李俊彤,苗豐,王效春
隨著人類生活水平的提高及生活方式的改變,腦卒中已成為嚴重威脅人類健康的致死性疾病之一。在我國,腦卒中是成人致殘或致死的首要危險因素[1]且發(fā)病年齡呈年輕化趨勢。Wang等[2]研究發(fā)現(xiàn),我國約46.6%的急性缺血性卒中(acute ischemic stroke)由顱內動脈粥樣硬化疾病(intracranial atherosclerotic disease,ICAD)引起,相關的腦血管事件每年復發(fā)率極高。顱內動脈夾層、Moyamoya病、腦動脈炎等也可導致缺血性腦卒中,因此早期鑒別診斷腦血管病對臨床指導治療和患者預后十分重要。
目前臨床主要應用管腔狹窄程度來評估腦血管病變的嚴重程度。常用的影像學檢查技術有CT血管成像(computed tomography angiography,CTA)、數(shù)字減影血管造影(digital subtraction angiography,DSA)和MR血管成像(magnetic resonance angiography,MRA)等,DSA為有創(chuàng)檢查,現(xiàn)已逐步被CTA及MRA取代。上述腦血管檢查技術只能顯示管腔狹窄程度,不能明確狹窄處管壁結構及導致其狹窄原因[3-4]。Leng等[5]認為單純研究管腔狹窄程度對腦血管病變的診斷,評估病變特征及預防繼發(fā)卒中的風險分層明顯不足,而對病變處動脈管壁結構的研究更有意義。
高分辨率MR成像(high resolution magnetic resonance imaging,HR-MRI)在顱外頸動脈斑塊研究和臨床應用中日漸成熟,其病理結果與高分辨率MR成像定義的斑塊成分有很好的相關性,近年來逐漸被用于顱內動脈的研究,是目前唯一可在體進行腦血管成像的方法[6]。高分辨率MR成像與常規(guī)MRI相比,具有更高的信噪比(signal/noise ratio,SNR)、空間分辨率等優(yōu)勢[7]。
HR-MRI采用3.0 T高場強MR掃描設備及多通道頭部線圈,顯著提高了圖像空間分辨率、對比噪聲比(contrast/noise ratio,CNR)、信噪比(signal/noise ratio,SNR),提高了圖像質量[8]。高分辨率MR成像在腦血管成像中,較成熟的掃描技術有“亮血技術”和“黑血技術”。
“亮血技術”即三維時間飛躍法MR血管成像(3D time of flight magnetic resonance angiography,3D-TOF MRA),是一種擾相梯度回波序列,采用短回波時間(echo time,TE),短重復時間(repetition time,TR)及較小激發(fā)角度,使斑塊顯示為低信號、血流為高信號,在顱外頸動脈斑塊成像中能夠區(qū)分出管壁、血流及斑塊等不同成分[9],在顯示低信號的纖維帽和高信號的斑塊內出血(intraplaque hemorrhage,IPH)等方面具有優(yōu)勢。
“黑血技術”即使用雙反轉恢復、飽和脈沖法等方法來抑制管腔內血液信號,使血流呈低信號、管壁軟組織和斑塊呈較高信號,從而更好地顯示管壁和斑塊等結構。有學者研究發(fā)現(xiàn),雙反轉恢復法較飽和脈沖法對血流的抑制效果更好,該血管壁成像方法臨床應用較廣泛,近年來被國內外學者用于顱內動脈管壁的成像研究,并獲得了較好的病理印證,是HR-MRI黑血技術現(xiàn)階段比較公認的標準方法。
Mugler等[10]于1990年首次提出三維磁化準備快速梯度回波序列(3D magnetization prepared rapid gradient echo,3D MP-RAGE)序列,并將其應用于腹部與頭顱的MR成像。3D MP-RAGE序列依賴反轉恢復脈沖能很好地抑制血流信號和背景組織,較為敏感地識別出斑塊內出血(intraplaque hemorrhage,IPH)信號,與傳統(tǒng)的T1W和TOF序列相比,3D MP-RAGE序列可對IPH進行較準確的定量測量,其測量結果與病理結果具有較高的一致性[11]。Kwak等[12]采用3D MP-RAGE序列對大腦中動脈(middle cerebral artery,MCA)夾層進行高分辨率MR管壁成像研究,發(fā)現(xiàn)該序列能很好地顯示假腔內出血信號。
