馬超群 張巖
綜 述
miRNA及l(fā)ncRNA在胃癌中作用機(jī)制的研究進(jìn)展
馬超群 張巖
胃癌是世界上最常見(jiàn)的惡性腫瘤之一,嚴(yán)重威脅著人們的健康,探明胃癌的機(jī)制對(duì)改善預(yù)后十分重要。在胃癌發(fā)生發(fā)展過(guò)程中許多基因的表達(dá)及活性發(fā)生了改變,其中非編碼RNA〔包括微小RNA(miRNA)及長(zhǎng)鏈非編碼RNA(lncRNA)〕在胃癌中發(fā)揮了重要作用。miRNA通過(guò)參與腫瘤細(xì)胞的生長(zhǎng)、遷移、侵襲以及凋亡等過(guò)程從而調(diào)控胃癌進(jìn)程,血中循環(huán)miRNA對(duì)胃癌的診斷和治療具有重要提示作用。lncRNA能夠同時(shí)在轉(zhuǎn)錄和轉(zhuǎn)錄后水平參與調(diào)控胃癌進(jìn)程,它不僅能夠通過(guò)誘導(dǎo)染色質(zhì)修飾或調(diào)控信使RNA(mRNA)穩(wěn)定性的方式參與胃癌進(jìn)程,還可作為競(jìng)爭(zhēng)性內(nèi)源RNA(ceRNA)與靶基因競(jìng)爭(zhēng)結(jié)合miRNA,進(jìn)而參與調(diào)控胃癌進(jìn)程。因此,了解miRNA及l(fā)ncRNA在胃癌中的具體作用機(jī)制,有利于我們對(duì)胃癌的機(jī)制進(jìn)行深入的理解,同時(shí)也可以為胃癌的診治提供新思路。
胃癌; 微小RNA; 長(zhǎng)鏈非編碼RNA
胃癌是我國(guó)最常見(jiàn)的實(shí)體腫瘤之一,嚴(yán)重威脅著人們的健康。最新的統(tǒng)計(jì)數(shù)據(jù)表明,胃癌發(fā)病率位居全球惡性腫瘤的第四位,其病死率已躍居第三位[1-2]。在美國(guó)2016年新增的胃癌患者中,男性發(fā)病率高于女性20%,病死率高于女性40%[3]。近年來(lái)隨著早期胃鏡檢查的應(yīng)用和及時(shí)的手術(shù)干預(yù)治療,我國(guó)胃癌患者5年生存率有了顯著提高,然而對(duì)于晚期胃癌患者,其5年病死率依舊高達(dá)50%[4]。胃癌的病死率與腫瘤淋巴轉(zhuǎn)移、血行轉(zhuǎn)移和腹膜種植率息息相關(guān)。因此,探索胃癌機(jī)制,有效抑制胃癌增殖轉(zhuǎn)移,將成為降低胃癌病死率的關(guān)鍵。大量的文獻(xiàn)研究表明,非編碼RNA能夠參與調(diào)控胃癌的發(fā)生發(fā)展[5-7]。本文將對(duì)非編碼RNA在胃癌進(jìn)展過(guò)程中扮演的角色進(jìn)行總結(jié)。
非編碼RNA是一類(lèi)不編碼蛋白質(zhì)的單鏈RNA,按其長(zhǎng)度不同可以分為兩大類(lèi),一類(lèi)是長(zhǎng)度超過(guò)50個(gè)堿基的RNA家族,包括長(zhǎng)鏈非編碼RNA(lncRNA)、小核仁RNA(small nucleolar RNA)、環(huán)狀 RNA(circRNA)、轉(zhuǎn)運(yùn) RNA(tRNA)和核糖體RNA(rRNA)[8];另一類(lèi)是長(zhǎng)度小于50個(gè)堿基的RNA 家族,包括微小RNA(miRNA)、小干擾(siRNA)和PIWI相互作用 RNA(piRNA)[9],目前大部分研究人員都將目光聚焦在miRNA和lncRNA這兩類(lèi)分子上。
1.1 miRNA對(duì)胃癌的調(diào)控作用 miRNA是由內(nèi)源性發(fā)卡結(jié)構(gòu)轉(zhuǎn)錄產(chǎn)物衍生而來(lái)的一類(lèi)有19~24個(gè)堿基的非編碼單鏈RNA[10-13]。編碼miRNA的基因在細(xì)胞核內(nèi)由RNA聚合酶Ⅱ或Ⅲ轉(zhuǎn)錄為初始轉(zhuǎn)錄本(pri-miRNA),然后在Drosha RNA酶加工成為帶莖環(huán)結(jié)構(gòu)的約70個(gè)核苷酸序列的前體miRNA(pre-miRNA)[14]。當(dāng)pre-miRNA加工完成后,在Ran-GTP依賴的核質(zhì)/細(xì)胞質(zhì)轉(zhuǎn)運(yùn)蛋白Exportin 5的作用下從細(xì)胞核輸出到細(xì)胞漿中[15-18]。在細(xì)胞漿中,pre-miRNA被RNaseⅢ樣的Dicer加工處理成19~23個(gè)核苷酸長(zhǎng)度的成熟miRNA分子[19]。成熟的單鏈miRNA分子被組裝入RNA介導(dǎo)的沉默復(fù)合物(RISC)中發(fā)揮作用[20-21]。miRNA形成RISC后,主要通過(guò)兩種方式來(lái)發(fā)揮作用:第一種,通過(guò)miRNA與其靶基因3'-UTR區(qū)的不完全互補(bǔ)結(jié)合,引起靶基因mRNA的翻譯抑制,但不影響mRNA的穩(wěn)定性,從而發(fā)揮其負(fù)性調(diào)控靶基因的作用;第二種,通過(guò)與其靶基因3'-UTR區(qū)的完全互補(bǔ)結(jié)合,引起靶基因mRNA的降解,從而發(fā)揮其負(fù)性調(diào)節(jié)靶基因的作用[22]。但是現(xiàn)在也有很多文獻(xiàn)報(bào)道了miRNA對(duì)靶基因也會(huì)具有正性調(diào)控作用[15,23-24]。
據(jù)文獻(xiàn)報(bào)道,miRNA能夠參與包括腫瘤在內(nèi)的多種疾病的調(diào)控[25-27],而目前已經(jīng)發(fā)現(xiàn)了超過(guò)2 500種的miRNA可以通過(guò)參與腫瘤細(xì)胞的增殖、遷移、侵襲及凋亡等途徑影響腫瘤的進(jìn)展[28]。
