黎炳強(qiáng)
【摘要】 隨著新課改的推進(jìn),幾何證明題越來越受到重視。幾何證明題對于提升學(xué)生的邏輯推理能力、發(fā)展學(xué)生的智力具有十分重要的意義。但是在教學(xué)實(shí)踐中我們不難發(fā)現(xiàn),初中生學(xué)習(xí)能力欠缺、自制力差,常對難度較大的幾何證明題產(chǎn)生厭倦心理,學(xué)習(xí)效果不佳。我們教師作為教學(xué)活動的引領(lǐng)者,應(yīng)認(rèn)真分析在幾何證明教學(xué)中存在的不足,加強(qiáng)對學(xué)生的認(rèn)知引導(dǎo),優(yōu)化教學(xué)方法和手段,提升幾何證明題的教學(xué)有效性。本文通過分析一線幾何證明題教學(xué)所遇的困境,為優(yōu)化證明題教學(xué)提出有效對策。
【關(guān)鍵詞】 初中數(shù)學(xué) 證明題 教學(xué) 優(yōu)化措施
【中圖分類號】 G633.6 【文獻(xiàn)標(biāo)識碼】 A 【文章編號】 1992-7711(2018)11-155-01
初二幾何證明題是教與學(xué)的重難點(diǎn)之一,學(xué)生在審題讀題、推斷證明、驗(yàn)證過程中會遇到一定的困難。我們教師應(yīng)注意探索新的教學(xué)方法,幫助學(xué)生攻克難題,在數(shù)學(xué)學(xué)習(xí)中找到樂趣,創(chuàng)建輕松愉快的學(xué)習(xí)氛圍。
一、幾何證明題教學(xué)中存在的問題
1.培養(yǎng)目標(biāo)單一,學(xué)生興致不高
在幾何證明題教學(xué)過程中,我們很多教師只注重培養(yǎng)學(xué)生的邏輯推理能力,給學(xué)生布置大量題目進(jìn)行訓(xùn)練,形成“做題—講題—做題”的循環(huán)。大量的練習(xí)題目雖有利于學(xué)生掌握多種題型,提高做題速度。但是在這個(gè)過程中,學(xué)生不能深入了解知識的產(chǎn)生、形成和應(yīng)用過程,容易對解題方法進(jìn)行死記硬背。學(xué)生只“知其然”而“不知其所以然”,從而不能使學(xué)生對公理定理活學(xué)活用,失去原本證明題的意義。學(xué)生過度依賴于課本和老師,其創(chuàng)造能力和創(chuàng)新能力得不到顯著提升,學(xué)生會逐漸失去對幾何證明題的學(xué)習(xí)興趣。
2.教學(xué)碎片化,過度依賴教材
在課程編排中,幾何證明的內(nèi)容穿插在其他內(nèi)容模塊中,知識點(diǎn)比較瑣碎,不夠系統(tǒng)整合,而且內(nèi)容過分抽象,與實(shí)際生活聯(lián)系不夠密切。我們很多教師完全按照課本編排進(jìn)行知識的講解,沒有將幾何證明的相關(guān)內(nèi)容整合歸納,仍是“碎片化”教學(xué)。在這種授課模式下,學(xué)生由于缺少一定的知識基礎(chǔ),學(xué)習(xí)能力不足,很難將知識點(diǎn)進(jìn)行串聯(lián)記憶,難以徹底將所學(xué)知識掌握牢固,靈活運(yùn)用知識的能力有待提升。所以打破陳舊的幾何系統(tǒng),改變單一的證明技能訓(xùn)練,依據(jù)教材但又不拘泥于教材,培養(yǎng)學(xué)生的綜合能力,幫助學(xué)生形成相互串聯(lián)的知識體系,成為我們中學(xué)教師工作的重中之重。
二、幾何證明題教學(xué)的優(yōu)化措施
幾何是整個(gè)中學(xué)數(shù)學(xué)教學(xué)內(nèi)容的重要部分,我們教師作為教學(xué)活動的主體,應(yīng)看到當(dāng)前教育模式之下存在的不足。積極探索新的教學(xué)方法,以便培養(yǎng)學(xué)生的學(xué)習(xí)興趣、提高學(xué)生的學(xué)習(xí)能力和獨(dú)立解決問題的能力。
1.利用生活素材,提升教學(xué)生活化
生活化教學(xué)就是指教師應(yīng)立足學(xué)生已有的生活經(jīng)驗(yàn)和生活常識,幫助學(xué)生構(gòu)建實(shí)用的知識體系,促進(jìn)學(xué)生的全面發(fā)展,使課堂更富生活氣息。生活化作為一種新的教學(xué)模式,有利于提升教學(xué)效率和教學(xué)質(zhì)量。我們在教學(xué)中要充分利用身邊的幾何素材,使教學(xué)內(nèi)容貼近生活實(shí)際,變“抽象”為“具體”,而不是單單拘泥于課本中給的素材。例如,在學(xué)習(xí)等腰三角形的重要性質(zhì)時(shí),可以讓學(xué)生手動裁剪等腰三角形,在裁剪過程中對等腰三角形的性質(zhì)進(jìn)行探究。通過動手,可以加深學(xué)生對知識形成過程的理解,激發(fā)學(xué)生的學(xué)習(xí)積極性,發(fā)展學(xué)生的思維能力和數(shù)學(xué)語言表達(dá)能力。將等腰三角形的性質(zhì)理解透徹,學(xué)生才能在證明題中理清思路、找到解題技巧,不斷提升自己的邏輯思維能力。
