王 威 徐 靜 萬燕杰
(1 徐州醫(yī)科大學(xué)江蘇省麻醉學(xué)重點實驗室,江蘇省麻醉與鎮(zhèn)痛應(yīng)用技術(shù)重點實驗室,徐州221004;2 上海浦東新區(qū)公利醫(yī)院疼痛科,上海200000)
CCI大鼠延髓頭端腹內(nèi)側(cè)核5-HT1A受體參與疼痛-抑郁共病的可能機制*
王 威1徐 靜2△萬燕杰2
(1徐州醫(yī)科大學(xué)江蘇省麻醉學(xué)重點實驗室,江蘇省麻醉與鎮(zhèn)痛應(yīng)用技術(shù)重點實驗室,徐州221004;2上海浦東新區(qū)公利醫(yī)院疼痛科,上海200000)
目的:探討坐骨神經(jīng)結(jié)扎慢性損傷(chronic constriction injury, CCI)模型大鼠的延髓頭端腹內(nèi)側(cè)核(rostroventromedial medulla, RVM) 5-HT1A受體參與疼痛-抑郁共病的可能機制。方法:雄性SD大鼠36只,隨機分為6組:正常對照組(Normal組,6只),假手術(shù)組(Sham組,6只),坐骨神經(jīng)結(jié)扎手術(shù)組(CCI組,6只),CCI+拮抗劑組(6只),慢性應(yīng)激抑郁模型組(CUMS組,6只),CUMS +拮抗劑組(6只)。其中Normal組不做任何處理,Sham組顱內(nèi)立體定位注射生理鹽水,CCI組結(jié)扎左側(cè)腿部坐骨神經(jīng),CUMS組進行應(yīng)激刺激,持續(xù)30天;在30天后,對于CCI組和CUMS組造模成功的大鼠,分別腦立體定位注射5-HT1A受體拮抗劑Way-100635 (0.1 mg/Kg),測量各組機械超敏閾值(mechanical withdrawal threshold, MWT)和熱縮爪潛伏期(thermal withdrawal latency, TWL)。所有組均進行強迫游泳測試,測量大鼠在水中的漂浮不動時間。取RVM和脊髓腰骶膨大,分別通過Western blotting和免疫熒光檢測RVM內(nèi)5-HT1A受體的表達,通過免疫組化測量脊髓背角內(nèi)5-HT的表達。結(jié)果:與Sham組相比,CCI組的MWT和TWL均呈降低的趨勢,并且在2周左右時降到最低,隨后維持穩(wěn)定,強迫游泳實驗中的漂浮狀態(tài)時間顯著延長(P< 0.05),同時5-HT1A受體在RVM內(nèi)表達增多,脊髓中5-HT表達增高,但當(dāng)RVM內(nèi)注射5-HT1A受體拮抗劑后,脊髓內(nèi)的5-HT表達量顯著減少(P< 0.05);與Normal組相比,CUMS組的MWT和TWL逐漸降低,漂浮狀態(tài)的時間達到最長(P< 0.05),同時5-HT1A受體在RVM內(nèi)表達比CCI組增加的更明顯,脊髓中5-HT表達增高,注射5-HT1A受體拮抗劑以后,CCI組和CUMS組的MWT和TWL均比注射前閾值增高(P<0.05),強迫游泳時間降低(P< 0.05),并且RVM中的5-HT1A受體表達增高,脊髓內(nèi)5-HT表達量減少(P< 0.05)。結(jié)論:RVM內(nèi)的5-HT1A受體可能參與了疼痛-抑郁共病的發(fā)生機制。
慢性疼痛;下行抑制/易化系統(tǒng);5-HT1A受體;RVM;CCI模型;CUMS模型