miRNA具有高度的保守性、時(shí)序性和組織特異性,在癌組織中異常高表達(dá)的miRNA被視為一種新的癌基因。胃癌中高表達(dá)的miRNA-130(miR-130)通過(guò)與腫瘤壞死因子-β(TGF-β)的3'-UTR區(qū)結(jié)合使其降解,從而促進(jìn)腫瘤細(xì)胞的增殖和轉(zhuǎn)移[20]。miR-24能通過(guò)調(diào)控BCL2L11的表達(dá)抑制胃癌細(xì)胞凋亡促進(jìn)其增殖[21];miR-143-3p在幽門(mén)螺旋桿菌陽(yáng)性的胃癌患者中表達(dá)升高,并促進(jìn)腫瘤細(xì)胞的增殖、遷移和侵襲[22];miR-181a-5p通過(guò)激活絲裂原活化蛋白激酶(MAPK)通路進(jìn)而促進(jìn)胃癌細(xì)胞的增殖[23],miR-21能夠通過(guò)靶向調(diào)控STAT3基因抑制人乳腺癌MCF-7細(xì)胞的侵襲[29]
相反,腫瘤細(xì)胞中某些miRNA表達(dá)下調(diào)甚至缺失,也可能導(dǎo)致腫瘤的發(fā)生,此類(lèi)miRNA被視為抑癌基因。miR-15和miR-16通過(guò)靶定抗凋亡基因Bcl-2而誘導(dǎo)腫瘤細(xì)胞凋亡[30],miR-4269 通過(guò)調(diào)控 TEAD1/4 抑制腫瘤的增殖[31],在胃癌組織中還可檢測(cè)到miR-491-5p、miR-939和miR-26b呈現(xiàn)低表達(dá)[32-34]。
1.2 miRNA在胃癌診斷中的應(yīng)用 腫瘤的早期診斷手段不足一直是人們的一大困擾,嚴(yán)重影響了腫瘤患者的預(yù)后。目前研究人員將大量精力投入在探索新的早期腫瘤標(biāo)志物的研究中,而miRNA正是其中一個(gè)選擇[35]。實(shí)驗(yàn)發(fā)現(xiàn),大量的miRNA在胃癌患者的血液中異常表達(dá)[36-39]。miR-223、miR-233、miR-278、miR-421、miR-451和miR-1993p在胃癌患者的血漿中高表達(dá)[40-42]。將miR-233作為胃癌的腫瘤標(biāo)志物進(jìn)行檢測(cè)發(fā)現(xiàn),其受試者工作特征(ROC)曲線下面積(AUC)達(dá)到了 0.85(敏感度 81%,特異度 78%),并且血中miR-233水平與胃癌的TNM分期、腫瘤的分化水平、腫瘤的大小和轉(zhuǎn)移情況呈正相關(guān)[43]。而另一項(xiàng)對(duì)90例胃癌患者的研究中發(fā)現(xiàn),miR-421的AUC為0.821(敏感度95.5%,特異度89.1%),其敏感度和特異度都超過(guò)了糖類(lèi)抗原CA125和癌胚抗原(CEA)在胃癌患者中的敏感度及特異度,因此,胃癌患者血中高表達(dá)的miR-421有可能成為一種更有效的胃癌腫瘤標(biāo)志物[44]。同時(shí)有文獻(xiàn)報(bào)道,miR-421在胃癌組織中的表達(dá)高于癌旁組織,但表達(dá)水平與腫瘤的病理分期不具有明顯相關(guān)性,體內(nèi)和體外實(shí)驗(yàn)證實(shí)miR-421可促進(jìn)胃癌細(xì)胞的增殖、遷移和侵襲[41,45]。
與上述幾種miRNA在腫瘤患者體內(nèi)高表達(dá)相反,miRNA let-7a、miR-375、miR-20a-5p和 miR-320a在胃癌患者的血漿中表達(dá)降低[46-48]。前期研究表明,將miR-106a和miRNA let-7a作為組合標(biāo)志物聯(lián)合檢測(cè),其AUC達(dá)到了0.879(敏感度85.5%,特異度80%),在胃癌組織中,miRNA let-7a呈低表達(dá)狀態(tài),過(guò)表達(dá)miRNA let-7a能夠通過(guò)抑制靶基因PMK2的表達(dá)來(lái)抑制腫瘤細(xì)胞的增殖、遷移和侵襲[49-50]。miR-375能夠通過(guò)靶定 p53、JAK2、ERBB2和STAT3等多個(gè)靶基因抑制胃癌的發(fā)展,在胃癌組織及血漿標(biāo)本中miR-375表達(dá)水平均呈下調(diào)狀態(tài),其AUC為0.835(敏感度85%,特異度80%)[51-52]。以上研究表明,隨著大量臨床試驗(yàn)的進(jìn)行,miRNA在將來(lái)有可能成為一種新的胃癌早期診斷指標(biāo),從而改善患者預(yù)后,提高患者5年生存率。
1.3 miRNA在胃癌治療中的應(yīng)用 miRNA不僅在腫瘤的發(fā)生發(fā)展中發(fā)揮著重要作用,而且在腫瘤治療過(guò)程中也漸顯地位。一方面,miRNA相關(guān)藥物能夠抑制致癌miRNA的表達(dá)或提高抑癌miRNA的表達(dá),進(jìn)而通過(guò)調(diào)控相關(guān)的信號(hào)通路來(lái)達(dá)到抑制腫瘤生長(zhǎng)的作用。其中比較具有代表性的藥物為MRX34,該藥物中的有效成分為miR-34的成熟體,患者服用該藥物后能夠恢復(fù)原本在腫瘤組織中呈低表達(dá)的miR-34水平,而miR-34可以在諸如肝癌、胃癌、肺癌等癌癥中發(fā)揮抑制腫瘤的作用[53-55]。