代 維 張明潔 邱恩超 董 釗 于生元△
(1 解放軍總醫(yī)院第一附屬醫(yī)院神經內科,北京100048;2 中國人民解放軍總醫(yī)院神經內科,北京100039)
?綜 述?
cAMP反應元件結合蛋白在頭痛與抑郁中的研究現(xiàn)狀*
代 維1張明潔2邱恩超1董 釗2于生元2△
(1解放軍總醫(yī)院第一附屬醫(yī)院神經內科,北京100048;2中國人民解放軍總醫(yī)院神經內科,北京100039)
目的:cAMP (cyclic adenosine monophosphate, 環(huán)磷腺苷)反應元件結合蛋白(cAMP response element binding protein, CREB)是一種轉錄因子,其蛋白家族激活后主要的功能是調節(jié)基因轉錄,與抑郁、疼痛等均有密切關系,但在頭痛中的研究并不充分,本文旨在初步闡述CREB在頭痛與抑郁中的研究現(xiàn)狀及其內在聯(lián)系。方法:本文回顧了近年關于CREB在頭痛及抑郁中的研究情況,并闡述其交叉研究領域。結論:CREB在抑郁中的研究較成熟,CREB及其上下游因子很有可能成為抗抑郁藥物研究的靶點;其在頭痛中的研究較少,主要集中在三叉神經脊束核、三叉神經節(jié)、腦干等水平, CREB與中樞敏化可能相關。頭痛和抑郁很可能存在共同的神經通路、神經遞質,CREB是頭痛與抑郁信號通路上共同的調節(jié)靶點
偏頭痛;抑郁;pCREB;CREB
cAMP (cyclic adenosine monophosphate,環(huán)磷腺苷)反應元件結合蛋白(cAMP response element binding protein, CREB)是一種轉錄因子,定位于細胞核,在腦內所有細胞均有表達,其蛋白家族激活后主要的功能是調節(jié)基因轉錄[1,2,3]。CREB的調節(jié)通路包括AC (adenylate cyclase,腺苷酸環(huán)化酶)[1]、cAMP、Ca2+[4]、MAPK(mitogen-activated protein kinases, 促分裂素原活化蛋白激酶)[3](見圖1)。CREB與即刻早期基因編碼的蛋白不同,即早基因受刺激誘導后可以快速合成新蛋白,發(fā)揮轉錄因子或轉錄調節(jié)因子的作用,而CREB只需通過活化自身發(fā)揮作用[5]。CREB介導的基因轉錄包含了三個過程:二聚化、與DNA反應元件相結合、磷酸化。其中,磷酸化是其發(fā)揮轉錄功能的基礎,CREB的磷酸化位 點 有 Ser98,Ser129,Ser133,Ser142, 其 中 Ser133是CREB激活的關鍵位點,而Ser129,Ser142的主要作用為增強或減弱靶基因的轉錄[5]。pCREB (phosphorylated cAMP response element binding protein, 磷酸化cAMP反應元件結合蛋白)以二聚體的形式結合在CRE的目標基因序列上,從而調節(jié)目標基因的轉錄[1]。目前已知的CREB的靶基因有100多種,其中許多被證實與中樞敏化有關,如c-fos、BDNF(Brain derived neurotrophic factor,腦源性神經營養(yǎng)因子)、CGRP (Calcitonin gene related peptide,降鈣素基因相關肽)、NK1受體、COX-2、Synapsin I等[5]。CREB被作為與記憶及學習相關的蛋白而廣泛研究[1,6],近年來,研究者發(fā)現(xiàn)其與抑郁、疼痛、藥物過量均有密切關系[1,5,7,8]。
圖 1 CREB的信號轉導體系(此圖為作者原創(chuàng),引用請注明出處)
CREB是細胞內與抑郁相關的幾個信號轉導通路的一個交匯點,它能對相關基因的轉錄進行調節(jié)[9]。許多研究均針對長期應用抗抑郁藥物后CREB總含量、pCREB或CREB mRNA的含量,實際上,pCREB的含量較另外二者更能體現(xiàn)CREB目標基因的調控作用[10]。
加拿大學者Dar Dowlatshahi和他的團隊研究了尸檢病人,發(fā)現(xiàn)重癥抑郁病人之顳葉皮層CREB表達下降,而使用抗抑郁藥物可以升高CREB的表達[11]。動物實驗發(fā)現(xiàn),抗抑郁藥物與電休克治療均可上調大鼠或小鼠腦內cAMP通路的幾個成分,包括CREB與pCREB水平,這些影響或許對于治療的作用機制至關重要[12]。
