国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

腫瘤免疫細(xì)胞治療研究進(jìn)展

2018-02-28 06:32刁愛坡
關(guān)鍵詞:抗原活化特異性

刁愛坡,趙 青

(天津科技大學(xué)生物工程學(xué)院,天津 300457)

惡性腫瘤是危害人類健康最嚴(yán)重的疾病之一.近年來(lái),隨著生物技術(shù)的迅速發(fā)展,以調(diào)動(dòng)機(jī)體的免疫功能來(lái)清除腫瘤微小殘留病灶或明顯抑制腫瘤細(xì)胞增殖為基礎(chǔ)的腫瘤免疫治療,已被廣泛研究和應(yīng)用于臨床并取得了一定療效,成為繼手術(shù)、放療和化療之后的又一重要的腫瘤治療手段.

腫瘤免疫治療按照治療的原理可分為非特異性免疫調(diào)節(jié)劑治療、腫瘤疫苗治療、免疫檢查點(diǎn)阻斷治療和免疫細(xì)胞治療.非特異性免疫調(diào)節(jié)劑治療是通過(guò)使用干擾素、白細(xì)胞介素–2(IL-2)、胸腺肽、胸腺肽α、香菇多糖、豬苓多糖、酵母多糖等增強(qiáng)機(jī)體免疫功能,激活機(jī)體的抗腫瘤免疫應(yīng)答[1–4].腫瘤疫苗治療是利用腫瘤細(xì)胞或腫瘤抗原物質(zhì)誘導(dǎo)機(jī)體的特異性免疫和體液免疫,增強(qiáng)機(jī)體抗腫瘤能力,預(yù)防術(shù)后擴(kuò)散和復(fù)發(fā).治療腫瘤常用的腫瘤疫苗包括多肽疫苗、核酸疫苗、重組病毒疫苗、細(xì)菌疫苗、樹突細(xì)胞(dendritic cell,DC)疫苗等[5].免疫檢查點(diǎn)阻斷治療是通過(guò)阻斷腫瘤微環(huán)境中的免疫抑制信號(hào),即免疫檢查點(diǎn),解除免疫細(xì)胞活性抑制,增強(qiáng)抗腫瘤活性.目前研究最為深入的免疫檢查點(diǎn)為細(xì)胞程序性死亡受體 1(programmed death 1,PD-1)/程序性死亡配體1(programmed death ligand 1,PD-L1),以及細(xì)胞毒性淋巴T細(xì)胞抗原4(cytotoxic T-lymphocyte-associated protein 4,CTLA-4)[6–7].免疫細(xì)胞治療(cell-mediated immunotherapy)則是通過(guò)采集人體自身免疫細(xì)胞,經(jīng)過(guò)體外修飾和培養(yǎng),使其數(shù)量擴(kuò)增成千倍增多,靶向性殺傷功能增強(qiáng),然后再回輸?shù)交颊唧w內(nèi),從而殺滅血液及組織中的腫瘤細(xì)胞.免疫細(xì)胞治療能夠靶向腫瘤細(xì)胞而不傷及正常組織細(xì)胞,并可產(chǎn)生免疫記憶,預(yù)防腫瘤復(fù)發(fā).腫瘤免疫學(xué)研究及其臨床應(yīng)用已成為腫瘤治療研究中開展最廣泛、最深入的領(lǐng)域之一,本文僅就腫瘤免疫細(xì)胞治療中以嵌合抗原受體 T細(xì)胞、自然殺傷細(xì)胞以及巨噬細(xì)胞為核心的免疫細(xì)胞治療技術(shù)的研究情況進(jìn)行綜述.

1 嵌合抗原受體T細(xì)胞療法

嵌合抗原受體(chimeric antigen receptor,CAR)T細(xì)胞免疫療法是一種新型腫瘤免疫細(xì)胞療法,1989年由 Gross等[8]提出,近幾年被改良并應(yīng)用到臨床中.它是將抗原抗體的高親和性與 T淋巴細(xì)胞的殺傷作用相結(jié)合,通過(guò)構(gòu)建特異性嵌合抗原受體,經(jīng)基因轉(zhuǎn)導(dǎo)使 T淋巴細(xì)胞表達(dá)特異性嵌合抗原受體,特異性識(shí)別靶抗原從而殺傷靶細(xì)胞.目前,臨床上CAR技術(shù)在血液系統(tǒng)腫瘤和實(shí)體瘤的治療上均取得了明顯的效果.

CAR-T細(xì)胞的嵌合抗原受體的基礎(chǔ)結(jié)構(gòu)如圖 1所示,其基礎(chǔ)設(shè)計(jì)組成包括抗原結(jié)合區(qū)、跨膜區(qū)和胞內(nèi)信號(hào)轉(zhuǎn)導(dǎo)區(qū).

圖1 嵌合抗原受體基礎(chǔ)結(jié)構(gòu)Fig. 1 Schema of chimeric antigen receptor structure

抗原結(jié)合區(qū)由單鏈抗體(single chain fragment variable,scFv)與鉸鏈區(qū)(spacer)連接形成.單鏈抗體由輕鏈可變區(qū)(VL)、重鏈可變區(qū)(VH)以及它們之間的 15個(gè)氨基酸((Gly4,Ser)3,linker)鏈接肽組成,鉸鏈區(qū)通常來(lái)源于CD8[9]或者IgG[10].抗原結(jié)合區(qū)對(duì)特定腫瘤相關(guān)抗原(tumor associated antigen,TAA)有特異識(shí)別功能,其與 TAA間的親和力決定了 CAR-T細(xì)胞與靶細(xì)胞的結(jié)合能力[11].跨膜區(qū)(transmembrane domain,TD)通常由同源或異源二聚體膜蛋白,如CD3、CD4、CD8、CD28組成,主要起著連接抗原結(jié)合區(qū)與胞內(nèi)信號(hào)區(qū)進(jìn)行信號(hào)轉(zhuǎn)導(dǎo)的作用.胞內(nèi)信號(hào)轉(zhuǎn)導(dǎo)區(qū)主要由 T細(xì)胞受體 TCR/CD3ζ鏈、免疫球蛋白 Fc受體的 γ鏈或 CD3ε鏈構(gòu)成,通常包含免疫受體酪氨酸活化基序(immunoreceptor tyrosine_based activation motifs,ITAMs),負(fù)責(zé)信號(hào)轉(zhuǎn)導(dǎo)[12].