慢性疼痛的病人常常伴有厭惡、焦慮、恐懼以及抑郁等負性情緒。目前,由于工作、生活等壓力不斷增加,患有抑郁癥的人群或者潛在人群的比例依然很大,并且有逐年增加的趨勢。而慢性疼痛作為一種常見的抑郁癥刺激因素,正在給人類造成巨大的困擾和負擔(dān)。根據(jù)最新的臨床流行病學(xué)資料顯示,52%慢性疼痛的病人有抑郁癥狀,而65%的抑郁病人有疼痛表現(xiàn)[1]。因此,本研究目的是在疼痛與抑郁共病共同的因素中,尋找一個嶄新的思路。
疼痛與抑郁共病的發(fā)生十分普遍,但是具體機制非常復(fù)雜。目前的國外學(xué)者認為,疼痛與抑郁共病機理主要是因為慢性疼痛導(dǎo)致中樞和外周產(chǎn)生炎癥反應(yīng),繼而引起色氨酸通路變化、下丘腦-垂體-腎上腺軸亢進、氧化/硝化通路激活等反應(yīng),最終導(dǎo)致疼痛抑郁共病的產(chǎn)生[2]。也有研究者認為,慢性疼痛使色氨酸通路內(nèi)的5-HT能神經(jīng)元在負反饋調(diào)節(jié)作用下表達減少而產(chǎn)生抑郁[3]。但是色氨酸通路是通過哪個環(huán)節(jié)發(fā)生作用目前還不清楚。而文獻報道,在與5-HT結(jié)合的突觸前膜內(nèi)7種受體中,5-HT1A受體研究的最為深入[4],但是否參與疼痛抑郁共病機理,仍然不清楚。因此,本實驗通過建立CCI模型和CUMS模型,檢測RVM內(nèi)5-HT1A受體、脊髓內(nèi)5-HT的表達,探討5-HT1A受體是否參與了疼痛與抑郁共病的發(fā)生。
兔多克隆5-HT1A抗體、羊抗兔抗體(sigma公司)、兔抗大鼠5-HT抗體、5-HT1A受體拮抗劑(Way-100635)(sigma公司)
痛行為測定儀(MWT/TWL)(美國life science公司),大鼠腦定位儀(上海欣軟公司),激光共聚焦顯微鏡(德國leica公司),冰凍切片機(德國leica公司),強迫游泳實驗裝置及視頻監(jiān)控軟件(上海欣軟公司)
清潔型雄性SD大鼠36只,250 g左右,上海斯萊克動物研究中心提供。采用隨機數(shù)字表法,將大鼠分為6組:正常對照組(Normal組,6只)、假手術(shù)組(Sham組,6只),坐骨神經(jīng)結(jié)扎手術(shù)組(CCI組,6只),CCI+拮抗劑組(6只),慢性應(yīng)激抑郁模型組(CUMS組,6只),CUMS+拮抗劑組(6只)。CUMS組進行禁食、禁水、晝夜顛倒、夾尾1 min、0℃冰水浴5 min、40℃熱水浴5 min以及傾斜籠子共7種應(yīng)激因子處理,每天隨機進行一種或兩種應(yīng)激因子處理,同種應(yīng)激因子不連續(xù)出現(xiàn),讓老鼠有不可預(yù)知性,持續(xù)1個月,5-HT1A受體拮抗劑組進行大鼠腦立體定位注射,Way-100635的劑量為0.1 mg/kg,加入到1 μl的生理鹽水內(nèi),用2μl的微量注射器5 min注完,坐標為腦內(nèi)RVM區(qū)bregma (-10.5 mm, 0 mm, -8.5 mm)。
測量各組機械超敏閾值(MWT)和熱縮爪潛伏期(TWL),然后各組均進行強迫游泳實驗,通過視頻軟件測量5 min內(nèi)大鼠在28℃左右溫水中的漂浮不動時間。行為學(xué)測試結(jié)束后,取延髓頭端腹內(nèi)側(cè)核群區(qū)域(RVM)及脊髓腰骶膨大,分別通過Western blotting和免疫熒光,檢測RVM內(nèi)5-HT1A受體的表達,通過免疫組化測量脊髓背角內(nèi)5-HT的表達。