動物實驗表明,在不同腦區(qū),CREB可以通過升高或降低來產生抑郁樣行為表現(xiàn)[1]。在海馬中,CREB為抗抑郁效果的重要中間介質,許多標準抗抑郁藥物(如去甲腎上腺素再攝取抑制劑、選擇性五羥色胺再攝取抑制劑、電擊誘發(fā)驚厥)均可提升海馬中CREB的活性[12]。在嚙齒動物中,應用病毒介導的基因轉染以直接升高CREB蛋白水平,可以產生抗抑郁作用[13],一些證據表明,CREB表達調節(jié)與神經生長因子有關[14]。比方說,許多抗抑郁藥物能同樣升高海馬中的腦源性生長因子(brain derived neurotrophic factor, BDNF),一個CREB調節(jié)性靶基因[15]。在抑郁模型中通過調控CREB的上游因子cAMP的藥物亦能發(fā)揮抗抑郁作用,雖然具體作用腦區(qū)還不確定,但海馬很可能為一個位點,這些藥物也被考慮為可以增強認知的藥物[16]。相反的,在嚙齒動物的伏隔核(nucleus accumbens, NAc)中,CREB升高則可導致各種抑郁樣表現(xiàn)。藥物濫用或壓力應激均可引起伏隔核中CREB活性升高[17]。伏隔核中CREB的持續(xù)升高可以導致快感缺失—一個抑郁的典型癥狀,同時,也會導致對一系列令人不悅的環(huán)境的反應[17]。使處于早期發(fā)育的大鼠暴露于哌醋甲酯,可引起CREB的持續(xù)升高,進而,這些大鼠就會表現(xiàn)出快感缺失、煩躁和絕望行為[18]。在強迫游泳實驗(forced-swim test)中降低伏隔核中CREB的含量可以產生抗抑郁樣作用[16]。對杏仁核而言,抑郁模型中CREB含量不同所致的功能改變與情境有關。習得性無助模型中,訓練前對對象進行病毒介導CREB表達處理,可引起抑郁樣行為,但訓練后給予相同處理,卻導致了抗抑郁樣行為[19]。相關的解釋為,訓練前誘導CREB表達,加強了習得性無助的學習,而訓練后卻加強了動物克服無助以及再學習的能力。在大鼠中腦導水管周圍灰質(periaqueductal gray, PAG),被捕食壓力則可導致CREB表達上升[20]。慢性溫和應激可誘導AC信號通路活性在以下區(qū)域下降,包括海馬、皮層,但在下丘腦處卻無統(tǒng)計學差異[21]。這些例子都表明了,CREB的表達具有部位及時間的特異性[1]。CREB具有調整可塑性的功能,這個過程并非生而優(yōu)劣,而是適應性、適應不良或二者皆有。
迄今為止,關于CREB在頭痛中的研究較少,且主要集中在三叉神經脊束核、三叉神經節(jié)及腦干水平。學者Dimos D和同事認為,CREB可能成為偏頭痛動物模型中,三叉神經脊束核尾側部突觸后神經元激活的一個新的標志物。他們研究了大鼠三叉神經脊束核尾側部pCREB在傷害性刺激后的表達情況,發(fā)現(xiàn)給予辣椒辣素刺激后,三叉神經脊束核尾側部CREB與pCREB含量均升高,而預先給予偏頭痛的治療藥物舒馬曲普坦及那拉曲普坦后,pCREB的升高則被抑制,且其抑制水平在一定范圍內與藥物劑量相關,作者認為,曲普坦類藥物可以減弱CREB在三叉神經系統(tǒng)的激活,從而可能抑制了中樞敏化的形成[7]。
在腦干水平,體外實驗顯示,大鼠三叉神經節(jié)之pCREB受到CGRP的調節(jié),而CGRP又由激活的P2X3或腺苷酸A1受體所誘導[22]。抑制CREB的激活,可以在腦干水平減緩中樞敏化的形成[22]。有實驗表明,脊髓背根神經元的中樞敏化是由pCREB介導的翻譯水平調節(jié)所致[23]。