自 1989年起,CAR結(jié)構(gòu)不斷改進(jìn),目前已發(fā)展到第四代,如圖2所示.

圖2 四代CAR的嵌合受體組成Fig. 2 1st-4th generation of CARs

第一代 CAR胞內(nèi)信號(hào)轉(zhuǎn)導(dǎo)區(qū)只包含單一的TCR/CD3ζ鏈或Fc受體的γ鏈或CD3ε鏈結(jié)構(gòu)域,在體外實(shí)驗(yàn)中可以識(shí)別靶抗原并有效殺傷腫瘤細(xì)胞,同時(shí)分泌 INF-γ,但是在臨床試驗(yàn)中表現(xiàn)出體內(nèi)存活時(shí)間短,回輸 3周后,外周血中無(wú)法檢測(cè)到第一代CAR-T細(xì)胞[13].第二代 CAR胞內(nèi)信號(hào)轉(zhuǎn)導(dǎo)區(qū)除了TCR/CD3ζ鏈結(jié)構(gòu)域外,串聯(lián)了一個(gè)協(xié)同刺激分子結(jié)構(gòu)域(co-simulation domain,CSD),例如 CD27、CD28、CDl34(OX40)或 CDl37(4-1BB)等[14–15].加入?yún)f(xié)同刺激分子后,第二代 CAR-T細(xì)胞可以分泌更多的 IL-2,細(xì)胞凋亡信號(hào)通路處于抑制狀態(tài),抗原刺激后 CAR-T細(xì)胞大量擴(kuò)增[15–16],彌補(bǔ)了第一代 CAR-T細(xì)胞隨著時(shí)間延長(zhǎng)數(shù)量減少的缺陷.其中,加入 CD28共刺激結(jié)構(gòu)域,除了增強(qiáng)細(xì)胞持續(xù)活化外,還有效解除了調(diào)節(jié)性 T細(xì)胞(regulatory T cells,Treg)對(duì) CAR-T的抑制作用[17],使第二代 CART細(xì)胞在腫瘤微環(huán)境中能夠更好地發(fā)揮殺傷功能.第三代CAR是在TCR/CD3ζ鏈結(jié)構(gòu)域的基礎(chǔ)上,同時(shí)串聯(lián)了兩個(gè)協(xié)同刺激分子結(jié)構(gòu)域,可使 T細(xì)胞持續(xù)活化增殖,細(xì)胞因子持續(xù)分泌,增強(qiáng)殺傷腫瘤細(xì)胞作用.體外分析二代與三代 CAR-T細(xì)胞的功能并無(wú)明顯區(qū)別,但在針對(duì)不同腫瘤類型的小鼠模型中,它們表現(xiàn)出不同的治療活性[15,18].第四代 CAR (T cells redirected for universal cytokine killing,TRUCKs)除了嵌合抗原受體基因外,整合表達(dá)免疫因子、整合共刺激因子配體,如促炎性細(xì)胞因子白細(xì)胞介素–12(IL-12)等,成功激活 CAR的信號(hào)通路[19]. 這種被改造后的T細(xì)胞可以在CAR識(shí)別靶抗原后,通過(guò)激活下游轉(zhuǎn)錄因子 NFAT(nuclear factor activated T cells)來(lái)誘導(dǎo)表達(dá) IL-12,從而招募環(huán)境中的其他免疫細(xì)胞(樹突狀細(xì)胞、吞噬細(xì)胞和自然殺傷細(xì)胞等),參與對(duì)不表達(dá)靶抗原的腫瘤細(xì)胞的清除.同時(shí),被募集在腫瘤附近的免疫細(xì)胞還可以通過(guò)分泌某些細(xì)胞因子(如干擾素–γ、腫瘤壞死因子–α、IL-4和 IL-5等)來(lái)調(diào)節(jié)腫瘤附近的微環(huán)境,解除其免疫抑制性,通過(guò)調(diào)動(dòng)機(jī)體自身免疫力參與對(duì)腫瘤細(xì)胞的殺傷作用.

CAR結(jié)構(gòu)基因需要借助特殊的方法整合到T細(xì)胞基因中以實(shí)現(xiàn)表達(dá),如使用病毒載體、電穿孔、轉(zhuǎn)座子以及直接轉(zhuǎn)入 mRNA 或蛋白[20–23].成功表達(dá)CAR的T細(xì)胞需要在體外擴(kuò)增到足夠的數(shù)量才能輸入體內(nèi)產(chǎn)生治療效果.體外擴(kuò)增的方法通常用抗CD3和抗 CD28抗體或是基因修飾過(guò)的表達(dá)靶抗原的抗原提呈細(xì)胞等激活 T細(xì)胞擴(kuò)增.最近又有研究將一段編碼10個(gè)氨基酸的肽段基因序列作為表位標(biāo)簽添加到 CAR結(jié)合區(qū),然后使用針對(duì)這個(gè)表位標(biāo)簽的單抗特異性選擇修飾CAR-T細(xì)胞擴(kuò)增與純化[24].

