孫寧,張佳林,張城碩,周翔宇,陳保民
(中國(guó)醫(yī)科大學(xué)附屬第一醫(yī)院肝膽外科暨器官移植科,沈陽 110001)
人肝細(xì)胞癌細(xì)胞DNA甲基化譜的檢測(cè)及分析
孫寧,張佳林,張城碩,周翔宇,陳保民
(中國(guó)醫(yī)科大學(xué)附屬第一醫(yī)院肝膽外科暨器官移植科,沈陽 110001)
目的檢測(cè)人肝細(xì)胞癌細(xì)胞的DNA甲基化譜,明確肝細(xì)胞癌細(xì)胞中差異甲基化位點(diǎn)和基因的表達(dá)分布情況,進(jìn)一步探討DNA異常甲基化與肝細(xì)胞癌發(fā)生發(fā)展的關(guān)系。方法使用DNA甲基化芯片(Infinium Human Methylation 450K BeadChip)檢測(cè)人肝細(xì)胞癌細(xì)胞Huh7和人永生化肝細(xì)胞L02的甲基化譜,并對(duì)檢測(cè)結(jié)果進(jìn)行生物學(xué)分析。結(jié)果共檢測(cè)到差異性甲基化位點(diǎn)102 254個(gè),差異性甲基化基因26 511個(gè),甲基化相關(guān)信號(hào)通路43個(gè),其中57.3%的高甲基化CpG位點(diǎn)和39.4%的低甲基化CpG位點(diǎn)的甲基化差異程度≥50%,篩選后確定了3 222個(gè)顯著高甲基化基因和2 204個(gè)顯著低甲基化基因。結(jié)論在Huh7和L02細(xì)胞中存在大量差異性甲基化CpG位點(diǎn)及基因,Huh7細(xì)胞中可檢測(cè)到大量抑癌基因DNA的異常高甲基化,提示DNA異常甲基化與肝細(xì)胞癌的發(fā)生發(fā)展密切相關(guān)。
肝細(xì)胞癌; 甲基化譜; 生物信息學(xué)分析
原發(fā)性肝癌(primary liver cancer,PLC)是我國(guó)常見的消化系統(tǒng)惡性腫瘤,2015年我國(guó)PLC新發(fā)病例約為46.6萬人,發(fā)病率位列全部惡性腫瘤第4位,全年死亡病例約為42.2萬,致死率位列全部惡性腫瘤第3位[1]。肝細(xì)胞癌(hepatocellular carcinoma,HCC)是PLC最常見的類型,導(dǎo)致HCC發(fā)生發(fā)展的因素有很多,如慢性病毒性肝炎、酒精性肝硬化、黃曲霉素的攝入等,但其具體發(fā)病機(jī)制仍不明確,因此,研究其發(fā)生發(fā)展機(jī)制對(duì)尋找其新的治療方案至關(guān)重要。
隨著基因組領(lǐng)域研究的不斷深入,表觀遺傳學(xué)改變對(duì)疾病的影響逐漸引起研究者的關(guān)注。DNA異常甲基化是表觀遺傳學(xué)中最常見也是最重要的修飾,其異常改變被認(rèn)為是導(dǎo)致包括HCC在內(nèi)的多種腫瘤發(fā)生發(fā)展的主要因素[2]。研究[3-4]發(fā)現(xiàn),基因的異常甲基化可影響其轉(zhuǎn)錄活性,使其表達(dá)下調(diào),尤其是抑癌基因的異常高甲基化常可引起其抑癌功能的失活,最終導(dǎo)致腫瘤的發(fā)生。
高通量甲基化芯片Infinium Human Methylation 450K BeadChip能夠?qū)θ巳蚪M45萬個(gè)甲基化位點(diǎn)進(jìn)行檢測(cè),覆蓋了上一代27K甲基化芯片90%的位點(diǎn),并同時(shí)增加了CpG島以外的CpG位點(diǎn)、人類干細(xì)胞非CpG甲基化位點(diǎn)、正常組織與腫瘤(多種癌癥)組織差異甲基化位點(diǎn)、編碼區(qū)以外的CpG島、miRNA啟動(dòng)子區(qū)域和已通過GWAS的疾病相關(guān)區(qū)域的位點(diǎn)。因此,本研究使用Infinium Human Methylation 450K BeadChip對(duì)人HCC細(xì)胞系Huh7和人永生化肝細(xì)胞系L02的DNA甲基化譜進(jìn)行檢測(cè)并對(duì)其進(jìn)行分析,篩選出具有顯著差異的甲基化CpG位點(diǎn)和基因,明確HCC細(xì)胞中差異甲基化CpG位點(diǎn)的表達(dá)和分布情況,進(jìn)一步探討DNA異常甲基化與HCC發(fā)生發(fā)展的關(guān)系。