CREB在頭痛中的研究剛剛起步,但在疼痛與中樞致敏中的研究已不鮮見。CREB在疼痛中的研究主要集中在炎性刺激或脊髓損傷所致的痛覺過敏中,其在中樞敏化中的作用已經受到越來越多的關注。研究證實,CREB與神經病理性疼痛以及感染性疼痛密切相關[24,25]。作為ERK活化后激活的下游轉錄因子,CREB可能參與了慢性疼痛以及中樞神經系統(tǒng)的長時程改變[26]。同時,CREB的激活也可能誘導了CGRP與TRPV1[27]。在慢性中樞性神經病理性疼痛模型中,脊髓損傷后,大鼠的脊髓丘腦束神經元中CREB磷酸化升高[24],而這條纖維束恰恰是上傳疼痛的傳導束,這一現(xiàn)象顯示,損傷所致疼痛與CREB激活相關。目前推斷脊髓損傷所致的神經病理性疼痛與ERK 1 /2, p-p38 MAPK, CREB的激活均有關。通過注射辣椒辣素[28]、甲醛[29]、角叉藻聚糖(carrageenan)[30]、酸性鹽水[31]而誘發(fā)出的中樞敏化中,CREB的激活升高。研究表明ERK與CREB的激活會影響B(tài)DNF與neurokinin-1受體的基因表達[32],neurokinin-1受體受到P物質的調節(jié),并且通過G蛋白來參與中樞敏化的形成[33]。在周圍性神經病理性疼痛模型中,pCREB的表達同樣有所升高[24]。
提到頭痛研究中的蛋白組織化學研究,就不得不提到c-fos基因。c-fos為一種即早基因,其轉錄產物Fos蛋白廣泛應用于偏頭痛相關的動物模型中[34],與Fos蛋白相比,CREB在頭痛研究中有一定優(yōu)勢,如,F(xiàn)os蛋白的表達需要較強刺激[35],且其在脊髓背根神經節(jié)中不表達,同時,在三叉神經脊束核尾側部較難誘發(fā)出Fos蛋白表達[36]。同F(xiàn)os相比,CREB的表達更加廣泛,且其表達在刺激后10分鐘即可產生,較Fos蛋白所需的2小時大大縮短[7]。
基礎研究表明,偏頭痛和抑郁很可能存在共同的神經通路、神經遞質(神經肽、激素和單胺類等)、致病基因、環(huán)境因素或社會因素等等。目前關于偏頭痛和抑郁共病的可能機制,主要有中樞敏化、五羥色胺和多巴胺的功能障礙、藥物過量使用和卵巢激素波動等學說,對于這些假說的研究并不完全,偏頭痛與抑郁之間的關系還需要更多的基礎研究,特別是通過有效的抑郁與偏頭痛動物模型進一步明確。CREB作為頭痛與抑郁信號通路上共同的調節(jié)靶點,其重要性不容小覷,下一步我們將通過更多研究探討CREB在頭痛與抑郁共病中的聯(lián)系。
CREB在抑郁中的研究已經日益成熟,已經被用于各種抑郁動物模型的研究,且CREB及其上下游因子很有可能成為抗抑郁藥物研究的核心與靶點。然而,CREB在頭痛中的研究較少,主要集中在三叉神經脊束核、三叉神經節(jié)、腦干等水平,由于CREB與中樞敏化可能相關,相信在日后針對CREB與頭痛的研究會更為深入。頭痛和抑郁很可能存在共同的神經通路、神經遞質,CREB是頭痛與抑郁信號通路上共同的調節(jié)靶點,下一步我們將通過更多研究探討其在頭痛與抑郁中的關系。
[1] Carlezon WA, Duman RS, Nestler EJ. The many faces of creb. Trends in neurosciences, 2005, 28:436 ~ 445.
[2] Imbe H, Kimura A. Repeated forced swim stress affects the expression of pcreb and deltafosb and the acetylation of histone h3 in the rostral ventromedial medulla and locus coeruleus. Brain research bulletin, 2016, 127:11 ~ 22.
[3] Kudo T, Uda S, Tsuchiya T,et al. Laguerre filter analysis with partial least square regression reveals a priming effect of erk and creb on c-fos induction. PLoS One, 2016, 11:e0160548.
[4] Dash PK, Karl KA, Colicos MA,et al.Camp response element-binding protein is activated by Ca2+/calmodulin- as well as camp-dependent protein kinase.Proceedings of the National Academy of Sciences of the United States of America, 1991, 88: 5061 ~ 5065.