2.建立知識網(wǎng)絡(luò),保證知識系統(tǒng)化
很多教師通常對幾何知識進(jìn)行“碎片化”講解時(shí),學(xué)生難以在腦海中形成完整的知識體系,不能在做題時(shí)充分利用不同知識之間的互通性來進(jìn)行解題。我們教師在授課時(shí)應(yīng)擺脫教材的結(jié)構(gòu)布局,把幾何證明知識中心點(diǎn)進(jìn)行歸納總結(jié),以思維導(dǎo)圖的形式展示給學(xué)生,形成知識主干的同時(shí)幫助學(xué)生擴(kuò)展知識分支,把零碎知識填充到知識框架里,以便學(xué)生充分理解和掌握基礎(chǔ)知識,防止在做題過程中出現(xiàn)知識混淆的情況。比如在講解“證明線段相等或是角相等”的相關(guān)例題時(shí),可以再深入擴(kuò)展全等三角形的性質(zhì)、等腰三角形的判定與性質(zhì)、角平分線的性質(zhì)等知識,這樣學(xué)生在遇到此類題目時(shí)就能迅速理清思路,找準(zhǔn)解題方法,加深對幾何知識的理解,提升做題的效率和質(zhì)量。
3.確立多元培養(yǎng)目標(biāo),激發(fā)學(xué)生學(xué)習(xí)興趣
數(shù)學(xué)教學(xué)不應(yīng)只以提高學(xué)生的邏輯推理能力為教學(xué)目標(biāo),更重要的是應(yīng)培養(yǎng)學(xué)生發(fā)現(xiàn)問題、分析問題、獨(dú)立解決問題的能力。所以在教學(xué)實(shí)踐中,我們教師應(yīng)充分尊重學(xué)生的自主性,以提高學(xué)生綜合能力、培養(yǎng)學(xué)生數(shù)學(xué)核心素養(yǎng)為目標(biāo),給學(xué)生提供獨(dú)立學(xué)習(xí)的機(jī)會??梢越M織學(xué)生分成不同學(xué)習(xí)小組,針對不同的幾何問題,由學(xué)生自主查閱資料進(jìn)行知識點(diǎn)的學(xué)習(xí)。學(xué)習(xí)之后按小組編號依次上臺對知識點(diǎn)進(jìn)行講解,并配有一定的練習(xí)題目。由教師對每一模塊的知識點(diǎn)進(jìn)一步補(bǔ)充講解,確保知識覆蓋面無死角。把課堂充分交給學(xué)生,有利于他們轉(zhuǎn)換角色,增強(qiáng)責(zé)任意識和主人公意識,激發(fā)學(xué)習(xí)主動性和積極性,提升學(xué)習(xí)效果,變“被動接受”知識為“主動吸收”知識,創(chuàng)建師生良性互動的課堂氛圍。
結(jié)論
初中幾何證明題教學(xué)的優(yōu)化,是新課程體系改革對我們中學(xué)教師提出的要求。在教學(xué)實(shí)踐中,我們教師應(yīng)確立多元培養(yǎng)目標(biāo),不能只注重提高學(xué)生的邏輯推理能力,還應(yīng)提高學(xué)生發(fā)現(xiàn)問題、分析問題、獨(dú)立解決問題的能力;充分利用生活中的素材,實(shí)現(xiàn)數(shù)學(xué)教學(xué)生活化,變數(shù)學(xué)知識的“抽象性”為“具體性”;幫助學(xué)生建立起完整的知識網(wǎng)絡(luò),對知識進(jìn)行系統(tǒng)性學(xué)習(xí),以便學(xué)生在做題中利用關(guān)聯(lián)知識進(jìn)行解題。只有這樣,學(xué)生才能將知識重難點(diǎn)掌握牢固,為高中階段的學(xué)習(xí)打下堅(jiān)實(shí)的知識基礎(chǔ)。
[ 參 考 文 獻(xiàn) ]
[1]李紅婷.7-9年級學(xué)生幾何推理能力發(fā)展及其教學(xué)研究[D].西南大學(xué),2007.
[2]孫中芳.新課標(biāo)下中學(xué)數(shù)學(xué)證明教學(xué)研究[D].山東師范大學(xué),2008.
[3]張杰.關(guān)于中學(xué)數(shù)學(xué)幾何機(jī)械化解題教學(xué)研究[D].中央民族大學(xué),2011.