(1) CCI模型的建立
首先對大鼠進行稱重,然后采用腹腔注射3%戊巴比妥鈉,30 mg/kg。側(cè)臥位,手術(shù)側(cè)選擇左后肢,術(shù)前消毒鋪巾,用脫毛劑脫毛,在股骨下方大約1 cm處,平行于股骨切開皮膚,用小剝離子鈍性分離肌肉筋膜,充分暴露出坐骨神經(jīng)主干,用剝離子小心分離出坐骨神經(jīng)和周圍軟組織。用羊腸線環(huán)繞坐骨神經(jīng)進行單結(jié)固定,連續(xù)打三個結(jié),每個結(jié)距離1 cm左右,以第一次打結(jié)肌肉產(chǎn)生輕微抽動為準。然后生理鹽水沖洗后縫合組織和皮膚,并用棉簽蘸取少許2%利多卡因涂抹傷口。手術(shù)結(jié)束將大鼠放入籠中,自由環(huán)境中飼養(yǎng)[5,6]。
(2)CUMS模型的建立
CUMS模型的建立主要是參考外文文獻敘述[7],再根據(jù)本實驗室內(nèi)的環(huán)境條件進行操作。在實驗過程中,選擇常見的不可預(yù)見性應(yīng)激刺激,如禁食、禁水(24 h)、鼠籠傾斜、濕籠等。為了使應(yīng)激有明顯的無法預(yù)知性,選擇在白天黑夜任一時間點進行應(yīng)激刺激,并且隨機選擇應(yīng)激條件,每天選擇一種或兩種應(yīng)激刺激,同樣的應(yīng)激刺激不連續(xù)出現(xiàn)。整個制作模型的過程持續(xù)不間斷進行30 d,最后做強迫游泳實驗進行檢測。
(3)熱縮足反射潛伏期(thermal withdrawal latency, TWL)
使用熱輻射刺激儀測定大鼠足底熱痛反應(yīng)潛伏期。每天上午8點準時將大鼠置入潔凈的有機玻璃箱中蓋上擋板使其適應(yīng)1 h,后用熱輻射刺激儀照射大鼠足底,照射開始至大鼠出現(xiàn)抬腿回避時間為熱縮足反射潛伏期。熱刺激強度調(diào)節(jié)至基礎(chǔ)值為12~15 s ,并且在整個實驗過程中維持一致,自動切斷時間為25 s,以免造成熱輻射損傷,為避免或減少前一次刺激對隨后刺激效應(yīng)造成的影響,同一部位刺激的間隔時間為10 min,記錄時間,連續(xù)測定至少3次。
(4)機械超敏閾值(mechanical withdrawal threshold, MWT)
使用電子測痛儀進行,測定時間固定在上午10點,室內(nèi)溫度控制在24℃。在安靜明亮的實驗室內(nèi),將大鼠放于帶有透明罩子的金屬網(wǎng)架子上,金屬網(wǎng)離桌面距離約為30 cm。適應(yīng)環(huán)境45 min,大鼠平靜后開始測量。刺激部位在實驗組和參照組一致。大鼠出現(xiàn)縮足反應(yīng)后記錄電子測痛儀所顯示的最大值,在大鼠平靜狀態(tài)下測定3次,取平均值。測量時間點同TWL值。
(5)強迫游泳實驗(forced swim test)
本實驗?zāi)康脑谟跍y試大鼠的抑郁情緒。選取大鼠活動正常的夜間時間進行,并保持實驗過程中光線暗淡,觀察者與實驗動物相隔一定距離,以避免影響動物的行為表現(xiàn)。首先向透明的圓柱形(高:100 cm,直徑:20 cm)玻璃容器內(nèi)注入30 cm深的清水,水溫保持在25℃左右,同時保持室溫在23℃左右。每只大鼠單獨測試。在正式測試前24 h,對大鼠進行預(yù)游泳15 min,讓大鼠熟悉水性和水溫。測試時將大鼠輕放入水中,首先使其適應(yīng)游泳1 min,從第2 min開始記錄后續(xù)5 min內(nèi)大鼠的漂浮不動時間的總和。每次強迫游泳實驗的總時間為6 min。實驗結(jié)束后,迅速將大鼠從水中取出,并拭干其毛發(fā),輕放回飼養(yǎng)籠內(nèi)[8]。