[5] 姚永興,姜楨,曾因明. Camp反應元件結合蛋白與神經病理性疼痛. 國際麻醉學與復蘇雜志, 2006, 27:106 ~ 107.
[6] Miyashita T, Oda Y, Horiuchi J,et al. Mg(2+) block of drosophila nmda receptors is required for longterm memory formation and creb-dependent gene expression. Neuron, 2012, 74: 887 ~ 898.
[7] Mitsikostas DD, Knight YE, Lasalandra M,et al.Triptans attenuate capsaicin-induced creb phosphorylation within the trigeminal nucleus caudalis: A mechanism to prevent central sensitization? J Headache Pain, 2011, 12: 411 ~ 417.
[8] 高毅, 冷玉芳, 葛亮,等. 腹腔注射右美托咪啶對神經病理性疼痛大鼠鎮(zhèn)痛的實驗研究. 中國疼痛醫(yī)學雜志 , 2015, 21(8): 575 ~ 580.
[9] Blendy JA. The role of creb in depression and antidepressant treatment. Biological psychiatry, 2006,59: 1144 ~ 1150.
[10] Meyer TE, Waeber G, Lin J,et al. The promoter of the gene encoding 3’, 5’-cyclic adenosine monophosphate(camp) response element binding protein contains camp response elements: Evidence for positive autoregulation of gene transcription. Endocrinology, 1993, 132: 770 ~ 780.
[11] Dowlatshahi D, MacQueen GM, Wang JF,et al.Increased temporal cortex creb concentrations and antidepressant treatment in major depression. Lancet,1998, 352: 1754 ~ 1755.
[12] Thome J, Sakai N, Shin K,et al. Camp response element-mediated gene transcription is upregulated by chronic antidepressant treatment. The Journal of neuroscience : the official journal of the Society for Neuroscience, 2000, 20: 4030 ~ 4036.
[13] Chen AC, Shirayama Y, Shin KH,et al. Expression of the camp response element binding protein (creb)in hippocampus produces an antidepressant effect.Biological psychiatry, 2001, 49: 753 ~ 762.
[14] Newton SS, Collier EF, Hunsberger J,et al. Gene profile of electroconvulsive seizures: Induction of neurotrophic and angiogenic factors. The Journal of neuroscience:the official journal of the Society for Neuroscience, 2003, 23:10841 ~ 10851.
[15] Nibuya M, Morinobu S, Duman RS. Regulation of bdnf and trkb mrna in rat brain by chronic electroconvulsive seizure and antidepressant drug treatments. The Journal of neuroscience:the official journal of the Society for Neuroscience, 1995, 15: 7539 ~ 7547.
[16] Barad M, Bourtchouladze R, Winder DG,et al.Rolipram, a type iv-speci fi c phosphodiesterase inhibitor,facilitates the establishment of long-lasting long-term potentiation and improves memory. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95: 15020 ~ 15025.
[17] Barrot M, Olivier JD, Perrotti LI,et al. Creb activity in the nucleus accumbens shell controls gating of behavioral responses to emotional stimuli. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99: 11435 ~ 11440.
[18] Andersen SL, Arvanitogiannis A, Pliakas AM,et al.Altered responsiveness to cocaine in rats exposed to methylphenidate during development. Nature neuroscience, 2002, 5: 13 ~ 14.
[19] Wallace TL, Stellitano KE, Neve RL,et al. Effects of cyclic adenosine monophosphate response element binding protein overexpression in the basolateral amygdala on behavioral models of depression and anxiety. Biological psychiatry, 2004, 56: 151 ~ 160.
[20] Adamec R, Berton O, Abdul Razek W. Viral vector induction of creb expression in the periaqueductal gray induces a predator stress-like pattern of changes in pcreb expression, neuroplasticity, and anxiety in rodents. Neural plasticity, 2009, 2009: 904568.
[21] Li YC, Wang FM, Pan Y,et al. Antidepressant-like effects of curcumin on serotonergic receptor-coupled ac-camp pathway in chronic unpredictable mild stress of rats. Progress in neuro-psychopharmacology &biological psychiatry, 2009, 33: 435 ~ 449.