人永生化肝細(xì)胞L02、人HCC細(xì)胞系Huh7均購自中國(guó)科學(xué)院細(xì)胞庫;DNA提取試劑盒(QIAamp DNA Micro Kit)購自美國(guó)QIAGEN公司;甲基化修飾試劑盒購自沈陽百創(chuàng)特公司;人全基因組甲基化芯片(Infinium Human Methylation 450K BeadChip) 購自美國(guó)Illumina公司。
L02細(xì)胞及Huh7細(xì)胞分別單層貼壁生長(zhǎng)于RPMI-1640培養(yǎng)液或DMEM培養(yǎng)液中,培養(yǎng)液中均含10%胎牛血清、青霉素G (100 U/L)、鏈霉素(100 μ g/L),于37 ℃、5% CO2恒溫密閉式培養(yǎng)箱中培養(yǎng),隔日換液,取對(duì)數(shù)生長(zhǎng)期細(xì)胞進(jìn)行后續(xù)實(shí)驗(yàn)。
用0.25%含EDTA胰酶消化細(xì)胞,收集細(xì)胞沉淀,取20 μ L Proteinase K 加入到1.5 mL Eppendorf管內(nèi),按DNA提取試劑盒說明書中的操作步驟提取Huh7、L02細(xì)胞DNA,Nano Drop核酸蛋白分析儀檢測(cè)DNA提取純度和濃度,若OD260nm/OD280mn在1.7~2.0之間則符合實(shí)驗(yàn)要求,否則樣品需要重新提取。將提取的Huh7、L02細(xì)胞DNA按照甲基化修飾試劑盒說明書中的操作步驟進(jìn)行甲基化修飾。
按照Illumina公司提供的步驟進(jìn)行芯片雜交;數(shù)據(jù)掃描使用manifest文件,采用Illumina公司官方提供的Methylation Module of GenomeStudio software using Methylation v1.9軟件對(duì)芯片數(shù)據(jù)進(jìn)行分析。β-value [β = intensity of the methylated allele(M)/(intensity of the unmethylated allele + intensity of the methylated allele + 100)]代表CpG位點(diǎn)的甲基化水平,數(shù)值越大,越趨近于1,甲基化程度越高[5];β-difference (絕對(duì)值)為表達(dá)差異性分?jǐn)?shù)。本研究使用empirical bayes moderated t 檢驗(yàn)及Bonferroni校正來識(shí)別Huh7細(xì)胞和L02細(xì)胞之間的差異性甲基化CpG位點(diǎn)。初步篩選差異性甲基化CpG位點(diǎn)的納入標(biāo)準(zhǔn)為經(jīng)過校正的P值(Adjust P)≤0.05,同時(shí)表達(dá)差異性分?jǐn)?shù)(|β-difference|)≥0.2,被定義為具有統(tǒng)計(jì)學(xué)意義。而Adjust P > 0.05和CpG覆蓋<95%則被排除。另外,為進(jìn)一步篩選具有顯著差異的甲基化CpG位點(diǎn),本研究使用了額外的過濾標(biāo)準(zhǔn): (1) Adjust P ≤0.05,P ≤1.06×10-7;(2)顯著的高甲基化位點(diǎn),即差異性甲基化水平>20%,L02甲基化水平<25%;(3)顯著低甲基化位點(diǎn),即差異性甲基化水平>20%,Huh7甲基化水平<25%。
本研究中,共檢測(cè)到差異性甲基化位點(diǎn)102 254個(gè),差異性甲基化基因26 511個(gè)。其中,高甲基化CpG位點(diǎn)62 702個(gè)(61.3%),包含12 665個(gè)高甲基化基因;低甲基化位點(diǎn)39 552個(gè)(38.7%),包含13 846個(gè)低甲基化基因。另外,在CpG島中,檢測(cè)到了差異性CpG位點(diǎn)41 178個(gè)(40.3%);在CpG shores檢測(cè)到了差異性甲基化CpG位點(diǎn)21 150個(gè)(20.7%);在CpG shelves檢測(cè)到9 030個(gè)(8.8%)差異性甲基化CpG位點(diǎn)。見表1,圖1。
本研究結(jié)果顯示,有35 937個(gè)(57.3%)高甲基化CpG位點(diǎn)和15 587個(gè)(39.4%)低甲基化CpG位點(diǎn)的甲基化差異程度≥50%;18 529個(gè)(29.5%)高甲基化CpG位點(diǎn)和14 177個(gè)(35.8%)低甲基化CpG位點(diǎn)的甲基化差異程度≥30%但<50%;8 236個(gè)(13.1%)高甲基化CpG位點(diǎn)和9 788個(gè)(24.8%)低甲基化CpG位點(diǎn)的甲基化差異程度<30%但≥20%。見表2。