各組大鼠隨機抽取3只,3%戊巴比妥鈉麻醉后,迅速開胸行心內(nèi)灌注,取腰骶膨大(L4-L6),后固定,脫水,切片。
免疫組化步驟:加入3% H2O2以消除內(nèi)源性的過氧化物酶10 min,加入兔源大鼠5-HT (1:300)一抗,4℃孵育24 h。使用兔超敏免疫組化三步法試劑盒操作說明孵育二抗。DAB顯色,貼片,酒精梯度脫水,二甲苯透明,中性樹膠封片,拍照。
免疫熒光步驟:0.3%Triton X-100 透膜30 min,蛋白干粉封閉。 1:300的c-fos一抗,4℃孵育過夜。加入熒光二抗(FITC標記山羊抗兔IgG /FITC 1:1 000),常溫孵育2 h,需要避光。貼片,抗熒光淬滅封片液封片,置于熒光顯微鏡下觀察拍照。
大鼠經(jīng)3%戊巴比妥鈉腹腔注射后處死,迅速斷頭取腦,在冰上分離小腦腹側(cè)的延腦部分,置于EP管中。加組織裂解液和酶抑制劑,冰上勻漿,取上清,BCA法測蛋白含量,配平,加入 SDS-PAGE蛋白上樣緩沖液(5×)。按說明書配置凝膠,加入Marker及樣品,放入電泳裝置中直到溴酚藍到達分離膠底部。取出凝膠,轉(zhuǎn)膜。轉(zhuǎn)膜結(jié)束后,蛋白干粉封閉2 h。孵育小鼠抗大鼠5-HT1A受體一抗(1:500稀釋)、GAPDH一抗 (1:500稀釋), 4℃過夜。加入堿性磷酸酶標記羊抗兔IgG二抗(1:1000),室溫振蕩孵育2 h。NBT/BCIP顯色液顯色,取出條帶掃描。采用image J圖像分析軟件對蛋白條帶的灰度進行分析,計算各組的灰度值,以目的蛋白組與內(nèi)參(GAPDH)組灰度的比值表示目的蛋白的相對表達量。
采用Graph PAD 5.0統(tǒng)計軟件進行數(shù)據(jù)錄入和統(tǒng)計分析,并生成統(tǒng)計圖表。所有計量資料均采用均數(shù)±標準差(±SD)表示。兩組比較用t-test,前后對比使用配對的t檢驗。多組比較采用單因素方差分析(one-way ANOVA),兩兩比較采用TUKEY檢驗。α=0.05,P< 0.05為差異有統(tǒng)計學(xué)意義。
所選大鼠的MWT基礎(chǔ)值相近,相互之間無顯著性差異。Normal組不做任何特殊處理,只做正常飼養(yǎng)。與Sham組對比,CCI組在7天、14天后閾值明顯降低(P< 0.001),隨后維持相對穩(wěn)定。同時,與Normal組相比,CUMS組在30天后閾值明顯降低(P< 0.05),這提示抑郁情緒易造成痛覺過敏。Normal組,Sham組在各時間點差異無統(tǒng)計學(xué)意義。TWL測量值與MWT測量值相似(見圖1)。
圖1 各組大鼠的痛閾變化(0點表示開始建立模型的時間點)A:機械痛敏;B:溫度覺痛敏***P < 0.001,與Sham組相比較;ΔΔP < 0.01,與Normal組和CCI組相比較Fig.1 MWT and TWL of each group at different time A: MWT;B: TWL***P < 0.001, compared with Sham group; ΔΔP < 0.01, compared with Normal group and CCI group.