在美國(guó)曾經(jīng)開(kāi)展過(guò)MRX34治療肝癌以及早期非小細(xì)胞肺癌的一期臨床試驗(yàn),其中在非小細(xì)胞肺癌患者的治療過(guò)程中,MRX34能夠明顯降低腫瘤組織中靶基因PD-L1的水平并提高CD8+的T細(xì)胞數(shù)量,從而起到提高機(jī)體自身抗腫瘤免疫的效果[56-57]。然而,MRX34在臨床試驗(yàn)過(guò)程中由于很多患者出現(xiàn)了一系列藥物引發(fā)的不良反應(yīng)而不得不在2016年被終止。在所有參與服藥的47名肝癌患者中,有6名患者在整個(gè)服藥過(guò)程中均伴有藥物引起的不良反應(yīng),而另有1名患者的不良藥物反應(yīng)在停止服藥后仍然持續(xù)了長(zhǎng)達(dá)48周的時(shí)間,因此對(duì)于MRX34的臨床大規(guī)模使用仍然有很長(zhǎng)的路要走[58]。體內(nèi)實(shí)驗(yàn)發(fā)現(xiàn),miR-34能夠通過(guò)靶定轉(zhuǎn)錄因子Yin Yang1來(lái)抑制腫瘤的生長(zhǎng)和轉(zhuǎn)移,同時(shí)人為提高內(nèi)源性miR-34的水平能夠有效抑制p53的突變,可達(dá)到抑制腫瘤的目的[59]。
另一方面,miRNA在機(jī)體對(duì)藥物的吸收和耐受方面也發(fā)揮了重要作用,大量文獻(xiàn)報(bào)道稱(chēng),miRNA能夠通過(guò)靶定藥物轉(zhuǎn)運(yùn)蛋白、藥物代謝酶、轉(zhuǎn)錄因子以及核受體來(lái)影響機(jī)體對(duì)抗腫瘤藥物的吸收。在人胃癌細(xì)胞系SGC7901中過(guò)表達(dá)的miR-21明顯能夠使細(xì)胞系對(duì)順鉑產(chǎn)生藥物耐受,而當(dāng)敲除掉細(xì)胞中的miR-21后,順鉑誘導(dǎo)細(xì)胞的凋亡及抗增生作用明顯增強(qiáng)[60]。檢測(cè)多重耐藥胃癌患者體內(nèi)的miRNA含量發(fā)現(xiàn),miR-15的水平明顯下降,當(dāng)患者通過(guò)服用miRNA類(lèi)藥物提高體內(nèi)的miR-15含量后,miR-15的下游靶基因抗凋亡蛋白Bcl-2的降解增加,間接起到誘導(dǎo)腫瘤細(xì)胞凋亡的作用,改善了患者多重耐藥的狀況[61]。值得注意的是,單一的miRNA可以靶定多個(gè)不同的靶基因,但不是所有的靶基因改變都符合我們對(duì)于疾病治療的需要,因此如何提高miRNA治療體系的特異性是下階段研究中需要首先解決的問(wèn)題[62]。
miRNA作為非編碼RNA的重要組成部分,廣泛參與人體的多種生理功能,在胃癌增殖、遷移、侵襲和凋亡中發(fā)揮了不同的功能,既可以促進(jìn)胃癌的發(fā)生,也可以抑制其發(fā)展。胃癌患者血漿中過(guò)表達(dá)的miR-421在將來(lái)很有希望成為一種新的胃癌診斷、預(yù)后標(biāo)志物。而通過(guò)服用藥物來(lái)提升胃癌患者體內(nèi)miR-34的含量,則能有效抑制腫瘤的增殖,因此,miR-34在將來(lái)很有可能作為一種治療胃癌的新型藥物來(lái)為患者提供一種新的選擇。
2.1 lncRNA對(duì)胃癌的調(diào)控作用 與miRNA的短小相反的是,lncRNA是一類(lèi)長(zhǎng)度超過(guò)200個(gè)堿基的非編碼單鏈RNA。lncRNA根據(jù)其在基因上所處的位置以及其堿基排列方向可分為反義lncRNA(antisense lncRNA)、正義lncRNA(sense lncRNA)、內(nèi)含子 lncRNA(intronic lncRNA)、基因間lncRNA(intronic lncRNA)等類(lèi)型[63-64]。大量研究表明,lncRNA參與了包括染色質(zhì)修飾、轉(zhuǎn)錄激活在內(nèi)的多種重要的調(diào)控過(guò)程,可作為信號(hào)分子、橋梁、向?qū)А⒄T餌等與其他非編碼RNA、mRNA、蛋白質(zhì)及基因組DNA交流,參與多種疾病的發(fā)生發(fā)展與腫瘤進(jìn)程[65-68]。最新的文獻(xiàn)報(bào)道顯示,H19、TUSC7、MEG3、MALAT1等在胃癌中異常表達(dá)的lncRNA能夠參與調(diào)控胃癌的增殖、遷移、侵襲、凋亡、細(xì)胞周期等多個(gè)方面[69-71]。
2.2 lncRNA在轉(zhuǎn)錄水平調(diào)節(jié)基因的表達(dá) 有多達(dá)38%的lncRNA可與組蛋白修飾復(fù)合物結(jié)合,共同介導(dǎo)染色質(zhì)修飾和DNA甲基化等過(guò)程,從而最終抑制靶基因轉(zhuǎn)錄[72-73]。深度測(cè)序發(fā)現(xiàn),lncRNA HOXA11-AS僅在胃癌患者體內(nèi)表達(dá)增高,并且大多富集在腫瘤細(xì)胞細(xì)胞核中,患者體內(nèi)的HOXA11-AS水平大幅度增高往往提示預(yù)后較差,降低HOXA11-AS的表達(dá)可以明顯抑制腫瘤細(xì)胞的增殖,促進(jìn)凋亡,改善患者預(yù)后。HOXA11-AS通過(guò)多點(diǎn)反式作用對(duì)PRC2、LSD1和DNMT1這三種蛋白產(chǎn)生募集作用,誘導(dǎo)KLF2及PRSS8這兩種蛋白發(fā)生甲基化,從而降低其表達(dá)(見(jiàn)圖 1A)[74]。與 HOXA11-AS 在胃癌中的高表達(dá)相反,F(xiàn)ENDRR在胃癌患者體內(nèi)呈下調(diào)狀態(tài),F(xiàn)ENDRR能夠與PRC2蛋白結(jié)合降低腫瘤轉(zhuǎn)移相關(guān)蛋白如基質(zhì)金屬蛋白酶2/9(MMP2/9)的表達(dá)水平,從而抑制胃癌細(xì)胞轉(zhuǎn)移[75]。
