating oxygen loss and associated structural reorganization in the lithium battery cathode Li[Ni0.2Li0.2Mn0.6]O2[J]. Journal of American Chemical Society, 2006, 128(26): 8694-8698.
[4] LU Z, CHEN Z, DAHN J R. Lack of cation clustering in Li[NiLi1/3-2x/3Mn2/3-/3]O2(0<£1/2) and Li[CrLi(1-)/3Mn(2-2x)/3]O2(0 << 1)[J]. Chemistry of Materials, 2003, 15: 3214-3220.
[5] ROBERTSON A D. Mechanism of electrochemical activity in Li2MnO3[J]. Chemistry of Materials, 2003, 15(10): 1984-1992.
[6] GU M, BELHAROUAK I, ZHENG J M, et al. Formation of the spinel phase in the layered composite cathode used in Li-ion batteries[J]. ACS Nano, 2013, 7(1): 760-767.
[7] XU B, FELL C R, CHI M, et al. Identifying surface structural changes in layered Li-excess nickel manganese oxides in high voltage lithium ion batteries: A joint experimental and theoretical study[J]. Energy & Environmental Science, 2011, 4(6): 2223-2233.
[8] KNIGHT J C, NANDAKUMAR P, KAN W H, et al. Effect of Ru substitution on the first charge-discharge cycle of lithium-rich layered oxides[J]. Journal of Materials Chemistry A, 2015, 3(5): 2006-2011.
[9] NAYAK P K, GRINBLAT J, LEVI M, et al. Al doping for mitigating the capacity fading and voltage decay of layered Li and Mn-rich cathodes for Li-ion batteries[J]. Advanced Energy Materials, 2016, 6(8): 1502398.
[10] HE W, YUAN D, QIAN J, et al. Enhanced high-rate capability and cycling stability of Na-stabilized layered Li1.2[Co0.13Ni0.13Mn0.54]O2cathode material[J]. Journal of Materials Chemistry A, 2013, 1(37): 11397-11403.
[11] LI Q, LI G, FU C, et al. K+-doped Li1.2Mn0.54Co0.13Ni0.13O2: A novel cathode material with an enhanced cycling stability for lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2014, 6(13): 10330-10341.
[12] JIN X, XU Q, LIU H, et al. Excellent rate capability of Mg doped Li[Li0.2Ni0.13Co0.13Mn0.54]O2cathode material for lithium-ion battery[J]. Electrochimica Acta, 2014, 136: 19-26.
[13] DENG Z, MANTHIRAM A. Influence of cationic substitutions on the oxygen loss and reversible capacity of lithium-rich layered oxide cathodes[J]. The Journal of Physical Chemistry C, 2011, 115(14): 7097-7103.
[14] YU S H, YOON T, MUN J, et al. Continuous activation of Li2MnO3component upon cycling in Li1.167Ni0.233Co0.100Mn0.467Mo0.033O2cathode material for lithium ion batteries[J]. Journal of Materials Chemistry A, 2013, 1(8): 2833-2839.
[15] LI N, AN R, SU Y, et al. The role of yttrium content in improving electrochemical performance of layered lithium-rich cathode materials for Li-ion batteries[J]. Journal of Materials Chemistry A, 2013, 1(34): 9760.
[16] LI X, XIN H, LIU Y, et al. Effect of niobium doping on the microstructure and electrochemical properties of lithium-rich layered Li[Li0.2Ni0.2Mn0.6]O2as cathode materials for lithium ion batteries[J]. RSC Advances, 2015, 5(56): 45351-45358.
[17] SONG B, ZHOU C, WANG H, et al. Advances in sustain stable voltage of Cr-doped Li-rich layered cathodes for lithium ion batteries[J]. Journal of the Electrochemical Society, 2014, 161(10): A1723-A1730.