表1 總體差異性甲基化CpG位點(diǎn)分布 [n(%)]Tab.1 Distribution of all the differentially methylated CpG sites [n(%)]
圖1 差異性甲基化CpG位點(diǎn)的聚類分析Fig.1 Hierarchical cluster analysis of all differentially methylated CpG sites between Huh7 cells and L02 cells
通過使用嚴(yán)格的篩選條件對(duì)差異性甲基化CpG位點(diǎn)進(jìn)行篩選后,確定了5 285個(gè)明顯的高甲基化CpG位點(diǎn)(包括3 222個(gè)基因)和2 659個(gè)明顯的低甲基化CpG位點(diǎn)(包括2 204個(gè)基因)。見表3~5,圖2。
表2 差異性甲基化CpG位點(diǎn)甲基化差異程度的分布Tab.2 Distribution of all the differentially methylated CpG sites between Huh7 and L02 cells based on methylation status
本研究使用GO富集分析(http://www.geneontol ogy.org/)和 KEEG 通路分析 (the Kyoto Encyclopedia of Genes and Genomes,http://www.genome.jp/kegg/)對(duì)差異性位點(diǎn)進(jìn)行相關(guān)通路分析。GO富集的結(jié)果如下:2 107個(gè)差異甲基化基因富集于9個(gè)生化過程相關(guān)功能集,富集最明顯的包括負(fù)調(diào)控的細(xì)胞增殖,子宮內(nèi)的胚胎發(fā)育等;13 351個(gè)差異甲基化基因富集于17個(gè)分子功能相關(guān)功能集,富集最明顯的包括蛋白結(jié)合,金屬離子結(jié)合等;18 041個(gè)差異甲基化基因富集于與細(xì)胞成分有關(guān)的功能集,富集最明顯的主要是細(xì)胞核、細(xì)胞質(zhì)等。KEGG通路分析顯示43個(gè)信號(hào)通路涉及5 195個(gè)差異甲基化的基因,這些基因主要富集于代謝通路、癌癥相關(guān)通路、MAPK信號(hào)通路、Wnt 信號(hào)通路、VEGF 信號(hào)通路和 p53 信號(hào)通路等,見表6。
表3 顯著差異性甲基化位點(diǎn)分布情況(n)Tab.3 Distribution of significantly differentially methylated CpG sites in Huh7 cells when compared with L02 cells(n)
圖2 差異性甲基化CpG基因的聚類分析Fig.2 Hierarchical cluster analysis of all differentially methylated genes between Huh7 cells and L02 cells
表4 前10個(gè)顯著差異高甲基化基因Tab.4 Top 10 significant hypermenthylated CpG sites and genes within DMRs in Huh7 cells compared with L02 cells
近年來,基因的DNA異常甲基化被認(rèn)為是導(dǎo)致多種腫瘤發(fā)生的重要因素[6-7]。既往針對(duì)HCC相關(guān)基因的DNA甲基化研究雖然能夠?yàn)镠CC的診斷和預(yù)后評(píng)估提供一些新的甲基化標(biāo)記物,但關(guān)于HCC DNA甲基化譜的研究甚少。因此,本研究利用Infinum Human Methylation 450K芯片技術(shù)對(duì)HCC細(xì)胞的DNA甲基化譜進(jìn)行檢測(cè),并對(duì)結(jié)果進(jìn)行分析。
表5 前10個(gè)顯著差異低甲基化基因Tab.5 Top 10 significant CpG hypomethylated sites and genes within DMRs in Huh7 cells compared with L02 cells