lncRNA能夠在轉(zhuǎn)錄水平抑制miRNA的表達(dá),從而間接影響腫瘤進(jìn)程。胃癌患者體內(nèi)的lncRNA HOTAIR水平越高往往預(yù)后越差,HOTAIR可以與EZH2和SUZ12蛋白結(jié)合形成復(fù)合體,與miR-34a的啟動(dòng)子區(qū)相結(jié)合,通過(guò)甲基化作用降低其表達(dá),抑制miR-34a對(duì)HGF/c-met的降解作用,間接上調(diào)HGF/c-met的表達(dá)水平,進(jìn)而激活SNAIL、PI3K/Akt和NF-κB等信號(hào)通路,最終促進(jìn)胃癌中上皮細(xì)胞-間質(zhì)細(xì)胞轉(zhuǎn)換(EMT)過(guò)程(見(jiàn)圖 1B)[76]。研究發(fā)現(xiàn),lncRNA ANRIL在胃癌組織中高表達(dá),E2F1蛋白可與ANRIL的啟動(dòng)子區(qū)相結(jié)合并促進(jìn)其表達(dá),高表達(dá)的ANRIL可以與PRC2蛋白結(jié)合誘導(dǎo)miR-99a/miR-499a的甲基化,進(jìn)而抑制miR-99a/miR-499a對(duì)其靶基因mTOR、CDK6和E2F1的降解作用,而E2F1進(jìn)一步反饋性地提高ANRIL的水平,形成了一個(gè)正反饋循環(huán),最終達(dá)到促進(jìn)胃癌細(xì)胞增殖的效果[77]。
靶基因mRNA的ALU序列和lncRNA互補(bǔ)序列通過(guò)不完全堿基配對(duì)形成RNA雙鏈(dsRNA)結(jié)構(gòu)。STAU1蛋白可識(shí)別dsRNA結(jié)合位點(diǎn)并降解mRNA,該過(guò)程稱(chēng)為STAU1介導(dǎo)的mRNA衰減。lncRNA TINCR與胃癌的增殖、凋亡密切相關(guān),TINCR通過(guò)STAU1介導(dǎo)的mRNA衰減過(guò)程與KLF2的mRNA相結(jié)合,降低mRNA的穩(wěn)定性和表達(dá)。KLF2表達(dá)的降低減少了CDKN2B/P15和CDKN1A/P21的轉(zhuǎn)錄并最終促進(jìn)了腫瘤的增殖、遷移和侵襲[78]。除了直接作用,同樣在胃癌患者中高表達(dá)的lncRNA GHET1與其靶基因mRNA之間發(fā)揮間接作用。GHET1可促進(jìn)胰島素樣生長(zhǎng)因子mRNA結(jié)合蛋白1(IGF2BP1)和c-myc基因的mRNA結(jié)合并增加其穩(wěn)定性,高表達(dá)的c-myc能夠促進(jìn)胃癌細(xì)胞的增殖[79]。
2.3 lncRNA在轉(zhuǎn)錄后水平調(diào)節(jié)基因的表達(dá) lncRNA可以通過(guò)與靶基因mRNA競(jìng)爭(zhēng)性結(jié)合miRNA的應(yīng)答元件,從而抑制miRNA的表達(dá),間接增高靶基因的表達(dá)水平,即競(jìng)爭(zhēng)性內(nèi)源RNA(ceRNA)機(jī)制。研究發(fā)現(xiàn)胃癌患者體內(nèi)lncRNA BC32469高表達(dá),BC32469能夠與miR-1207-5p相結(jié)合,從而減少人端粒逆轉(zhuǎn)錄酶(hTERT)與miR-1207-5p的結(jié)合,抑制miR-1207-5p對(duì)hTERT的降解作用,間接上調(diào)hTERT的表達(dá)水平,進(jìn)而促進(jìn)胃癌的增殖和遷移(見(jiàn)圖2A)[80]。lncRNA HOTAIR與HER競(jìng)爭(zhēng)性的結(jié)合miR-331-3p,上調(diào)HER表達(dá)水平,進(jìn)而促進(jìn)胃癌的進(jìn)展[81]。
lncRNA除了能夠在轉(zhuǎn)錄后水平調(diào)控miRNA的穩(wěn)定性,也可以通過(guò)調(diào)控蛋白質(zhì)的穩(wěn)定性來(lái)達(dá)到促進(jìn)胃癌進(jìn)展的目的。在胃癌患者體內(nèi)高表達(dá)的FOXM1能夠與lncRNA PVT1的啟動(dòng)子區(qū)相結(jié)合并誘導(dǎo)PVT1的表達(dá),而高水平的PVT1對(duì)FOXM1的mRNA水平并沒(méi)有影響,反而可以與FOXM1蛋白相結(jié)合,增加其穩(wěn)定性,抑制26S蛋白酶體對(duì)FOXM1的降解作用。因此,高表達(dá)的FOXM1和PVT1能夠在胃癌患者體內(nèi)形成正反饋調(diào)控循環(huán),進(jìn)而促進(jìn)胃癌的增殖和遷移(見(jiàn)圖 2B)[82]。
lncRNA的特征在于其作用機(jī)制的復(fù)雜性,它既能夠在細(xì)胞核中也能在胞漿中調(diào)控基因的表達(dá)。在細(xì)胞核中,lncRNA與組蛋白修飾物相結(jié)合形成復(fù)合體,在轉(zhuǎn)錄水平介導(dǎo)組蛋白甲基化,lncRNA也可以直接結(jié)合到miRNA啟動(dòng)子區(qū)調(diào)控其表達(dá)。在胞漿中l(wèi)ncRNA也可以與靶基因mRNA相結(jié)合,通過(guò)mRNA衰減過(guò)程調(diào)控其表達(dá)。不僅如此,在轉(zhuǎn)錄后水平上lncRNA一方面可以與靶基因競(jìng)爭(zhēng)性結(jié)合miRNA來(lái)調(diào)控基因表達(dá),也可以與蛋白相結(jié)合調(diào)控其穩(wěn)定性及其表達(dá)。