目前臨床應(yīng)用研究最為深入的代表性CAR-T療法為靶向 CD19的 CAR-T細(xì)胞免疫治療,該療法在治療兒童和成人復(fù)發(fā) B細(xì)胞急性淋巴細(xì)胞白血病(B-ALL)、慢性淋巴細(xì)胞白血病(CLL)和B細(xì)胞非霍奇金淋巴瘤(B-NHL)方面表現(xiàn)出穩(wěn)定高效的抗腫瘤效果[25].在各種臨床研究中,雖然 CAR的設(shè)計(jì)有所不同,但是從臨床響應(yīng)數(shù)據(jù)(表 1)中可以看出,靶向CD19的CAR-T細(xì)胞治療是復(fù)發(fā)/難治B細(xì)胞惡性腫瘤的一種非常有效的治療方法.

表1 靶向CD19的CAR-T細(xì)胞治療臨床研究情況Tab. 1 Clinical responses to CD19 CAR therapy

雖然 CAR-T療法的臨床試驗(yàn)效果良好,但治療過(guò)程中也存在著潛在的毒副作用,如較為常見的發(fā)熱、皮疹、寒顫、低血壓等,嚴(yán)重時(shí)可引起細(xì)胞因子釋放綜合癥、腫瘤溶解綜合癥等[25].因此,為提高CAR-T的有效性和安全性,一系列可控型CAR-T及其他新型基因修飾 T細(xì)胞技術(shù)應(yīng)運(yùn)而生,包括嵌合共刺激受體(chimeric co-stimulating receptors,CCRs)T 細(xì)胞[34–35]、抗原特異性抑制受體(antigenspecific inhibitory receptors,iCARs)T 細(xì)胞[36]和基于Notch的合成受體(Notch-based receptors,synNotch)T細(xì)胞技術(shù)[37]等.如 Prosser等[35]將 PD-1胞外結(jié)構(gòu)域串聯(lián)CD28跨膜結(jié)構(gòu)域與胞內(nèi)信號(hào)轉(zhuǎn)導(dǎo)區(qū),得到嵌合共刺激受體(CCR),將T細(xì)胞中PD-1/PD-L1抑制性信號(hào)通路逆轉(zhuǎn)為共刺激信號(hào)通路,進(jìn)而加強(qiáng) CCRT細(xì)胞的細(xì)胞毒性.Notch蛋白是一種參與多種有機(jī)體中細(xì)胞間通訊的蛋白質(zhì),對(duì)正常發(fā)育至關(guān)重要,F(xiàn)edorov等[37]基于Notch蛋白研制出synNotch受體,synNotch受體一端伸出T細(xì)胞外,作為傳感器組件,特異性地識(shí)別多種不同類型的疾病信號(hào);而另一端在細(xì)胞內(nèi),作為效應(yīng)器組件,經(jīng)設(shè)計(jì)后能夠讓細(xì)胞執(zhí)行多種多樣的反應(yīng).這些新技術(shù)可以更精確地調(diào)節(jié) T細(xì)胞的激活,從而降低治療風(fēng)險(xiǎn).

CAR-T細(xì)胞療法是當(dāng)今最先進(jìn)的腫瘤免疫細(xì)胞治療技術(shù),在淋巴瘤中已經(jīng)取得了顯著的成果.它的出現(xiàn)使得腫瘤免疫治療進(jìn)入一個(gè)新階段,但是基于CAR的治療方法在技術(shù)和大規(guī)模臨床應(yīng)用方面仍然存在著巨大的挑戰(zhàn).隨著對(duì)人體免疫系統(tǒng)和腫瘤免疫治療的研究更加深入,相關(guān)臨床數(shù)據(jù)不斷積累.其中:凱特制藥公司(Kite Pharma)的 CAR-T項(xiàng)目Axicabtagene Ciloleucel(KTE-C19)于2016年經(jīng)歐洲藥品管理局(EMA)人用醫(yī)藥產(chǎn)品委員會(huì)(CHMP)和先進(jìn)療法委員會(huì)(CAT)準(zhǔn)許,進(jìn)入新成立的重點(diǎn)藥物(PRIME)審批計(jì)劃.朱諾治療公司(Juno Therapeutics Inc.)CAR-T療法JCAR015在 2016年和 2017年的臨床試驗(yàn)中分別導(dǎo)致 3位和 2位患者死亡,被迫叫停.2017年 8月 30日,美國(guó) FDA批準(zhǔn)諾華(Novartis)旗下 CAR-T療法明星藥物 Tisagenlecleucel(曾用名 CTL019)上市,商品名為 Kymriah,用于治療復(fù)發(fā)/難治 25歲以下 B細(xì)胞急性淋巴性白血病(B-ALL)患者.相信 CAR-T細(xì)胞治療技術(shù)將日趨完善,并有望成為惡性腫瘤的克星,為醫(yī)學(xué)發(fā)展及人類健康作出貢獻(xiàn).

2 自然殺傷細(xì)胞療法

自然殺傷(natural killer,NK)細(xì)胞是獨(dú)立于T、B細(xì)胞的第三類淋巴細(xì)胞亞群,屬于固有免疫細(xì)胞,是機(jī)體防御的第一道防線,不僅具有抗感染、免疫調(diào)節(jié)和抗腫瘤等多重作用,而且在某些情況下參與超敏反應(yīng)和自身免疫性疾病的發(fā)生.

NK細(xì)胞殺傷的靶細(xì)胞主要包括腫瘤細(xì)胞、病毒感染細(xì)胞、較大的病原體(如真菌和寄生蟲)、同種異體移植的器官與組織等.它無(wú)需抗原預(yù)先致敏,即可直接殺傷靶細(xì)胞,故在機(jī)體抗腫瘤、早期抗病毒或胞內(nèi)細(xì)菌感染的免疫應(yīng)答中有重要作用[38].近幾年,隨著腫瘤分子機(jī)制的深入研究,NK細(xì)胞的抗腫瘤作用備受關(guān)注,已形成多種不同的研究方法,包括同種異體 NK細(xì)胞過(guò)繼免疫治療、清除 NK細(xì)胞的抑制因素、基因修飾NK細(xì)胞表達(dá)嵌合抗原受體(CAR)等.