表6 主要HCC相關(guān)通路中差異甲基化基因數(shù)目Tab.6 Number of differentially methylated gene in HCC related pathway
Infinium Human Methylation 450K甲基化芯片涵蓋99%在注釋的RefSeq基因啟動(dòng)子區(qū)的多個(gè)位點(diǎn)、5’-UTR、第一外顯子、3’-UTR等重要區(qū)域[8]。在本研究結(jié)果中,共檢測(cè)到102 254個(gè)差異性甲基化CpG位點(diǎn),并且高甲基化CpG位點(diǎn)(62 702,61.3%)明顯多于低甲基化CpG位點(diǎn)(39 552,38.7%),表明在Huh7細(xì)胞中DNA異常甲基化是一種常見事件,而且發(fā)生頻率較高。同時(shí),還發(fā)現(xiàn)顯著高甲基化CpG位點(diǎn)在CpG島的分布要多于顯著低甲基化位點(diǎn)(1 544 vs.1 201),這與之前其他相關(guān)的DNA甲基化基因分析研究[9-12]結(jié)果一致。
有研究[13-17]認(rèn)為,DNA異常甲基化不僅發(fā)生在CpG島,也可能發(fā)生在CpG shores和CpG shelves等區(qū)域,并同樣能夠?qū)е乱职┗虻墓δ苁Щ?。本研究還發(fā)現(xiàn)在CpG shores的確分布有一定數(shù)量的顯著差異CpG位點(diǎn),且高甲基化CpG位點(diǎn)多于低甲基化位點(diǎn)(1 137 vs 632),而在CpG shelves,高甲基化CpG位點(diǎn)更明顯多于低甲基化CpG位點(diǎn)(655 vs 133)。本研究結(jié)果不僅進(jìn)一步證實(shí)了其他研究的結(jié)論,同時(shí)也提示,在HCC細(xì)胞中能夠檢測(cè)到大量DNA異常高甲基化位點(diǎn),這些異常位點(diǎn)很可能與HCC相關(guān)抑癌基因功能失活有關(guān),參與了HCC的發(fā)生發(fā)展。
另外,本研究通過對(duì)差異性甲基化基因的GO分析和KEGG通路分析發(fā)現(xiàn)DNA的異常甲基化能夠影響細(xì)胞周期相關(guān)蛋白p16(Ink4a)、p53、TGF-β/SMAD信號(hào)等經(jīng)典癌癥相關(guān)通路[18]。在本研究中,雖然對(duì)HCC細(xì)胞DNA的甲基化譜進(jìn)行了檢測(cè)及分析,但是仍需要進(jìn)一步的實(shí)驗(yàn)研究對(duì)現(xiàn)有的芯片結(jié)果進(jìn)行驗(yàn)證,繼續(xù)深入探討DNA異常甲基化在HCC發(fā)生發(fā)展中所起的作用及其臨床意義。現(xiàn)有研究[19-20]已證實(shí),在HCC中,Wnt通路的激活與抑癌基因DNA異常高甲基化有關(guān),Erb受體信號(hào)途徑和MAPK信號(hào)通路也已被證實(shí)其相關(guān)蛋白質(zhì)經(jīng)過表觀遺傳學(xué)異常修飾后活性改變,從而導(dǎo)致了腫瘤生長(zhǎng)和轉(zhuǎn)移[16,21],這些研究對(duì)下一步芯片結(jié)果的驗(yàn)證均具有一定的指導(dǎo)意義。
綜上所述,本研究應(yīng)用高通量甲基化芯片測(cè)序技術(shù)對(duì)Huh7細(xì)胞和L02細(xì)胞的全基因組DNA甲基化模式進(jìn)行了探討,初步明確了差異性甲基化CpG位點(diǎn)/區(qū)域/基因在HCC細(xì)胞中的表達(dá)頻率和分布情況,為今后HCC相關(guān)的甲基化研究提供了更多信息。本研究結(jié)果中的顯著差異位點(diǎn)和基因仍需進(jìn)行驗(yàn)證,其相關(guān)分子機(jī)制也有待進(jìn)一步研究,以繼續(xù)深入探究DNA甲基化與HCC發(fā)生發(fā)展的關(guān)系,也為今后HCC的去甲基化治療奠定基礎(chǔ)。
[1] CHEN W,ZHENG R,BAADE PD,et al. Cancer statistics in China,2015[ J]. CA Cancer J Clin,2016,66(2):115-132. DOI:10.3322/caac.21338.