三維同時非對比增強血管成像和斑塊內出血(3D simultaneous noncontrast angiography and intraplaque hemorrhage,3D SNAP)成像序列充分利用選擇性相位敏感反轉恢復(slab-selective phasesensitive inversion-recovery,SPI)技術的優(yōu)勢(IPH顯示為高信號,血流顯示為低信號),只需一次掃描就可區(qū)分出狹窄管腔和IPH;該技術既能在一次掃描過程中檢測出ICAD管腔狹窄程度及IPH兩個重要危險因素,又能靈活地對這兩個因素進行獨立分析或聯(lián)合分析[13]。Wang等[14]分別用3D SNAP序列和3D TOF序列對大腦中動脈(middle cerebral artery,MCA)成像,發(fā)現(xiàn)兩者在顯示動脈狹窄病變方面具有較高的一致性,且3D SNAP成像對大腦中動脈最小可見分支的顯示優(yōu)于TOF圖像。
3D快速自旋回波(3D turbo spin echo,3D TSE)序列采用非選擇脈沖和變角度回聚脈沖,使回波間距明顯縮短,掃描效率得到提高[15]。該技術由不同的MR平臺優(yōu)化后形成了GE公司的CUBE序列、Siemens公司的SPACE序列和Philips公司的VISTA序列。Edjlali等[16]在3.0 T下采用變翻轉角度3D快速自旋回波T1(CUBE T1)非對比增強成像對11例頸動脈夾層患者進行研究,發(fā)現(xiàn)該序列可準確識別動脈夾層管壁壁間血腫,彌補了傳統(tǒng)2D軸位成像的不足。2010年Fan等[17]將運動敏感散相脈沖(flow-sensitive dephasing,F(xiàn)SD)與3D SPACE序列相結合,提高了管壁與大管腔之間的CNR (P<0.001)及管壁與殘余血流區(qū)域的CNR(P<0.001)。Zhu等[18]認為3D VISTA成像可以區(qū)分獲得性動脈粥樣硬化性狹窄與椎動脈發(fā)育不全(vertebral artery hypoplasia,VAH)。Qiao等[19]對13例健康志愿者及4例患者行3D VISTA成像研究,并與傳統(tǒng)的2D TSE成像對比,發(fā)現(xiàn)管壁SNR提高了約60%,管腔與管壁的CNR提高了約74%。
顱內動脈粥樣硬化性病變(intracranial atherosclerotic disease,ICAD)是缺血性腦卒中主要風險之一。在中國,缺血性腦卒中患者約33%~50%存在顱內動脈粥樣硬化[20]。Turan等[21]報道,3.0 T HR-MRI在體粥樣硬化斑塊成分與癥狀性ICAD患者斑塊的病理標本具有較高一致性,可研究在體顱內動脈粥樣硬化狹窄的病理改變,定性及定量分析斑塊成分大小,探測管壁、管腔結構。HR-MRI可用于測量管壁厚度、管腔面積和管壁面積,分析斑塊負荷、管壁重構及判斷斑塊易損性。Chung等[22]將HR-MRI應用于椎動脈腦卒中患者的成像研究并獲得其病理結果,發(fā)現(xiàn)HR-MRI能夠確定其潛在的病理生理機制,從而改善癥狀性顱內動脈疾病的風險分層和治療決策。
煙霧病(Moyamoya disease,MMD)是一種由于單側或雙側頸內動脈終末端、MCA或大腦前動脈起始段狹窄或閉塞性腦血管疾病,常伴有異常血管網形成,其發(fā)病率僅次于動脈粥樣硬化性MCA閉塞[23-24]。臨床表現(xiàn)與動脈粥樣硬化性疾病相近,常難以鑒別,且有時可并發(fā)。Kim等[25]對Moyamoya病、顱內動脈粥樣硬化患者MCA管壁進行高分辨率掃描,發(fā)現(xiàn)Moyamoya病患者MCA狹窄部位血管外徑較小,少見偏心斑塊,增強掃描局部未見明顯強化。與動脈粥樣硬化病變組相應病變部位比較,MMD患者同心圓型管壁更加均勻,伴有側支血管形成,??梢奙CA病理收縮現(xiàn)象,可作為病程進展的一個重要征象[26-27],從而對MMD病程不同階段進行監(jiān)測及治療。