[18] ZHAO T, CHEN S, LI L, et al. Organic-acid-assisted fabrication of low-cost Li-rich cathode material Li[Li1/6Fe1/6Ni1/6Mn1/2]O2for lithium-ion battery[J]. Acs Applied Materials & Interfaces, 2014, 6(24): 22305-22315.
[19] ZHAO J, WANG Z, GUO H, et al. Synthesis and electrochemical characterization of Zn-doped Li-rich layered Li[Li0.2Mn0.54Ni0.13Co0.13]O2cathode material[J]. Ceramics International, 2015, 41(9): 11396-11401.
[20] CHEN H, HU Q, HUANG Z, et al. Synthesis and electrochemical study of Zr-doped Li[Li0.2Mn0.54Ni0.13Co0.13]O2as cathode material for Li-ion battery[J]. Ceramics International, 2016, 42(1): 263-269.
[21] WANG Y, YANG Z, QIAN Y, et al. New insights into improving rate performance of lithium-rich cathode material[J]. Advanced Materials, 2015, 27(26): 3915-3920.
[22] PAN L, XIA Y, QIU B, et al. Structure and electrochemistry of B doped Li(Li0.2Ni0.13Co0.13Mn0.54)1-BO2as cathode materials for lithium-ion batteries[J]. Journal of Power Sources, 2016, 327: 273-280.
[23] LI L, SONG B H, CHANG Y L, et al. Retarded phase transition by fluorine doping in Li-rich layered Li1.2Mn0.54Ni0.13Co0.13O2cathode material[J]. Journal of Power Sources, 2015, 283: 162-170.
[24] AN J, SHI L, CHEN G, et al. Insights into the stable layered structure of a Li-rich cathode material for lithium-ion batteries[J]. Journal of Materials Chemistry A, 2017, 5(37): 19738-19744.
[26] ZHANG H, LI F, PAN G L, et al. The effect of polyanion-doping on the structure and electrochemical performance of Li-rich layered oxides as cathode for lithium-ion batteries[J]. Journal of the Electrochemical Society, 2015, 162(9): A1899-A1904.
[27] MA L, MAO L, ZHAO X, et al. Improving the structural stability of Li-rich layered cathode materials through constructing the antisite-defect nanolayer by polyanion doping on the surface[J]. ChemElectroChem, 2017, 4(12): 3068-3074.
[28] LIM S N, SEO J Y, JUNG D S, et al. The crystal structure and electrochemical performance of Li1.167Mn0.548Ni0.18Co0.105O2composite cathodes doped and co-doped with Mg and F[J]. Journal of Electroanalytical Chemistry, 2015, 740: 88-94.
[30] CHEN J, LI Z, XIANG H, et al. Bifunctional effects of carbon coating on high-capacity Li1.2Ni0.13Co0.13Mn0.54O2cathode for lithium-ion batteries[J]. Journal of Solid State Electrochemistry, 2015, 19(4): 1027-1035.
[31] MA D, ZHANG P, LI Y, et al. Li1.2Mn0.54Ni0.13Co0.13O2-encapsulated carbon nanofiber network cathodes with improved stability and rate capability for Li-ion batteries[J]. Scientific Reports, 2015, 5: 11257.
[32] ZHANG J, LU Q, FANG J, et al. Polyimide encapsulated lithium-rich cathode material for high voltage lithium-ion battery[J]. Acs Applied Materials & Interfaces, 2014, 6(20): 17965-17973.
[33] WU F, LIU J, LI L, et al. Surface modification of Li-rich cathode materials for lithium-ion batteries with a PEDOT:PSS conducting polymer[J]. ACS Applied Materials & Interfaces, 2016, 8(35): 23095-23104.
[34] ZHANG X, BELHAROUAK I, LI L, et al. Structural and electrochemical study of Al2O3and TiO2coated Li1.2Ni0.13Mn0.54Co0.13O2cathode material using ALD[J]. Advanced Energy Materials, 2013, 3(10): 1299-1307.