[2] KULIS M,ESTELLER M. DNA methylation and cancer[ J]. Adv Genet,2010,70:27-56. DOI:10.1016/B978-0-12-380866-0.60002-2.
[3] HERMAN JG,BAYLIN SB. Gene silencing in cancer in association with promoter hypermethylation[ J]. N Engl J Med,2003,349( 21):2042-2054. DOI:10.1056/NEJMra023075.
[4] ESTELLER M. Epigenetic gene silencing in cancer:the DNA hypermethylome[ J]. Hum Mol Genet,2007,16( 1):R50-R59. DOI:10.1093/hmg/ddm018.
[5] BIBIKOVA M,LE J,BARNES B,et al. Genome-wide DNA methylation profiling using Infinium(R) assay[ J]. Epigenomics,2009,1( 1):177-200. DOI:10.2217/epi.09.14.
[6] JONES P A,TAKAI D. The role of DNA methylation in mammalian epigenetics[ J]. Science,2001,293( 5532):1068-1070. DOI:10.1126/science.1063852.
[7] ESTELLER M. Epigenetics in cancer[ J]. N Engl J Med,2008,358(11):1148-1159. DOI:10.1056/NEJMra072067.
[8] BIBIKOVA M,BARNES B,TSAN C,et al. High density DNA methylation array with single CpG site resolution[ J]. Genomics,2011,98(4):288-295. DOI:10.1016/j.ygeno.2011.07.007.
[9] GAO W,KONDO Y,SHEN L,et al. Variable DNA methylation patterns associated with progression of disease in hepatocellular carcinomas[ J]. Carcinogenesis,2008,29( 10):1901-1910. DOI:10.1093/carcin/bgn170.
[10] SHIN SH,KIM BH,JANG JJ,et al. Identification of novel methylation markers in hepatocellular carcinoma using a methylation array[J]. J Korean Med Sci,2010,25( 8):1152-1159. DOI:10.3346/jkms.2010.25.8.1152.
[11] AMMERPOHL O,PRASTCHKE J,SCHAFMAYER C,et al. Distinct DNA methylation patterns in cirrhotic liver and hepatocellular carcinoma[ J]. Int J Cancer,2012,130( 6):1319-1328. DOI:10.1002/ijc.26136.
[12] KOHLES N,NAGEL D,JUNGST D,et al. Prognostic relevance of oncological serum biomarkers in liver cancer patients undergoing transarterial chemoembolization therapy[ J]. Tumour Biol,2012,33(1):33-40. DOI:10.1007/s13277-011-0237-7.
[13] YATES DR,REHMAN I,MEUTH M,et al. Methylational urinalysis:a prospective study of bladder cancer patients and age stratified benign controls[ J]. Oncogene,2006,25( 13):1984-1988. DOI:10.1038/sj.onc.1209209.
[14] DUZIEC E,MIAH S,CHOUDHRY HM,et al. Hypermethylation of CpG islands and shores around specific microRNAs and mirtrons is associated with the phenotype and presence of bladder cancer,clinical cancer research[ J]. Clin Cancer Res,2011,17( 6):1287-1296.DOI:10.1158/1078-0432.CCR-10-2017.