NK 細(xì)胞的表型為 CD3-CD56+,主要分布于骨髓、外周血和脾臟當(dāng)中,占外周血淋巴細(xì)胞的 10%,~20%[39].NK細(xì)胞殺傷腫瘤細(xì)胞的機(jī)制如圖 3所示.

圖3 NK細(xì)胞對(duì)腫瘤的殺傷機(jī)制Fig. 3 Mechanism of NK cell cytotoxicity

由圖 3可知,NK細(xì)胞殺傷腫瘤細(xì)胞機(jī)制包括:①穿孔素和顆粒酶介導(dǎo)的細(xì)胞毒性作用;②死亡受體介導(dǎo)的靶細(xì)胞凋亡;③分泌細(xì)胞因子促進(jìn)殺傷活性;④抗體依賴的細(xì)胞毒性作用(antibody-dependent cellmediated cytotoxicity,ADCC)[40].NK 細(xì)胞的活性取決于其活化受體和抑制受體間的動(dòng)態(tài)平衡[41–44],其中活化受體 NKG2D(natural killer group 2,member D)、NKp30、NKp44和 NKp46為 NK 細(xì)胞的活化提供激活信號(hào),最終引發(fā)細(xì)胞毒性和產(chǎn)生細(xì)胞因子;典型的抑制性受體為 KIR(killer inhibitory receptor,KIR),KIR識(shí)別“自我”,隨后傳遞負(fù)調(diào)控信號(hào),最終通過(guò)抑制信號(hào)通路來(lái)抑制 NK 細(xì)胞的活化[45].此外,細(xì)胞因子對(duì)于 NK細(xì)胞的發(fā)育、存活和功能行駛也具有重要的調(diào)節(jié)作用,如IL-15在NK細(xì)胞發(fā)育和信號(hào)激活中發(fā)揮關(guān)鍵作用[46–47],IL-12、IL-15和 IL-18促進(jìn) NK細(xì)胞壽命延長(zhǎng),且二次刺激可增強(qiáng) NK細(xì)胞功能[48].

在臨床應(yīng)用中,NK細(xì)胞過(guò)繼性治療腫瘤已取得一定的成果,但同時(shí)也存在一些缺陷,如 NK細(xì)胞的靶向性、自體移植 NK 細(xì)胞失活問(wèn)題等[49].為此,研究者開始嘗試將應(yīng)用于 T細(xì)胞的嵌合抗原受體(CAR)技術(shù)應(yīng)用于NK細(xì)胞,使NK細(xì)胞能夠特異地識(shí)別靶細(xì)胞,提高其殺傷靶細(xì)胞毒性作用,即 CARNK免疫療法.相比于 T細(xì)胞,NK細(xì)胞是一種安全的效應(yīng)細(xì)胞,它的使用能夠避免 CAR-T細(xì)胞治療中帶來(lái)的細(xì)胞因子風(fēng)暴、腫瘤溶解綜合癥等副作用,并且CAR修飾后的NK細(xì)胞與CAR-T細(xì)胞一樣,可以高效地實(shí)現(xiàn)對(duì)靶細(xì)胞的特異殺傷[50].但研究[51]發(fā)現(xiàn),CAR-NK細(xì)胞的轉(zhuǎn)導(dǎo)技術(shù)及其增殖能力均不及CAR-T細(xì)胞.因此,開發(fā)新一代的 CAR-NK細(xì)胞對(duì)NK細(xì)胞的過(guò)繼性治療具有重要意義.

3 巨噬細(xì)胞療法

巨噬細(xì)胞是機(jī)體固有免疫反應(yīng)的重要組分,是一類具有可塑性、異質(zhì)性的細(xì)胞群體,通過(guò)清除異常細(xì)胞保持正常組織的穩(wěn)態(tài),在機(jī)體的非特異免疫功能中發(fā)揮重要作用[52].

巨噬細(xì)胞可通過(guò)多途徑、多步驟發(fā)揮廣譜抗瘤作用.細(xì)菌細(xì)胞壁成分和細(xì)胞因子可以活化巨噬細(xì)胞,活化的巨噬細(xì)胞可以高效、專一地識(shí)別并裂解腫瘤細(xì)胞,包括那些對(duì)細(xì)胞毒性藥物有抗性的腫瘤細(xì)胞,但對(duì)正常細(xì)胞的損傷卻很少.巨噬細(xì)胞和腫瘤細(xì)胞直接接觸 1~3,d后可分泌釋放一些細(xì)胞毒性物質(zhì)(如TNF-α、NO、絲氨酸蛋白酶、溶酶體酶、活性氧等),可導(dǎo)致所結(jié)合的腫瘤細(xì)胞溶解或調(diào)亡,此過(guò)程緩慢并且需要細(xì)胞之間直接接觸[53].巨噬細(xì)胞也可以通過(guò)抗體依賴的細(xì)胞毒性作用(antibody-dependent cellmediated cytotoxicity,ADCC)直接殺傷腫瘤細(xì)胞.巨噬細(xì)胞膜表面表達(dá) IgG Fc 受體(FcγRⅠ和 FcγRⅢ),抗腫瘤抗體 Fab段與腫瘤表面抗原結(jié)合,F(xiàn)c段與巨噬細(xì)胞上IgG Fc受體結(jié)合,在與Fc受體交聯(lián)過(guò)程中巨噬細(xì)胞被活化并分泌 TNF-α、中性蛋白酶、活性氧和 IL-12等細(xì)胞溶解物質(zhì),將腫瘤細(xì)胞溶解并吞噬[54].活化的巨噬細(xì)胞可以處理和呈遞腫瘤抗原、激活 T細(xì)胞并刺激機(jī)體對(duì)腫瘤細(xì)胞產(chǎn)生特異性免疫應(yīng)答.與T細(xì)胞相比,巨噬細(xì)胞殺傷腫瘤細(xì)胞與腫瘤細(xì)胞的免疫原性、轉(zhuǎn)移潛能和對(duì)藥物的敏感性無(wú)關(guān).因此,對(duì)于絕大多數(shù)腫瘤細(xì)胞,尤其是那些腫瘤抗原易發(fā)生變異的轉(zhuǎn)移腫瘤細(xì)胞,在體內(nèi)特異性 T細(xì)胞難以發(fā)揮效應(yīng)時(shí),其對(duì)活化的巨噬細(xì)胞的殺傷作用卻極少出現(xiàn)抗性[55].