對造模成功的CCI組和CUMS組進行顱腦定位注射拮抗劑,測量MWT,CCI組和CUMS組在與注射拮抗劑后比較,閾值均有增高(P< 0.05);測量TWL,CCI組與注射拮抗劑后比較,閾值增高(P<0.05),CUMS組與注射拮抗劑后比較,閾值增高的更顯著(P< 0.001,見圖2)。
在5 min強迫游泳實驗過程中,強迫游泳系統(tǒng)軟件測試了三種狀態(tài):漂浮狀態(tài)、游泳狀態(tài)、掙扎狀態(tài)。在測試前一天對大鼠進行15 min的預(yù)游泳實驗熟悉水性。數(shù)據(jù)顯示,Normal組游泳狀態(tài)時間明顯多于其他各組,不動時間最少。與Normal組相比,CUMS組漂浮不動時間明顯延長(P< 0.01),CCI組漂浮時間較Sham組相對延長(P< 0.05);注射拮抗劑后,CCI+拮抗劑組與CCI組相比,漂浮時間縮短 (P< 0.05),CUMS+拮抗劑組與CUMS組相比,漂浮時間也明顯減少(P< 0.01),這提示長時間慢性疼痛易產(chǎn)生抑郁情緒(見表1)。
RVM內(nèi)的5-HT主要由腦干部位的下行纖維合成釋放,而5-HT又分為5-HT1、5-HT2、5-HT3等受體,其中5-HT1A受體與抑郁情緒關(guān)系最密切。Western blotting分析顯示,與Normal、Sham組對比,CCI組RVM內(nèi)5-HT1A受體表達量增加(P<0.05), CUMS組RVM內(nèi)5-HT1A表達量增加更明顯(P< 0.01)。從免疫熒光的結(jié)果顯示,CCI組RVM內(nèi)5-HT1A受體的表達明顯高于Normal組,但少于CUMS組,同時相對應(yīng)的拮抗劑組要明顯減少(P<0.01)。結(jié)果顯示,就5-HT1A受體表達量而言,明顯與CUMS引發(fā)的抑郁情緒更相關(guān)(見圖3)。
圖2 各組大鼠注射拮抗劑前后的MWL、TWL值Bregma (-10.5 mm, 0 mm, -8.5 mm)A:機械痛敏;B:溫度覺痛敏*P < 0.05,CCI組與CCI+拮抗劑組比較,CUMS組與CUMS+拮抗劑組比較;#P < 0.05,與CCI組比較;###P < 0.001,與CUMS組比較Fig.2 Comparison of MWT and TWL after injection of antagonists between group CCI and CUMS A:MWT; B:TWL*P < 0.05, CCI group vs. CCI+antagonist group and CUMS group vs. CUMS+antagonist group; #P < 0.05, compared with CCI group; ###P < 0.001,compared with CUMS group.
表1 強迫游泳實驗中大鼠行為比較 (n = 6,±SD)xTable 1 Comparison of the swimming time of rats in forced swimming test (n = 6,±SD)
表1 強迫游泳實驗中大鼠行為比較 (n = 6,±SD)xTable 1 Comparison of the swimming time of rats in forced swimming test (n = 6,±SD)
*P < 0.05,與Sham組比較;**P < 0.01,與Normal組比較;#P < 0.05,與CCI組相比較;&&P < 0.01,與CUMS組相比較*P < 0.05, compared with Normal group; **P < 0.01, compared with Sham group; #P < 0.05, compared with CCI group; &&P < 0.01, compared with CUMS group.