[15] DOI A,PARK IH,WEN B,et al. Differential methylation of tissueand cancer-specific CpG island shores distinguishes human induced pluripotent stem cells,embryonic stem cells and fibroblasts[ J]. Nat Genet,2009,41( 12):1350-1353. DOI:10.1038/ng.471.
[16] IRIZARRY RA,LADD-ACOSTA C,WEN B,et al. The human colon cancer methylome shows similar hypo- and hypermethylation at conserved tissue-specific CpG island shores[ J]. Nat Genet,2009,41(2):178-186. DOI:10.1038/ng.298.
[17] OGOSHI K,HASHIMOTO S,NAKATANI Y,et al. Genome-wide profiling of DNA methylation in human cancer cells[ J]. Genomics,2011,98( 4):280-287. DOI:10.1016/j.ygeno.2011.07.003.
[18] KUO KK,JIAN SF,LI YJ,et al. Epigenetic inactivation of transforming growth factor-beta1 target gene HEYL,a novel tumor suppressor,is involved in the P53-induced apoptotic pathway in hepatocellular carcinoma[ J]. Hepatol Res,2015,45( 7):782-793. DOI:10.1111/hepr.12414.
[19] UMER M,QURESHI SA,HASHMI ZY,et al. Promoter hypermethylation of Wnt pathway inhibitors in hepatitis C virus-induced multistep hepatocarcinogenesis[ J]. Virol J,2014,11:117. DOI:10.1186/1743-422X-11-117.
[20] DING SL,YANG ZW,WANG J,et al. Integrative analysis of aberrant Wnt signaling in hepatitis B virus-related hepatocellular carcinoma[ J]. World J Gastroenterol,2015,21( 20):6317-6328. DOI:10.3748/wjg.v21.i20.6317.
[21] STEFANSKA B,CHEISHVILI D,SUDERMAN M,et al. Genome-wide study of hypomethylated and induced genes in patients with liver cancer unravels novel anticancer targets[ J]. Clin Cancer Res,2014,20( 12):3118-3132. DOI:10.1158/1078-0432.CCR-13-0283.
Exploring Genome-wide Profiles of DNA Methylation in Human Hepatocellular Carcinoma Cells via Bioinformatics Analysis
SUN Ning,ZHANG Jialin,ZHANG Chengshuo,ZHOU Xiangyu,CHEN Baomin
(Department of Hepatobiliary and Transplantation Surgery,The First Hospital,China Medical University,Shenyang 110001,China)
ObjectiveTo detect the genome-wide profiles of DNA methylation in human hepatocellular carcinoma (HCC) cells and to identify the distribution of differentially methylated sites and genes in order to explore the relationship between aberrant DNA methylation and hepatocellular carcinoma.MethodsThe Infinium Human Methylation 450K BeadChip was used to identify the genome-wide aberrant DNA methylation profiles in Huh7 and L02 cell lines.ResultsTotally 102 254 differentially methylated CpG sites and 26 511 genes,involving 43 signaling pathways,were detected when Huh7 and L02 cell lines were compared. The absolute β-difference in 57.3%of the hypermethylated CpG sites and 39.4% of the hypomethylated CpG sites was reported to be ≥ 50%. A total of 3 222 hypermethylated genes and 2 204 hypomethylated genes were identified.ConclusionWe detected many aberrant methylated sites and genes in HCC cells. The abnormal DNA methylation exhibits an important role in the occurrence and development of HCC.
hepatocellular carcinoma; methylation profiles; bioinformatics analysis
R735.7
A
0258-4646(2017)12-1111-06
http://kns.cnki.net/kcms/detail/21.1227.R.20171130.1810.022.html
10.12007/j.issn.0258-4646.2017.12.012
沈陽市科學(xué)技術(shù)計(jì)劃(F13-F13-212-9-00)
孫寧(1986-),女,醫(yī)師,博士.
張佳林,E-mail:jlzcmu@126.com
2017-03-28
網(wǎng)絡(luò)出版時(shí)間:2017-11-30 18:10
(編輯 王又冬)