在腫瘤發(fā)生初期,來(lái)自健康組織的巨噬細(xì)胞活化后可以抑制腫瘤細(xì)胞的生長(zhǎng),但是在腫瘤惡化階段,來(lái)自腫瘤微環(huán)境浸潤(rùn)的巨噬細(xì)胞,即腫瘤相關(guān)巨噬細(xì)胞(tumor associated macrophages,TAMs)卻促進(jìn)腫瘤細(xì)胞的生長(zhǎng).實(shí)體腫瘤不僅包括腫瘤細(xì)胞成分,腫瘤組織當(dāng)中還有相當(dāng)多的其他非腫瘤細(xì)胞成分,這些細(xì)胞成分構(gòu)成了所謂腫瘤微環(huán)境,在腫瘤的浸潤(rùn)、增殖和轉(zhuǎn)移中發(fā)揮重要的作用.腫瘤微環(huán)境中包含多樣細(xì)胞成分,有組織本身固有的脂肪細(xì)胞、成纖維細(xì)胞,也有血源性細(xì)胞成分,包括巨噬細(xì)胞、中性粒細(xì)胞和肥大細(xì)胞等炎性細(xì)胞,這些血源性細(xì)胞在腫瘤的進(jìn)展、侵襲和轉(zhuǎn)移中發(fā)揮重要作用[56–57].TAMs是腫瘤微環(huán)境當(dāng)中最豐富的細(xì)胞成分,在腫瘤微環(huán)境中發(fā)揮多項(xiàng)功能,包括分泌金屬基質(zhì)蛋白酶消化細(xì)胞外基質(zhì)促進(jìn)腫瘤細(xì)胞浸潤(rùn)遷移、分泌多種生長(zhǎng)因子及血管生成因子促進(jìn)腫瘤增殖、分泌抑制性細(xì)胞因子抑制機(jī)體腫瘤免疫等[58].與腫瘤細(xì)胞不同的是,TAMs的基因表達(dá)更穩(wěn)定,所以采取針對(duì)巨噬細(xì)胞作為靶點(diǎn)治療腫瘤具有很大的可行性.此外,隨著研究的深入,研究者發(fā)現(xiàn)了 TAMs促進(jìn)腫瘤生長(zhǎng)的調(diào)節(jié)機(jī)制,多種腫瘤細(xì)胞表面均表達(dá)一種膜糖蛋白 CD47.當(dāng) CD47與巨噬細(xì)胞的 SIRPα 和 TSP1受體分別結(jié)合后,巨噬細(xì)胞便會(huì)停止吞噬腫瘤細(xì)胞,反而促進(jìn)腫瘤的生長(zhǎng)[59].因此,目前研究者們正嘗試通過(guò)使用 CD47的特異性抗體激活巨噬細(xì)胞吞噬腫瘤細(xì)胞,相關(guān)研究已進(jìn)入臨床階段.

4 其他腫瘤免疫細(xì)胞療法

除了以上3種最受關(guān)注的療法外,腫瘤免疫細(xì)胞治療還涉及淋巴因子激活的殺傷細(xì)胞(LAK)、腫瘤浸潤(rùn)淋巴細(xì)胞(tumor infiltrating lymphocyte,TIL)、樹突狀細(xì)胞(dendritic cells,DC)、細(xì)胞因子誘導(dǎo)的殺傷細(xì)胞(cytokine-induced killer,CIK)等.LAK細(xì)胞即淋巴因子激活的殺傷細(xì)胞,是一類重要的細(xì)胞毒性淋巴細(xì)胞群,平時(shí)處于抑制狀態(tài),在誘導(dǎo)因子IL-2刺激下激活增殖,對(duì)人體內(nèi)的腫瘤細(xì)胞具有很強(qiáng)的殺傷作用,具有廣譜高效的殺瘤效應(yīng)[60].LAK細(xì)胞療法開發(fā)于20世紀(jì)80年代后期,經(jīng)過(guò)多年的臨床研究,目前僅作為腫瘤治療的輔助療法.

TIL細(xì)胞即腫瘤浸潤(rùn)淋巴細(xì)胞,是從腫瘤組織中分離出的 CD4+、CD8+,T細(xì)胞,在體外經(jīng) IL-2的刺激、活化、擴(kuò)增后可應(yīng)用于臨床腫瘤過(guò)繼性細(xì)胞治療.臨床上進(jìn)行TIL 過(guò)繼性治療之前,需要對(duì)患者進(jìn)行全身放療,使患者體內(nèi)的淋巴細(xì)胞清除,同時(shí)聯(lián)合化療藥治療可提高療效[61].

DC即樹突狀細(xì)胞,為體內(nèi)專職抗原提呈細(xì)胞,是抗微生物、腫瘤和自身抗原免疫應(yīng)答時(shí)重要的啟動(dòng)子和調(diào)控子[62].在 DC發(fā)育和發(fā)揮作用的過(guò)程中,未成熟DC具有較強(qiáng)的遷移能力,成熟DC能有效激活初始型 T細(xì)胞,是啟動(dòng)、調(diào)控并維持免疫應(yīng)答的中心環(huán)節(jié).DC亞群在體內(nèi)抗腫瘤免疫應(yīng)答的動(dòng)物模型中廣泛研究,DC通常在體外被分離出來(lái),并負(fù)載腫瘤抗原,注射到同系動(dòng)物中作為腫瘤疫苗[63].