[22] Simonetti M, Giniatullin R, Fabbretti E. Mechanisms mediating the enhanced gene transcription of p2x3 receptor by calcitonin gene-related peptide in trigeminal sensory neurons. The Journal of biological chemistry,2008, 283: 18743 ~ 18752.
[23] Kawasaki Y, Kohno T, Zhuang ZY,et al. Ionotropic and metabotropic receptors, protein kinase a, protein kinase c, and src contribute to c-fiber-induced erk activation and camp response element-binding protein phosphorylation in dorsal horn neurons, leading to central sensitization. The Journal of neuroscience : the of fi cial journal of the Society for Neuroscience, 2004,24: 8310 ~ 8321.
[24] Crown ED, Ye Z, Johnson KM,et al. Increases in the activated forms of erk 1/2, p38 mapk, and creb are correlated with the expression of at-level mechanical allodynia following spinal cord injury. Experimental neurology, 2006, 199: 397 ~ 407.
[25] 謝建琴, 馬永豐, 石翊颯.等豆腐果苷對慢性神經病理性疼痛大鼠熱痛覺過敏及脊髓背角p-creb表達的影響. 中國疼痛醫(yī)學雜志 2009, 2: 6.
[26] Davis S, Vanhoutte P, Pages C,et al. The mapk/erk cascade targets both elk-1 and camp response elementbinding protein to control long-term potentiationdependent gene expression in the dentate gyrus in vivo.The Journal of neuroscience : the of fi cial journal of the Society for Neuroscience, 2000, 20: 4563 ~ 4572.
[27] Impey S, McCorkle SR, Cha-Molstad H,et al.De fi ning the creb regulon: A genome-wide analysis of transcription factor regulatory regions. Cell, 2004, 119:1041 ~ 1054.
[28] Wu J, Fang L, Lin Q,et al. The role of nitric oxide in the phosphorylation of cyclic adenosine monophosphate-responsive element-binding protein in the spinal cord after intradermal injection of capsaicin.The journal of pain : official journal of the American Pain Society, 2002, 3: 190 ~ 198.
[29] Ji RR, Rupp F. Phosphorylation of transcription factor creb in rat spinal cord after formalin-induced hyperalgesia: Relationship to c-fos induction. The Journal of neuroscience : the official journal of the Society for Neuroscience, 1997, 17: 1776 ~ 1785.
[30] Messersmith DJ, Kim DJ, Iadarola MJ. Transcription factor regulation of prodynorphin gene expression following rat hindpaw inflammation. Brain research Molecular brain research, 1998, 53: 260 ~ 269.
[31] Hoeger-Bement MK, Sluka KA. Phosphorylation of creb and mechanical hyperalgesia is reversed by blockade of the camp pathway in a time-dependent manner after repeated intramuscular acid injections.The Journal of neuroscience : the of fi cial journal of the Society for Neuroscience, 2003, 23: 5437 ~ 5445.
[32] Duric V, McCarson KE. Neurokinin-1 (nk-1) receptor and brain-derived neurotrophic factor (bdnf) gene expression is differentially modulated in the rat spinal dorsal horn and hippocampus during inflammatory pain. Molecular pain, 2007, 3: 32.
[33] Winter MK, McCarson KE. G-protein activation by neurokinin-1 receptors is dynamically regulated during persistent nociception. The Journal of pharmacology and experimental therapeutics, 2005,315: 214 ~ 221.
[34] 劉若卓,于生元,王賀波,等. 刺激大鼠上矢狀竇區(qū)硬腦膜對中腦導水管周圍灰質c-fos蛋白表達的影響. 中國康復醫(yī)學雜志, 2003, 18: 10 ~ 3.
[35] Bullitt E, Lee CL, Light AR,et al. The effect of stimulus duration on noxious-stimulus induced c-fos expression in the rodent spinal cord. Brain research,1992, 580: 172 ~ 179.
[36] Hoskin KL, Bulmer DC, Goadsby PJ. Fos expression in the trigeminocervical complex of the cat after stimulation of the superior sagittal sinus is reduced by l-name. Neuroscience letters, 1999, 266: 173 ~ 176.
10.3969/j.issn.1006-9852.2017.12.008
國家自然科學基金[National Natural Science Foundation of China (grants 81471147, 81600952, 81500943)];解放軍總醫(yī)院扶持基金[Clinical Support Fund of Chinese PLA General Hospital (grants 2014FC-CXYY-1006)]
△通訊作者 yusy1963@126.com