[35] ZHENG J M, LI J, ZHANG Z R, et al. The effects of TiO2coating on the electrochemical performance of LiLi0.2Mn0.54Ni0.13Co0.13O2cathode material for lithium-ion battery[J]. Solid State Ionics, 2008, 179(27-32): 1794-1799.
[36] WU Y, MANTHIRAM A. Effect of surface modifications on the layered solid solution cathodes (1-)LiLi1/3Mn2/3O2-()LiMn0.5-Ni0.5-Co2yO2[J]. Solid State Ionics, 2009, 180(1): 50-56.
[37] WU F, LI N, SU Y F, et al. Can surface modification be more effective to enhance the electrochemical performance of lithium rich materials?[J]. Journal of Materials Chemistry, 2012, 22(4): 1489-1497.
[38] WANG Z, LIU E, GUO L, et al. Cycle performance improvement of Li-rich layered cathode material Li[Li0.2Mn0.54Ni0.13Co0.13]O2by ZrO2coating[J]. Surface and Coatings Technology, 2013, 235: 570-576.
[39] SHI S, TU J, TANG Y, et al. Enhanced cycling stability of Li[Li0.2Mn0.54Ni0.13Co0.13]O2by surface modification of MgO with melting impregnation method[J]. Electrochimica Acta, 2013, 88: 671-679.
[40] YUAN W, ZHANG H, LIU Q, et al. Surface modification of Li(Li0.17Ni0.2Co0.05Mn0.58)O2with CeO2as cathode material for Li-ion batteries[J]. Electrochimica Acta, 2014, 135: 199-207.
[41] LIU J, MANTHIRAM A. Functional surface modifications of a high capacity layered Li[Li0.2Mn0.54Ni0.13Co0.13]O2cathode[J]. Journal of Materials Chemistry, 2010, 20(19): 3961-3967.
[42] SHI S J, TU J P, ZHANG Y J, et al. Effect of Sm2O3modification on Li[Li0.2Mn0.56Ni0.16Co0.08]O2cathode material for lithium ion batteries[J]. Electrochimica Acta, 2013, 108: 441-448.
[43] HE H, ZAN L, ZHANG Y. Effects of amorphous V2O5coating on the electrochemical properties of Li[Li0.2Mn0.54Ni0.13Co0.13]O2as cathode material for Li-ion batteries[J]. Journal of Alloys and Compounds, 2016, 680: 95-104.
[44] HOU M, LIU J, GUO S, et al. Enhanced electrochemical performance of Li-rich layered cathode materials by surface modification with P2O5[J]. Electrochemistry Communications, 2014, 49: 83-87.
[45] SUN S, YIN Y, WAN N, et al. AlF3surface-coated Li[Li0.2Ni0.17Co0.07Mn0.56]O2nanoparticles with superior electrochemical performance for lithium-ion batteries[J]. ChemSusChem, 2015, 8(15): 2544-2550.
[46] LI L, CHANG Y, XIA H, et al. NH4F surface modification of Li-rich layered cathode materials[J]. Solid State Ionics, 2014, 264: 36-44.
[47] ZHAO T, LI L, CHEN R, et al. Design of surface protective layer of LiF/FeF3nanoparticles in Li-rich cathode for high-capacity Li-ion batteries[J]. Nano Energy, 2015, 15: 164-176.
[48] LIU X, HUANG T, YU A. Surface phase transformation and CaF2coating for enhanced electrochemical performance of Li-rich Mn-based cathodes[J]. Electrochimica Acta, 2015, 163: 82-92.
[49] CHONG S, CHEN Y, YAN W, et al. Suppressing capacity fading and voltage decay of Li-rich layered cathode material by a surface nano-protective layer of CoF2for lithium-ion batteries[J]. Journal of Power Sources, 2016, 332: 230-239.
[50] LIU B, ZHANG Z, WAN J, et al. Improved electrochemical properties of YF3-coated Li1.2Mn0.54Ni0.13Co0.13O2as cathode for Li-ion batteries[J]. Ionics, 2017, 23(6): 1365-1374.