CIK細(xì)胞即細(xì)胞因子誘導(dǎo)的殺傷細(xì)胞,是人體外周血中單個(gè)核細(xì)胞在體外經(jīng)多種細(xì)胞因子如 IL-2、CD3單抗、干擾素–1、重組人纖維蛋白等共同刺激后獲得的一群異質(zhì)細(xì)胞,具有識(shí)別、殺傷腫瘤的特性,增殖能力強(qiáng),細(xì)胞毒作用強(qiáng),同時(shí)也具有一定的免疫特性[64].將CIK細(xì)胞與DC細(xì)胞在體外共同培養(yǎng),在促進(jìn) DC細(xì)胞成熟的同時(shí),更加強(qiáng)了 CIK細(xì)胞的抗腫瘤活性,即DC-CIK.DC-CIK既能凸顯出特異性的免疫殺傷,又能展現(xiàn)其強(qiáng)大的非特異性抗瘤效應(yīng),除了殺瘤活性高及殺瘤范圍廣的特點(diǎn)外,還具有降低免疫耐受的特性,可以有效地預(yù)防某些自身免疫性疾病[65].

5 結(jié) 語(yǔ)

腫瘤免疫細(xì)胞治療除了可直接發(fā)揮抗腫瘤的作用外,還可以通過(guò)糾正機(jī)體免疫功能低下,增強(qiáng)機(jī)體抗腫瘤細(xì)胞的免疫功能而兼顧治療與預(yù)防的雙重療效.近年來(lái),腫瘤免疫療法研究取得了重要進(jìn)展,腫瘤免疫細(xì)胞治療受到越來(lái)越多的關(guān)注,預(yù)示著免疫細(xì)胞治療有望成為繼手術(shù)、化療、放療、靶向治療后惡性腫瘤治療領(lǐng)域的又一場(chǎng)革新.

[1] Shang Y,Baumricker C R,Green M H. c-Myc is a major mediator of the synergistic growth inhibitory effects of retinoic acid and interferon in breast cancer cells[J].Journal of Biological Chemistry,1998,273(46):30608-30613.

[2] Kusnierczyk H,Pajtasz-Piasecka E,Koten J W,et al.Further development of local IL-2 therapy of cancer:Multiple versus single IL-2 treatment of transplanted murine colon carcinoma[J]. Cancer Immunology Immunotherapy,2004,53(5):445-452.

[3] Crockford D,Turiman N,Allan C,et al. Thymosin beta4:Structure,function,and biological properties supporting current and future clinical applications[J]. Annals of the New York Academy of Sciences,2010,1194(4):179-189.

[4] 曹瑞珍,薛燕,李大力. 抗腫瘤多糖研究進(jìn)展[J]. 內(nèi)蒙古民族大學(xué)學(xué)報(bào):自然漢文版,2004,19(6):657-658.

[5] Lohmueller J,F(xiàn)inn O J. Current modalities in cancer immunotherapy:Immunomodulatory antibodies,CARs and vaccines[J]. Pharmacology & Therapeutics,2017,178:31-47.

[6] Hassel J C,Heinzerling L,Aberle J,et al. Combined immune checkpoint blockade(anti-PD-1/anti-CTLA-4):Evaluation and management of adverse drug reactions[J]. Cancer Treatment Reviews,2017,57:36-49.

[7] Wang Q,Wu X. Blocking the PD-1/PD-L1 pathway in glioma:A potential new treatment strategy[J]. Journal of Hematology & Oncology,2017,10(1):81.

[8] Gross G,Waks T,Eshhar Z. Expression of immunoglobulin-T-cell receptor chimeric molecules as functional receptors with antibody-type specificity[J]. Proceedings of the National Academy of Sciences of the United States of America,1989,86(24):10024-10028.

[9] Pofler D L,Levine B L,Kalos M,et a1. Chimeric antigen receptor modified T cells in chronic lymphoid leukemia[J]. New England Journal of Medicine,2011,365(8):725-733.

[10] Savoldo B,Ramos C A,Liu E,et al. CD28 costimulation improves expansion and persistence of chimeric antigen receptor-modified T cells in lymphoma patients[J]. Journal of Clinical Investigation,2011,121(5):1822-1826.

[11] Jensen M C,Riddell S R. Design and implementation of adoptive therapy with chimeric antigen receptor-modified T cells[J]. Immunological Reviews,2014,257(1):127-144.

[12] Ramos C A,Dotti G. Chimeric antigen receptor(CAR)-engineered lymphocytes for cancer therapy[J]. Expert Opinion on Biological Therapy,2011,11:855-887.

[13] Kershaw M H,Westwood J A,Parker L L,et a1. A phase I study on adoptive immunotherapy using gene-modified T cells for ovarian cancer[J]. Clinical Cancer Research,2006,12(20):6106-6115.

[14] Maher J,Brentjens R J,Gunset G,et al. Human T-lymphocyte cytotoxicity and proliferation directed by a single chimeric TCRzeta/CD28 receptor[J]. Nature Biotechnology,2002,20(1):70-75.

[15] Milone M C,F(xiàn)ish J D,Carpenito C,et al. Chimeric receptors containing CD137 signal transduction domains mediate enhanced survival of T cells and increased antileukemic efficacy in vivo[J]. Molecular Therapy,2009,17(8):1453-1464.

[16] Kowolik C M,Topp M S,Gonzalez S,et al. CD28 costimulation provided through a CD19-specific chimeric antigen receptor enhances in vivo persistence and antitumor efficacy of adoptively transferred T cells[J]. Cancer Research,2006,66(22):10995-11004.