本文總結(jié)了miRNA和lncRNA在胃癌中的作用。絕大多數(shù)的miRNA通過(guò)與靶基因的3'-UTR區(qū)相結(jié)合來(lái)調(diào)節(jié)其表達(dá),還有少數(shù)miRNA可以與靶基因的開(kāi)放閱讀框相結(jié)合來(lái)調(diào)節(jié)其表達(dá)。miRNA作為一種新型的生物標(biāo)志物,在胃癌的早期診斷、預(yù)后評(píng)估以及靶向治療等方面具有巨大的潛力,相信隨著相關(guān)研究逐漸深入,胃癌的診斷和治療能夠取得新的進(jìn)展。
對(duì)于lncRNA,本文也總結(jié)了其在胃癌中與miRNA、mRNA和蛋白相結(jié)合進(jìn)而調(diào)控基因表達(dá)的過(guò)程。然而目前關(guān)于lncRNA在正常胃細(xì)胞中的研究相對(duì)較少,相信未來(lái)對(duì)于lncRNA在胃炎、非典型增生和癌前病變中是如何發(fā)揮功能的研究將會(huì)越來(lái)越多,有助于深入解析lncRNA的功能,并在疾病的診斷和治療過(guò)程中提供信息。
圖1 lncRNA在轉(zhuǎn)錄水平調(diào)節(jié)基因的表達(dá)
圖2 lncRNA在轉(zhuǎn)錄后水平調(diào)節(jié)基因的表達(dá)
1 Liang D,Liang S,Jin J,et al. Gastric cancer burden of last 40 years in North China (Hebei Province): a population-based study[J].Medicine (Baltimore), 2017,96(2):e5887.
2 Siegel RL,Miller KD,Jemal A. Cancer statistics, 2016[J]. CA Cancer J Clin, 2016,66(1):7-30.
3 Siegel RL,Miller KD,Jemal A. Cancer Statistics, 2017[J]. CA Cancer J Clin, 2017,67(1):7-30.
4 Hamashima C,Shabana M,Okada K,et al. Mortality reduction from gastric cancer by endoscopic and radiographic screening[J]. Cancer Sci, 2015,106(12):1744-1749.
5 Liz J,Esteller M. lncRNAs and microRNAs with a role in cancer development[J]. Biochim Biophys Acta, 2016,1859(1):169-176.
6 Zhang M,Du X. Noncoding RNAs in gastric cancer: research progress and prospects[J]. World J Gastroenterol, 2016,22(29):6610-6618.
7 Li T,Mo X,F(xiàn)u L,et al. Molecular mechanisms of long noncoding RNAs on gastric cancer[J]. Oncotarget, 2016,7(8):8601-8612.
8 Volders PJ,Helsens K,Wang X,et al. LNCipedia: a database for annotated human lncRNA transcript sequences and structures[J].Nucleic Acids Res, 2013,41:D246-251.
9 He L,Hannon GJ. MicroRNAs: small RNAs with a big role in gene regulation[J]. Nat Rev Genet, 2004,5(7):522-531.
10 Naveed A,Ur-Rahman S,Abdullah S,et al. A concise review of microRNA exploring the insights of microRNA regulations in bacterial, viral and metabolic diseases[J]. Mol Biotechnol, 2017.
11 Ghibaudi M,Boido M,Vercelli A. Functional integration of complex miRNA networks in central and peripheral lesion and axonal regeneration[J]. Prog Neurobiol, 2017.
12 Yan Y,Wang R,Guan W,et al. Roles of microRNAs in cancer associated fibroblasts of gastric cancer[J]. Pathol Res Pract, 2017,213(7):730-736.
13 王秀宏.微小RNA與腫瘤發(fā)生發(fā)展的關(guān)系[J].實(shí)用檢驗(yàn)醫(yī)師雜志,2010,02(3):181-184.