[51] ZHENG J, GU M, XIAO J, et al. Functioning mechanism of AlF3coating on the Li- and Mn-rich cathode materials[J]. Chemistry of Materials, 2014, 26(22): 6320-6327.
[52] WANG D, BELHAROUAK I, ZHOU G, et al. Nanoarchitecture multi-structural cathode materials for high capacity lithium batteries[J]. Advanced Functional Materials, 2013, 23(8): 1070-1075.
[53] WU F, LI N, SU Y, et al. Spinel/layered heterostructured cathode material for high-capacity and high-rate Li-ion batteries[J]. Advanced Materials, 2013, 25(27): 3722-3726.
[54] LUO D, LI G, FU C, et al. A new spinel-layered Li-rich microsphere as a high-rate cathode material for Li-ion batteries[J]. Advanced Energy Materials, 2014, 4(11): 1400062.
[55] PEI Y, XU C Y, XIAO Y C, et al. Phase transition induced synthesis of layered/spinel heterostructure with enhanced electrochemical properties[J]. Advanced Functional Materials, 2017, 27(7): 1604349.
[56] XU M, FEI L, LU W, et al. Engineering hetero-epitaxial nanostructures with aligned Li-ion channels in Li-rich layered oxides for high-performance cathode application[J]. Nano Energy, 2017, 35: 271-280.
[57] OH P, MYEONG S, CHO W, et al. Superior long-term energy retention and volumetric energy density for Li-rich cathode materials[J]. Nano Letters, 2014, 14(10): 5965-5972.
[58] ZHANG L, LI N, WU B, et al. Sphere-shaped hierarchical cathode with enhanced growth of nanocrystal planes for high-rate and cycling-stable Li-ion batteries[J]. Nano Letters, 2015, 15(1): 656-661.
[59] LI Y, BAI Y, WU C, et al. Three-dimensional fusiform hierarchical micro/nano Li1.2Ni0.2Mn0.6O2with a preferred orientation (110) plane as a high energy cathode material for lithium-ion batteries[J]. Journal of Materials Chemistry A, 2016, 4(16): 5942-5951.
[60] LI Y, WU C, BAI Y, et al. Hierarchical mesoporous lithium-rich Li[Li0.2Ni0.2Mn0.6]O2cathode material synthesized via ice templating for lithium-ion battery[J]. ACS Applied Materials & Interfaces, 2016, 8(29): 18832-18840.
[61] WEI G Z, LU X, KE F S, et al. Crystal habit-tuned nanoplate material of Li[Li1/3-2x/3NiMn2/3-/3]O2for high-rate performance lithium-ion batteries[J]. Advanced Materials, 2010, 22(39): 4364-4367.
[62] CHEN L, SU Y, CHEN S, et al. Hierarchical Li1.2Ni0.2Mn0.6O2nanoplates with exposed {010} planes as high-performance cathode material for lithium-ion batteries[J]. Advanced Materials, 2014, 26(39): 6756-6760.
[63] LI J, XING L, ZHANG R, et al. Tris (trimethylsilyl) borate as an electrolyte additive for improving interfacial stability of high voltage layered lithium-rich oxide cathode/carbonate-based electrolyte[J]. Journal of Power Sources, 2015, 285: 360-366.
[64] NAYAK P K, GRINBLAT J, LEVI M, et al. Understanding the effect of lithium bis (oxalato) borate (LiBOB) on the structural and electrochemical aging of Li and Mn rich high capacity Li1.2Ni0.16Mn0.56Co0.08O2cathodes[J]. Journal of the Electrochemical Society, 2015, 162(4): A596-A602.
[65] TAN S, ZHANG Z, LI Y, et al. Tris (hexafluoro-iso-propyl) phosphate as an SEI-forming additive on improving the electrochemical performance of the Li[Li0.2Mn0.56Ni0.16Co0.08]O2cathode material[J]. Journal of the Electrochemical Society, 2013, 160(2): A285-A292.