[17] Loskog A,Giandomenico V,Rossig C,et al. Addition of the CD28 signaling domain to chimeric T-cell receptors enhances chimeric T-cell resistance to T regulatory cells[J]. Leukemia,2006,20(10):1819-1828.

[18] Carpenito C,Milone M C,Hassan R,et al. Control of large,established tumor xenografts with genetically retargeted human T cells containing CD28 and CD137 domains[J]. Proceedings of the National Academy of Sciences of the United States of America,2009,106(9):3360-3365.

[19] Cheadle E J,Gornall H,Baldan V,et al. CAR T cells:Driving the road from the laboratory to the clinic[J].Immunological Reviews,2014,257(1):91-106.

[20] Hu W S,Pathak V K. Design of retroviral vectors and helper cells for gene therapy[J]. Pharmacological Reviews,2000,52(4):493-511.

[21] Montini E,Cesana D,Schmidt M,et al. Hematopoietic stem cell gene transfer in a tumor-prone mouse model uncovers low genotoxicity of lentiviral vector integration[J]. Nature Biotechnology,2006,24(6):687-696.

[22] Till B G,Jensen M C,Wang J,et al. Adoptive immunotherapy for indolent non-Hodgkin lymphoma and mantle cell lymphoma using genetically modified autologous CD20-specific T cells[J]. Blood,2008,112(6):2261-2271.

[23] Maiti S N,Huls H,Singh H,et al. Sleeping beauty system to redirect T cell specificity for human applications[J]. Journal of Immunotherapy,2013,36(2):112-123.

[24] Cartellieri M,Koristka S,Arndt C,et al. A novel ex vivo is isolation and expansion procedure for chimeric antigen receptor engrafted human T cells[J]. PLoS One,2014,9(4):e93745.

[25] Sadelain M,Rivière I,Riddell S. Therapeutic T cell engineering[J]. Nature,2017,545(7655):423-431.

[26] Davila M L,Riviere I,Wang X,et al. Efficacy and toxicity management of 19-28,z CAR T cell therapy in B cell acute lymphoblastic leukemia[J]. Science Translational Medicine,2014,6(224):224-225.

[27] Maude S L,F(xiàn)rey N,Shaw P A,et al. Chimeric antigen receptor T cells for sustained remissions in leukemia[J].The New England Journal of Medicine,2014,371(16):1507-1517.

[28] Lee D W,Kochenderfer J N,Stetler-Stevenson M,et al.T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults:A phase 1 doseescalation trial[J]. Lancet,2015,385(9967):517–528.

[29] Turtle C J,Hanafi L A,Berger C,et al. CD19 CAR-T cells of defined CD4+:CD8+composition in adult B cell ALL patients[J]. Journal of Clinical Investigation,2016,126(6):2123–2138.

[30] Qasim W,Zhan H,Samarasinghe S,et al. Molecular remission of infant B-ALL after infusion of universal TALEN gene-edited CAR T cells[J]. Science Translational Medicine,2017,9(374):eaaj2013.

[31] Kochenderfer J N,Dudley M E,Kassim S H,et al. Chemotherapy-refractory diffuse large B-cell lymphoma and indolent B-cell malignancies can be effectively treated with autologous T cells expressing an anti-CD19 chimeric antigen receptor[J]. Journal of Clinical Oncology,2015,33(6):540–549.

[32] Sabatino M,Hu J,Sommariva M,et al. Generation of clinical-grade CD19-specific CAR-modified CD8+memory stem cells for the treatment of human B-cell malignancies[J]. Blood,2016,128(4):519-528.

[33] Turtle C J,Hanafi L A,Berger C,et al. Immunotherapy of non-Hodgkin’s lymphoma with a defined ratio of CD8+and CD4+CD19-specific chimeric antigen receptor-modified T cells[J]. Science Translational Medicine,2016,8(355):116.

[34] Kloss C C,Condomines M,Cartellieri M,et al. Combinatorial antigen recognition with balanced signaling promotes selective tumor eradication by engineered T cells[J]. Nature Biotechnology,2013,31(1):71-75.

[35] Prosser M E,Brown C E,Shami A F,et al. Tumor PD-L1 co-stimulates primary human CD8+cytotoxic T cells modified to express a PD1:CD28 chimeric receptor[J].Molecular Immunology,2012,51(3/4):263-272.

[36] Roybal K T,Rupp L J,Morsut L,et al. Precision tumor recognition by T cells with combinatorial antigen-sensing circuits[J]. Cell,2016,164(4):770-779.

[37] Fedorov V D,Themeli M,Sadelain M. PD-1-and CTLA-4-based inhibitory chimeric antigen receptors(iCARs)ivert off-target immunotherapy responses[J]. Science Translational Medicine,2013,5(215):172.

[38] Gazit R,Gruda R,Elboim M,et al. Lethal influenza infection in the absence of the natural killer cell receptor gene Ncrl[J]. Nature Immunology,2006,7(5):517-523.

[39] Loris Z,Cristina P,Prisco M,et al. NK cells and cancer[J]. Journal of Immunology,2007,27(45):5932-5943.

[40] Sutlu T,Alici E. Natural killer cell-based immunotherapy in cancer:Current insights and future prospects[J]. Journal of Internal Medcine,2009,266(2):154-181.

[41] Vivier E,Ugolini S,Blaise D,et al. Targeting natural killer cells and natural killer T cells in cancer[J]. Nature Reviews Immunology,2012,12(4):239-252.

[42] Vivier E,Ugolini S. Natural killer cells:From basic research to treatments[J]. Frontiers in Immunology,2011,2:18.

[43] Ljunggren H G,Malmberg K J. Prospects for the use of NK cells in immunotherapy of human cancer[J]. Nature Reviews Immunology,2007,7(5):329-339.