14 Mao L,Sun AJ,Wu JZ,et al. Involvement of microRNAs in HER2 signaling and trastuzumab treatment[J]. Tumour Biol, 2016.
15 Dutta R,Mahato RI. Recent advances in hepatocellular carcinoma therapy[J]. Pharmacol Ther, 2017,173:106-117.
16 Pileti K,Kunej T. MicroRNA epigenetic signatures in human disease[J]. Arch Toxicol, 2016,90(10):2405-2419.
17 Majeed W,Iftikhar A,Khaliq T,et al. Gastric Carcinoma:Recent Trends in Diagnostic Biomarkers and Molecular Targeted Therapies[J]. Asian Pac J Cancer Prev, 2016,17(7):3053-3060.
18 Kang HW,Wang F,Wei Q,et al. miR-20a promotes migration and invasion by regulating TNKS2 in human cervical cancer cells[J].FEBS Lett, 2012,586(6):897-904.
19 Ma C,Qi Y,Shao L,et al. Downregulation of miR-7 upregulates Cullin 5 (CUL5) to facilitate G1/S transition in human hepatocellular carcinoma cells[J]. IUBMB Life, 2013,65(12):1026-1034.
20 Duan J,Zhang H,Qu Y,et al. Onco-miR-130 promotes cell proliferation and migration by targeting TGFβR2 in gastric cancer [J].Oncotarget,2016,7(28):44522-44533.
21 Zhang H,Duan J,Qu Y,et al. Onco-miR-24 regulates cell growth and apoptosis by targeting BCL2L11 in gastric cancer[J]. Protein Cell, 2016,7(2):141-151.
22 Wang F,Liu J,Zou Y,et al. MicroRNA-143-3p, up-regulated in H.pylori-positive gastric cancer, suppresses tumor growth, migration and invasion by directly targeting AKT2[J]. Oncotarget, 2017,8(17):28711-28724.
23 Mi Y,Zhang D,Jiang W,et al. miR-181a-5p promotes the progression of gastric cancer via RASSF6-mediated MAPK signalling activation[J]. Cancer Lett, 2017,389:11-22.
24 Ma C,Qi Y,Shao L,et al. Downregulation of miR-7 upregulates Cullin 5 (CUL5) to facilitate G1/S transition in human hepatocellular carcinoma cells[J]. IUBMB Life, 2013,65(12):1026-1034.
25 劉國(guó)躍,陳淼,戢慧,等.微小RNA-21-5p對(duì)大鼠高氧性急性肺損傷的影響[J].中國(guó)中西醫(yī)結(jié)合急救雜志,2015,(1):23-27.
26 葛晨,董士民.微小RNA在膿毒癥臨床實(shí)踐中的應(yīng)用[J].中華危重病急救醫(yī)學(xué),2014,26(7):522-524.
27 李世朋,邢雨,田慶,等.微小RNA與器官移植研究進(jìn)展[J].實(shí)用器官移植電子雜志,2013,(6):363-367.
28 Dong WH,Li Q,Zhang XY,et al. Deep sequencing identifies deregulation of microRNAs involved with vincristine drug-resistance of colon cancer cells[J]. Int J Clin Exp Pathol, 2015,8(9):11524-11530.
29 趙守香,王濤,李玉軍. miR-21靶向調(diào)控STAT3基因抑制人乳腺癌MCF-7細(xì)胞的侵襲[J].實(shí)用檢驗(yàn)醫(yī)師雜志,2016,8(1):5-9.
30 Nishizawa T,Suzuki H. The role of microRNA in gastric malignancy[J]. Int J Mol Sci, 2013,14(5):9487-9496.
31 Zhou Y,Huang T,Zhang J,et al. TEAD1/4 exerts oncogenic role and is negatively regulated by miR-4269 in gastric tumorigenesis[J].Oncogene, 2017.
32 Sun R,Liu Z,Tong D,et al. miR-491-5p, mediated by Foxi1,functions as a tumor suppressor by targeting Wnt3a/β-catenin signaling in the development of gastric cancer[J]. Cell Death Dis,2017,8(3):e2714.
33 Zhang JX,Xu Y,Gao Y,et al. Decreased expression of miR-939 contributes to chemoresistance and metastasis of gastric cancer via dysregulation of SLC34A2 and Raf/MEK/ERK pathway[J].Mol Cancer, 2017,16(1):18.
34 Han BW,Li ZH,Liu SF,et al. A comprehensive review of microRNA-related polymorphisms in gastric cancer[J]. Genet Mol Res,2016,15(2) .
35 林浩,趙楚生,鄭永平.肝硬化和肝癌患者外周血淋巴細(xì)胞中INK4位點(diǎn)反義非編碼RNA和腫瘤抑制因子的表達(dá)[J].中國(guó)中西醫(yī)結(jié)合急救雜志,2015,(1):86-89.
36 Mirzaei H,Khataminfar S,Mohammadparast S,et al. Circulating microRNAs as potential diagnostic biomarkers and therapeutic targets in gastric cancer: current status and future perspectives [J].Curr Med Chem, 2016,23(36):4135-4150.
37 Cai H,Xu J,Han Y,et al. Integrated miRNA-risk gene-pathway pair network analysis provides prognostic biomarkers for gastric cancer [J].Onco Targets Ther, 2016,9:2975-2986.
38 Zheng L,Chen Y,Ye L,et al. miRNA-584-3p inhibits gastric cancer progression by repressing Yin Yang 1- facilitated MMP-14 expression [J]. Sci Rep, 2017,7(1):8967.
39 Peng Y,Zhang X,Ma Q,et al.MiRNA-194 activates the Wnt/β-catenin signaling pathway in gastric cancer by targeting the negative Wnt regulator, SUFU[J].Cancer Lett,2017,385:117-127.
40 Zhou X,Jin W,Jia H,et al. MiR-223 promotes the cisplatin resistance of human gastric cancer cells via regulating cell cycle by targeting FBXW7 [J]. J Exp Clin Cancer Res, 2015,34:28.