顱內動脈夾層多發(fā)于椎基底動脈,是青年患者缺血性腦卒中及自發(fā)性蛛網膜下腔出血(subarachnoid hemorrhage,SAH)的常見病因,在東亞人群中發(fā)病率達67%~90%。Jung等[28]采用3.0 T HR-MRI對自發(fā)性破裂和未破裂的急性顱內動脈夾層(spontaneous and unruptured acute intracranial artery dissection,SID)患者進行定量解剖研究,并對各腦動脈之間的差異進行了探討,從而擴寬了HR-MR VWI的研究方向。Natori等[29]對16例顱內椎基底動脈夾層(intracranial vertebrobasilar artery dissection,iVBD)患者進行前瞻性研究,發(fā)現(xiàn)與多序列MRI相比,T1W(3D-vascular wall imaging) 3D-VWI能直接顯示腦卒中急性期血管壁異常病變,可清楚的顯示夾層內膜瓣、雙腔征以及假腔內血腫等。Chung等[22]認為HR-MRI可以發(fā)現(xiàn)大腦前動脈和MCA等顱內更加細小分支血管夾層。
顱內動脈炎性病變是一種因感染、藥物或變態(tài)反應等因素導致腦動脈管腔狹窄、閉塞,病變供血區(qū)腦組織缺血、梗死的腦血管疾病,是缺血性腦卒中的發(fā)病原因之一。Saam等[30]報道,采用脂肪抑制技術下的HR-MR對比增強T1WI序列可對顱內動脈炎性病變進行診斷,該技術可代替常規(guī)血管造影和腦活檢等有創(chuàng)性檢查;此外,HRMRI還能提供疾病相關炎性活動信息,可用于監(jiān)測抗炎治療。Siemonsen等[31]經活檢證實HR-MRI能可靠地檢測出巨細胞性動脈炎(giant cell arteritis,GCA),發(fā)現(xiàn)病變顳淺動脈和枕動脈管壁呈彌漫性同心圓型增厚,病變處管壁光滑,對比增強明顯強化,該方法檢測GCA的靈敏度和特異性均可達80%。
有學者將3D HR-MRI管壁成像應用于顱內動脈瘤、VAH等疾病導致缺血性腦卒中機制的研究[18,32]。Li等[33]對放療后患者大腦中動脈行HRMRI檢查,發(fā)現(xiàn)病變管壁呈同心圓增厚,增強掃描均勻強化,其特征與動脈炎一致。近年有學者認為MRI管壁成像在鑒別血管炎與可逆性腦血管收縮綜合征(reversible cerebral vasoconstriction syndrome,RCVS)方面也有重要價值[34-35]。
高分辨率MR血管壁成像(high resolution magnetic resonance vascular wall imaging,HR-MR VWI)是目前唯一可在體進行顱內血管壁成像的無創(chuàng)檢查技術,具有高空間分辨率、對比-噪聲比(contrast/noise ratio,CNR)及信噪比(signal/noise ratio,SNR)等優(yōu)勢;可在體、無創(chuàng)、無輻射地評估顱內血管壁病變情況,為腦血管病變鑒別診斷、對因治療提供極大幫助和影像依據(jù),具有很大的潛力和臨床應用前景,有望成為臨床腦血管病鑒別診斷、預后評估及早期預防的重要檢查手段之一。目前,HR-MR顱內血管壁成像仍存在掃描序列及參數(shù)不統(tǒng)一、掃描時間較長、病人耐受差、受運動偽影影響較大等問題,需要更多科研團隊積極開展相關研究,并對成像參數(shù)及掃描序列做進一步改進和統(tǒng)一,相信隨著相應研究的進展,這些問題即將被解決,HR-MRI將成為腦血管病變的一項常規(guī)檢查手段。
參考文獻 [References]
[1]Wang Y, Li Z, Zhao X, et al. Stroke care quality in China: substantial improvement, and a huge challenge and opportunity. Int J Stroke,2017, 12(3): 229-235.