[44] Vivier E,Nunès J A,Vély F. Natural killer cell signaling path-ways[J]. Science,2004,306(5701):1517-1519.

[45] Romagn E F,Vivier E. Natural killer cell-based therapies[J]. F1000 Report Medcine,2011,3(1):9.

[46] Fehniger T A,Caligiuri M A. Interleukin 15:Biology and relevance to human disease[J]. Blood,2001,97(1):14-32.

[47] Lucas M,Schaehterle W K,Aichele P,et al. Dendritic cells prime natural killer cells by trans-presenting interleukin 15[J]. Immunity,2007,26(4):503-517.

[48] Cooper M A,Elliott J M,Keyel P A,et al. Cytokine induced memory like natural killer cells[J]. Proceedings of the National Academy of Sciences of the United States of America,2009,106(6):1915-1919.

[49] Boissel L,Betancur M,Wels W S,et al. Transfection with mRNA for CDl9 specific chimeric antigen receptor restores NK cell mediated killing of CLL cells[J]. Leukemia Research,2009,33(9):1255-1259.

[50] Cheng M,Chen Y,Xiao W,et al. NK cell-based immunotherapy for malignant diseases[J]. Cellular & Molecular Immunology,2013,10(3):230-252.

[51] Koepsell S A,Miller J S,McKenna D H J. Natural killer cells:A review of manufacturing and clinical utility[J].Transfusion,2013,53(2):404-410.

[52] Higuchi M,Higashi N,Taki H,et al. Cytolytic mechanisms of activated macrophages. Tumor necrosis factor and L-arginine-dependent mechanisms act synergistically as the major cytolytic mechanisms of activated macrophages[J]. Journal of Immunology,1990,144(4):1425-1431.

[53] Kr?ncke K D,F(xiàn)ehsel K,Kolb-Bachofen V. Inducible nitric oxide synthase and its product nitric oxide,a small molecule with complex biological activities[J]. Biological Chemistry Hoppe-Seyler,1995,376(6):327-343.

[54] Nathan C,Brukner L,Kaplan G,et al. Role of activated macrophages in antibody-dependent lysis of tumor cells[J]. The Journal of Experimental Medicine,1980,152(1):183-197.

[55] 王曉寧,范清宇,郝新保,等. 胞壁酰二肽激活大鼠巨噬細(xì)胞抗腫瘤免疫效應(yīng)的研究[J]. 細(xì)胞與分子免疫學(xué)雜志,1999,15(3):193-195.

[56] Balkwill F R,Mantovani A. Cancer-related inflammation:Common themes and therapeutic opportunities[J]. Seminars in Cancer Biology,2012,22(1):33-40.

[57] Liu Y,Can X. The origin and function of tumorassociated macrophages[J]. Cellular & Molecular Immunology,2015,12(1):1-4.

[58] Gordon S,Taylor P R. Monocyte and macrophage heterogeneity[J]. Nature Reviews Immunology,2005,5(12):953-964.

[59] Weiskopf K,Weissman I L. Macrophages are critical effectors of antibody therapies for cancer[J]. Mabs,2015,7(2):303-310.

[60] Kirby J A,F(xiàn)orsythe J L,Proud G,et al. Renal allograft rejection:Possible involvement of lymphokine-activated killer cells[J]. Immunology,1989,67:62-67.

[61] Rosenberg S A,Spiess P,Lafreniere R. A new approach to the adoptive immunotherapy of cancer with tumorinfiltrating lymphocytes[J]. Science,1986,233(4770):1318-1319.

[62] Yang M,Galina V S,Dmitriy W G,et al. Tumor associated regulatory dendritic cells[J]. Seminars in Cancer Biology,2012,22(4):298-306.

[63] Xiao L,Joo K I,Lim M,et al. Dendritic cell-directed vaccination with a lentivector encoding PSCA for prostate cancer in mice[J]. PLoS One,2012,7(11):e48866.

[64] Rong X,Wei F,Li A,et al. Effective activity of cytokine induced killer cells against hepatocellular carcinoma including tmor-initiating cells[J]. Med Hypotheses,2015,84(3):159-161.

[65] Shi S B,Ma T H,Li C H,et al. Effact of maintenance therapy with dendritic cell:Cytokine-induced killer cells in patients with advanced non-small cell lung cancer[J].Tumori,2012,98(3):314-319.

猜你喜歡
抗原活化特異性
CT聯(lián)合CA199、CA50檢測(cè)用于胰腺癌診斷的敏感性與特異性探討
無(wú)Sn-Pd活化法制備PANI/Cu導(dǎo)電織物
論非物質(zhì)文化遺產(chǎn)“活化”傳承
負(fù)載抗原DC聯(lián)合CIK對(duì)肝癌免疫微環(huán)境的影響
管家基因突變導(dǎo)致面部特異性出生缺陷的原因
小學(xué)生活化寫作教學(xué)思考
如何積累小學(xué)生活化作文素材
管家基因突變導(dǎo)致面部特異性出生缺陷的原因
前列腺特異性膜抗原為靶標(biāo)的放射免疫治療進(jìn)展
APOBEC-3F和APOBEC-3G與乙肝核心抗原的相互作用研究
屯昌县| 禄丰县| 河津市| 唐河县| 金门县| 湘西| 定结县| 东乡县| 呼图壁县| 西贡区| 永川市| 承德县| 宿迁市| 汨罗市| 奈曼旗| 长宁区| 萍乡市| 德令哈市| 永嘉县| 昌图县| 石楼县| 西乌珠穆沁旗| 应城市| 鹤峰县| 巴彦县| 综艺| 罗平县| 黄石市| 佛教| 达拉特旗| 康乐县| 临朐县| 佛坪县| 新郑市| 镇康县| 彰化市| 金坛市| 龙州县| 自贡市| 儋州市| 巴中市|