41 Zhou H,Xiao B,Zhou F,et al. MiR-421 is a functional marker of circulating tumor cells in gastric cancer patients[J]. Biomarkers,2012,17(2):104-110.
42 Ren C,Chen H,Han C,et al. High expression of miR-16 and miR-451 predicating better prognosis in patients with gastric cancer[J]. J Cancer Res Clin Oncol, 2016,142(12):2489-2496.
43 Wang H,Wang L,Wu Z,et al. Three dysregulated microRNAs in serum as novel biomarkers for gastric cancer screening[J].Med Oncol, 2014,31(12):298.
44 Wu J,Li G,Yao Y,et al. MicroRNA-421 is a new potential diagnosis biomarker with higher sensitivity and specificity than carcinoembryonic antigen and cancer antigen 125 in gastric cancer [J]. Biomarkers,2015,20(1):58-63.
45 Jiang Z,Guo J,Xiao B,et al. Increased expression of miR-421 in human gastric carcinoma and its clinical association[J].J Gastroenterol, 2010,45(1):17-23.
46 Shen ZY,Zhang ZZ,Liu H,et al. miR-375 inhibits the proliferation of gastric cancer cells by repressing ERBB2 expression[J].Exp Ther Med, 2014,7(6):1757-1761.
47 Mohammadian F,Pilehvar-Soltanahmadi Y,Zarghami F,et al.Upregulation of miR-9 and Let-7a by nanoencapsulated chrysin in gastric cancer cells[J]. Artif Cells Nanomed Biotechnol, 2017,45(6):1-6.
48 Xu Q,Dong QG,Sun LP,et al. Expression of serum miR-20a-5p,let-7a, and miR-320a and their correlations with pepsinogen in atrophic gastritis and gastric cancer: a case-control study [J]. BMC Clin Pathol, 2013,13:11.
49 Tang R,Yang C,Ma X,et al. MiR-let-7a inhibits cell proliferation,migration, and invasion by down-regulating PKM2 in gastric cancer [J]. Oncotarget, 2016,7(5):5972-5984.
50 Zhu Y,Xu F. Up-regulation of Let-7a expression induces gastric carcinoma cell apoptosis in vitro [J]. Chin Med Sci J, 2017,32(1):44-47.
51 Miao L,Liu K,Xie M,et al. miR-375 inhibits Helicobacter pylori-induced gastric carcinogenesis by blocking JAK2-STAT3 signaling[J]. Cancer Immunol Immunother, 2014,63(7):699-711.
52 Liu Y,Xing R,Zhang X,et al. miR-375 targets the p53 gene to regulate cellular response to ionizing radiation and etoposide in gastric cancer cells[J]. DNA Repair (Amst), 2013,12(9):741-750.
53 Ji Q,Hao X,Meng Y,et al. Restoration of tumor suppressor miR-34 inhibits human p53-mutant gastric cancer tumorspheres [J].BMC Cancer, 2008,8:266.
54 Stahlhut C,Slack FJ. Combinatorial action of microRNAs let-7 and miR-34 effectively synergizes with erlotinib to suppress non-small cell lung cancer cell proliferation [J]. Cell Cycle, 2015,14(13):2171-2180.
55 Wang R,Ma J,Wu Q,et al. Functional role of miR-34 family in human cancer[J]. Curr Drug Targets, 2013,14(10):1185-1191.
56 Cortez MA,Ivan C,Valdecanas D,et al. PDL1 regulation by p53 via miR-34 [J]. J Natl Cancer Inst, 2016,108(1):303.
57 Farooqi AA,F(xiàn)ayyaz S,Shatynska-Mytsyk I,et al. Is miR-34a a well-equipped swordsman to conquer temple of molecular oncology?[J]. Chem Biol Drug Des, 2016,87(3):321-334.
58 Beg MS,Brenner AJ,Sachdev J,et al. Phase I study of MRX34,a liposomal miR-34a mimic, administered twice weekly in patients with advanced solid tumors[J]. Invest New Drugs, 2017,35(2):180-188.
59 Wang AM,Huang TT,Hsu KW,et al. Yin Yang 1 is a target of microRNA-34 family and contributes to gastric carcinogenesis [J].Oncotarget, 2014,5(13):5002-5016.
60 Yang SM,Huang C,Li XF,et al. miR-21 confers cisplatin resistance in gastric cancer cells by regulating PTEN [J]. Toxicology, 2013,306:162-168.
61 Xia L,Zhang D,Du R,et al. miR-15b and miR-16 modulate multidrug resistance by targeting BCL2 in human gastric cancer cells[J]. Int J Cancer, 2008,123(2):372-379.
62 Tsai MM,Wang CS,Tsai CY,et al. Potential diagnostic, prognostic and therapeutic targets of microRNAs in human gastric cancer [J].Int J Mol Sci, 2016,17(6).
63 Esposti DD,Hernandez-Vargas H,Voegele C,et al. Identification of novel long non-coding RNAs deregulated in hepatocellular carcinoma using RNA-sequencing [J]. Oncotarget, 2016,7(22):31862-31877.
64 Rogoyski OM,Pueyo JI,Couso JP,et al. Functions of long non-coding RNAs in human disease and their conservation in Drosophila development[J]. Biochem Soc Trans, 2017,45(4):895-904.
65 Yu F,Zheng J,Mao Y,et al. Long non-coding RNA growth arrestspecific transcript 5 (GAS5) inhibits liver fibrogenesis through a mechanism of competing endogenous RNA[J]. J Biol Chem,2015,290(47):28286-28298.
66 Shen W,Yuan Y,Zhao M,et al. Novel long non-coding RNA GACAT3 promotes gastric cancer cell proliferation through the IL-6/STAT3 signaling pathway [J]. Tumour Biol, 2016,37(11):14895-14902.