[2]Wang Y, Zhao X, Liu L, et al. Prevalence and outcomes of symptomatic intracranial large artery stenoses and occlusions in China: the Chinese Intracranial Atherosclerosis (CICAS) study.Stroke, 2014, 45(3):663-669.
[3]Xu P, Lv L, Li S, et al. Use of high-resolution 3.0-T magnetic resonance imaging to characterize atherosclerotic plaques in patients with cerebral infarction. Exp Ther Med, 2015, 10(6): 2424-2428.
[4]Zhao DL, Deng G, Xie B, et al. High-resolution MRI of the vessel wall in patients with symptomatic atherosclerotic stenosis of the middle cerebral artery. J Clin Neurosci, 2015, 22(4): 700-704.
[5]Leng X, Wong KS, Liebeskind DS. Evaluating intracranial atherosclerosis rather than intracranial stenosis. Stroke, 2014, 45(2):645-651.
[6]Zhang DF, Chen YC, Chen H, et al. A high-resolution MRI study of relationship between remodeling patterns and ischemic stroke in patients with atherosclerotic middle cerebral artery stenosis. Front Aging Neurosci, 2017, 9: 140.
[7]Sui B, Gao P, Lin Y, et al. Distribution and features of middle cerebral artery atherosclerotic plaques in symptomatic patients: a 3.0 T high-resolution MRI study. Neurol Res, 2015, 37(5): 391-396.
[8]Bhatti L, Hoang JK, Dale BM, et al. Advanced magnetic resonance techniques: 3 T. Radiol Clin North Am, 2015, 53(3): 441-455.
[9]Li M, Le WJ, Tao XF, et al. Advantage in bright-blood and blackblood magnetic resonance imaging with high-resolution for analysis of carotid atherosclerotic plaques. Chin Med J (Engl), 2015, 128(18):2478-2484.
[10]Mugler JP 3rd, Brookeman JR. Three-dimensional magnetizationprepared rapid gradient-echo imaging (3D MP RAGE). Magn Reson Med, 1990, 15(1): 152-157.
[11]Ota H, Yarnykh VL, Ferguson MS, et al. Carotid intraplaque hemorrhage imaging at 3.0-T MR imaging: comparison of the diagnostic performance of three T1-weighted sequences. Radiology,2010, 254(2): 551-563.
[12]Kwak HS, Hwang SB, Chung GH, et al. High-resolution magnetic resonance imaging of symptomatic middle cerebral artery dissection.J Stroke Cerebrowasc Dis, 2014, 23(3): 550-553.
[13]Wang J, B?rnert P, Zhao H, et al. Simultaneous noncontrast angiography and intraplaque hemorrhage (SNAP) imaging for carotid atherosclerotic disease evaluation. Magn Reson Med, 2013, 69(2):337-345.
[14]Wang J, Guan M, Yamada K, et al. In vivo validation of simultaneous non-contrast angiography and intraplaque hemorrhage (SNAP)magnetic resonance angiography: an intracranial artery study. PLoS One, 2016, 11(2): e0149130.
[15]Mugler JP 3rd, Bao S, Mulkern RV, et al. Optimized singleslab three dimensional spin-echo MR imaging of the brain. Radiology, 2000,216(3): 891-899.
[16]Edjlali M, Roca P, Rabrait C, et al. 3D fast spin-echo T1 black-blood imaging for the diagnosis of cervical artery dissection. AJNR Am J Neuroradiol, 2013, 34(9): E103-E109.
[17]Fan Z, Zhang Z, Chung YC, et al. Carotid arterial wall MRI at 3T using 3D variable-flip-angle turbo spin-echo (TSE) with flowsensitive dephasing (FSD). J Magn Reson Imaging, 2010, 31(3):645-654.