[66] HAN J G, LEE S J, LEE J, et al. Tunable and robust phosphite-derived surface film to protect lithium-rich cathodes in lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2015, 7(15): 8319-8329.
[67] PHAM H Q, NAM K M, HWANG E H, et al. Performance enhancement of 4.8 V Li1.2Mn0.525Ni0.175Co0.1O2battery cathode using fluorinated linear carbonate as a high-voltage additive[J]. Journal of the Electrochemical Society, 2014, 161(14): A2002-A2011.
[68] ZHU Y, CASSELMAN M D, LI Y, et al. Perfluoroalkyl-substituted ethylene carbonates: Novel electrolyte additives for high-voltage lithium-ion batteries[J]. Journal of Power Sources, 2014, 246: 184-191.
[69] PATRA J, DAHIYA P P, TSENG C J, et al. Electrochemical performance of 0.5Li2MnO3–0.5Li(Mn0.375Ni0.375Co0.25)O2composite cathode in pyrrolidinium-based ionic liquid electrolytes[J]. Journal of Power Sources, 2015, 294: 22-30.
[70] JI Y, ZHANG Z, GAO M, et al. Electrochemical behavior of suberonitrile as a high-potential electrolyte additive and co-solvent for Li[Li0.2Mn0.56Ni0.16Co0.08]O2cathode material[J]. Journal of the Electrochemical Society, 2015, 162(4): A774-A780.
[71] WU F, ZHU Q, LI L, et al. A diisocyanate/sulfone binary electrolyte based on lithium difluoro (oxalate) borate for lithium batteries[J]. Journal of Materials Chemistry A, 2013, 1(11): 3659-3666.
[72] ZHANG T, LI J T, LIU J, et al. Suppressing the voltage-fading of layered lithium-rich cathode materials via an aqueous binder for Li-ion batteries[J]. Chemical Communications, 2016, 52(25): 4683-4686.
[73] WU F, LI W, CHEN L, et al. Polyacrylonitrile-polyvinylidene fluoride as high-performance composite binder for layered Li-rich oxides[J]. Journal of Power Sources, 2017, 359: 226-233.
Progress in the modification of lithium-rich manganese-based layered cathode material
LI Yu, ZHAO Huichun, BAI Ying, WU Feng, WU Chuan
(Beijing Key Laboratory of Environmental Science and Engineering, School of Material, Beijing Institute of Technology, Beijing 100081, China)
Developing the high energy density cathode materials for lithium ion batteries is the key to satisfy the demands of rapid development of electric vehicles and hybrid electric vehicles. Compared with traditional cathodes including LiCoO2and LiFePO4, layered Li-rich Mn-based cathode materials are expected to achieve the index requirement of 300 W·h·kg-1because their specific capacity could reach up to 250 mA·h·g-1and the average discharge voltage exceeds 3.5 V. However, Li-rich materials have a poor cycle performance and gradual voltage decay during cycling, which is due to the irreversible phase transition from layered to spinel. In recent years, researchers have carries out tremendous works to solve these issues. In this paper, according to modification technology, the current studies including lattice doping, surface coating, designs of microstructure and control of active crystal plane are reviewed.
Li-rich Mn-based cathode materials; lithium ion batteries; modification; voltage decay; cycle stability
10.12028/j.issn.2095-4239.2018.0010
TM 911
A
2095-4239(2018)03-0394-10
2018-01-22;
2018-02-28。
國(guó)家重點(diǎn)基礎(chǔ)研究發(fā)展計(jì)劃項(xiàng)目(973)(2015CB251100)。
李雨(1988—),女,博士研究生,研究方向?yàn)槎坞姵仉姌O材料,E-mail:liyu0820@126.com;
吳川,教授,博士生導(dǎo)師,E-mail:chuanwu@bit.edu.cn。