67 Zhu Y,Dai B,Zhang H,et al. Long non-coding RNA LOC572558 inhibits bladder cancer cell proliferation and tumor growth by regulating the AKT-MDM2-p53 signaling axis [J]. Cancer Lett,2016,380(2):369-374.
68 劉名倬,朱峰.長(zhǎng)鏈非編碼RNA的研究進(jìn)展[J].中華危重病急救醫(yī)學(xué),2014,26(4):285-288.
69 Yu J,Han Q,Cui Y. Decreased long non-coding RNA SPRY4-IT1 contributes to ovarian cancer cell metastasis partly via affecting epithelial-mesenchymal transition [J]. Tumour Biol, 2017,39(7):1010428317709129.
70 Qin F,Zhang Y,Liu J,et al. SLC45A3-ELK4 functions as a long non-coding chimeric RNA[J]. Cancer Lett, 2017,404:53-61.
71 Han B,He Y,Zhang L,et al. Long intergenic non-coding RNA GALMD3 in chicken Marek's disease [J]. Sci Rep, 2017,7(1):10294.
72 Yang SZ,Xu F,Zhou T,et al. The long non-coding RNA HOTAIR enhances pancreatic cancer resistance to TNF-related apoptosisinducing ligand [J]. J Biol Chem, 2017,292(25):10390-10397.
73 O'Leary VB,Hain S,Maugg D,et al. Long non-coding RNA PARTICLE bridges histone and DNA methylation[J]. Sci Rep,2017,7(1):1790.
74 Sun M,Nie F,Wang Y,et al. LncRNA HOXA11-AS promotes proliferation and invasion of gastric cancer by scaffolding the chromatin modification factors PRC2, LSD1, and DNMT1 [J].Cancer Res, 2016,76(21):6299-6310.
75 Xu TP,Huang MD,Xia R,et al. Decreased expression of the long non-coding RNA FENDRR is associated with poor prognosis in gastric cancer and FENDRR regulates gastric cancer cell metastasis by affecting fibronectin1 expression [J]. J Hematol Oncol, 2014,7:63.
76 Liu YW,Sun M,Xia R,et al. LincHOTAIR epigenetically silences miR34a by binding to PRC2 to promote the epithelial-tomesenchymal transition in human gastric cancer[J]. Cell Death Dis, 2015,6:e1802.
77 Zhang EB,Kong R,Yin DD,et al. Long noncoding RNA ANRIL indicates a poor prognosis of gastric cancer and promotes tumor growth by epigenetically silencing of miR-99a/miR-449a[J]. Oncotarget,2014,5(8):2276-2292.
78 Xu TP,Liu XX,Xia R,et al. SP1-induced upregulation of the long noncoding RNA TINCR regulates cell proliferation and apoptosis by affecting KLF2 mRNA stability in gastric cancer[J]. Oncogene,2015,34(45):5648-5661.
79 Yang F,Xue X,Zheng L,et al. Long non-coding RNA GHET1 promotes gastric carcinoma cell proliferation by increasing c-Myc mRNA stability[J]. FEBS J, 2014,281(3):802-813.
80 Lyu MH,Tang B,Zeng S,et al. Long noncoding RNA BC032469,a novel competing endogenous RNA, upregulates hTERT expression by sponging miR-1207-5p and promotes proliferation in gastric cancer[J]. Oncogene, 2016,35(27):3524-3534.
81 Liu XH,Sun M,Nie FQ,et al. Lnc RNA HOTAIR functions as a competing endogenous RNA to regulate HER2 expression by sponging miR-331-3p in gastric cancer[J]. Mol Cancer, 2014,13:92.
82 Kong R,Zhang EB,Yin DD,et al. Long noncoding RNA PVT1 indicates a poor prognosis of gastric cancer and promotes cell proliferation through epigenetically regulating p15 and p16[J].Mol Cancer, 2015,14:82.
Research progress of miRNA and lncRNA in gastric cancer
Ma Chaoqun, Zhang Yan. Department of Clinical Laboratory, Tianjin Medical University General Hospital, Tianjin 300052, China (Ma CQ); Pathology Center, Chinses ACAdemy of Medical Science, Hematonosis Hospital, Tianjin 300020, China (Zhang Y)
Corresponding author: Ma Chaoqun, Email: mcqraphael@sina.com
Gastric cancer is one of the most common cancers and increasingly threatening people's health.Probing the mechanism of gastric cancer is very important to improve the prognosis. In the development of gastric cancer many genes expression and activity have changed, non-coding RNAs including micro RNA (miRNA) and long non-coding RNA (lncRNA) play important roles in gastric cancer progression. MiRNAs regulate gastric cancer progression by participating in the process of tumor cell growth, migration, invasion and apoptosis. Circulating miRNA in blood plays an important role in the diagnosis and treatment of gastric cancer. LncRNA was considered to regulate gastric cancer progression at the transcript and post-transcript level. It’s not only can induce gastric cancer progression by changing chromatin modifcation or regulates messenger RNA (mRNA) stability, but also miRNA can compete with target genes as a competitive endogenous RNA (ceRNA). Therefore, to understand the specific mechanism of miRNA and lncRNA in gastric cancer is conducive to our understanding of the mechanism of gastric cancer, and can provide new ideas for the diagnosis and treatment of gastric cancer.
Gastric cancer; Micro RNA; Long non-coding RNA
300052 天津,天津醫(yī)科大學(xué)總醫(yī)院醫(yī)學(xué)檢驗(yàn)科(馬超群);300020 天津,中國(guó)醫(yī)學(xué)科學(xué)院血液病醫(yī)院病理中心(張巖)
馬超群,Email:mcqraphael@sina.com
10.3969/j.issn.1674-7151.2017.04.016
2017-09-18)
楊程伍 張?jiān)欧疲?/p>