[18]Zhu XJ, Wang W, Du B, et al. Wall imaging for unilateral intracranial vertebral artery hypoplasia with three-dimensional high-isotropic resolution magnetic resonance images. Chin Med J (Engl), 2015,128(12): 1601-1606.
[19]Qiao Y, Steinman DA, Qin Q, et al. Intracranial arterial wall imaging using three-dimensional high isotropic resolution black blood MRI at 3.0 Tesla. J Magn Reson Imaging, 2011, 3(1): 22-30.
[20]Ojha R, Huang D, An H, et al. Distribution of ischemic infarction and stenosis of intra-and extracranial arteries in young Chinese patients with ischemic stroke. BMC Cardiovasc Disord, 2015, 15: 158.
[21]Turan TN, Rumboldt Z, Granholm AC, et al. Intracranial atherosclerosis:correlation between in-vivo 3T high resolution MRI and pathology. Atherosclerosis, 2014, 237(2): 460-463.
[22]Chung JW, Kim BJ, Choi BS, et al. High-resolution magnetic resonance imaging reveals hidden etiologies of symptomatic vertebral arterial lesions. J Stroke Cerebrovasc Dis, 2014, 23(2):293-302.
[23]Bang OY, Fujimura M, Kim SK, et al. The pathophysiology of moyamoya disease:an update. J Stroke, 2016, 18(1): 12-20.
[24]Kim JS. Moyamoya disease: epidemiology,clinical features,and diagnosis. J Stroke, 2016, 18(1): 2-11.
[25]Kim JM, Jung KH, Sohn CH, et al. High-resolution MR technique can distinguish moyamoya disease from atherosclerotic occlusion.Neurology, 2013, 80(8): 775-776.
[26]Ryoo S, Cha J, Kim SJ, et al. High-resolution magnetic resonance wall imaging findings of Moyamoya disease. Stroke, 2014, 45(8):2457-2460.
[27]Yuan M, Liu ZQ, Wang ZQ, et al. High-resolution MR imaging of the arterial wall in moyamoya disease. Neurosci Lett, 2015, 584: 77-82.
[28]Jung SC, Kim HS, Choi CG, et al. Quantitative analysis using high-resolution 3T MRI in acute intracranial artery dissection. J Neuroimaging. 2016, 26(6): 612-617.
[29]Natori T, Sasaki M, Miyoshi M, et al. Detection of vessel wall lesions in spontaneous symptomatic vertebrobasilar artery dissection using T1-weighted 3-dimensional imaging. J Stroke Cerebrovasc Dis, 2014, 23(9): 2419-2424.
[30]Saam T, Habs M, Pollatos O, et al. High-resolution black-blood contrast-enhanced T1 weighted images for the diagnosis and follow up of intracranial arteritis. Br J Radiol, 2010, 83(993): e182-e184.
[31]Siemonsen S, Brekenfeld C, Holst B, et al. 3T MRI reveals extra and intracranial involvement in giant cell arteritis. AJNR Am J Neuroradiol, 2015, 36(1): 91-97.
[32]Endo H, Niizuma K, Fujimura M, et al. Ruptured cerebral microaneurysm diagnosed by 3-dimensional fast spin-echo T1 imaging with variable flip angles. J Stroke Cerebrovasc Dis, 2015,24(8): e231-e235.
[33]Li M, Wu SW, Xu WH. High-resolution MRI of radiation-induced intracranial vasculopathy. Neurology, 2015, 84(6): 631.
[34]Mossa-Basha M, Hwang WD, De HA, et al. Multicontrast high resolution vessel wall magnetic resonance imaging and its value in differentiating intracranial vasculopathic processes. Stroke, 2015,46(6): 1567-1573.
[35]Obusez EC, Hui F, Hajj-Ali RA, et al. High-resolution MRI vessel wall imaging:spatial and temporal patterns of reversible cerebral vasoconstriction syndrome and central nervous system vasculitis.AJNR Am J Neuroradiol, 2014, 35(8): 1527-1532.