游泳狀態(tài)時間(S)Swimming time (s)Normal 32.36±17.47 267.7±17.47 Sham 33.27±15.23 259.6±20.98 CCI 138.27±19.43* 161.63±19.43 CCI+拮抗劑 35.67±11.61# 264.3±11.61 CUMS 240.2±29.67** 59.82±29.67 CUMS+拮抗劑 86.48±22.49&& 213.5±22.49組別Groups漂浮狀態(tài)時間(S)Floating time (s)
5-HT是下行調(diào)節(jié)通路中傳遞傷害性信息的主要神經(jīng)遞質(zhì)。目前研究認為,疼痛程度與脊髓5-HT的表達呈正相關(guān)。與Normal組比較,CCI組脊髓內(nèi)5-HT表達量增加(P< 0.01),CUMS組脊髓內(nèi)5-HT表達量也增加(P< 0.05),這提示兩組5-HT1A受體表達增加,在下行調(diào)節(jié)因素的影響下,通過神經(jīng)遞質(zhì)5-HT傳遞到脊髓,引起脊髓5-HT表達的增加,從而導(dǎo)致痛覺過敏的形成。另外兩組注射拮抗劑后,脊髓5-HT表達降低,也間接說明下行因素參與了調(diào)節(jié)。
慢性疼痛伴發(fā)的抑郁情緒,至今為止尚且不清楚具體的發(fā)病機制,而臨床上能夠證實的是,慢性疼痛可以伴發(fā)抑郁情緒,抑郁情緒又可以進一步加重疼痛,兩者相互促進的正反饋不斷加重病人的痛苦[9],這值得我們進一步的關(guān)注和研究。
為了更好的研究慢性疼痛與抑郁共病現(xiàn)象,我們引入了與疼痛抑郁有關(guān)的CCI模型以及與抑郁有關(guān)的CUMS模型。張玉秋等認為CCI模型導(dǎo)致的慢性疼痛,是一種情緒反應(yīng)與疼痛感受的混合[10]。研究發(fā)現(xiàn),在大鼠結(jié)扎坐骨神經(jīng)14天后,開始出現(xiàn)焦慮抑郁等情緒反應(yīng),并且能夠維持3個月左右。這表明CCI模型大鼠在14天以后就已經(jīng)開始呈現(xiàn)疼痛與抑郁共病的狀態(tài)。本實驗通過強迫游泳實驗,對CCI模型組的大鼠進行檢測,發(fā)現(xiàn)痛閾降低,漂浮不動時間增加,說明有疼痛與抑郁共病的表現(xiàn)。
近年的研究認為,RVM是疼痛與抑郁共病有關(guān)的一個重要核團,主要由中縫大核及其鄰近的腹側(cè)網(wǎng)狀結(jié)構(gòu)組成。當(dāng)疼痛發(fā)生時,痛覺信息的傳導(dǎo)由外周感受器通過背根神經(jīng)元傳遞到脊髓背角,經(jīng)由背側(cè)丘腦到達感覺皮層,然后脊髓上中樞通過下行性調(diào)節(jié)系統(tǒng)對傷害性信息進行調(diào)控[11],而RVM是下行性調(diào)節(jié)系統(tǒng)的關(guān)鍵核團,是傷害性痛覺信息傳遞到脊髓上水平的重要媒介。同時,海馬、杏仁核、扣帶回等這些介導(dǎo)情緒反應(yīng)的核團與RVM存在著直接或者間接的神經(jīng)投射[12]。因此,本實驗選擇RVM作為研究疼痛與抑郁共病的主要核團。
圖3 RVM內(nèi)5-HT1A的檢測(免疫蛋白印跡和免疫熒光)A:細胞核染RVM熒光切片(100×, bar=100 μ);B:RVM內(nèi)5-HT1A受體的Western blotting 條帶(內(nèi)參為GAPDH)以及各組5-HT1A受體的相對表達量;C~H:RVM內(nèi)5-HT1A的免疫熒光圖片(200×, bar=200 μ),C:Normal組;D:Sham組;E:CCI組;F:CCI+拮抗劑組;G:CUMS組;H:CUMS+拮抗劑組;I:各組的5-HT1A陽性計數(shù) *P < 0.05,與Sham組比較;***P < 0.001,與Normal組比較;#P < 0.05,CCI組與CCI+拮抗劑組比較,###P < 0.001, CUMS組與CUMS+拮抗劑組比較Fig.3 The expression of 5-HT1A ,western blotting and immuno fl uorescence in RVM A: RVM nuclear staining fluorescence slice (100×, bar=100 μm); B: Western blotting band of 5-HT1A receptors in RVM ( reference gene GAPDH) and the relative expression of 5-HT1A receptors each group; C~ H: The 5-HT1A receptor immune fl uorescence image in RVM (200×,bar=200 μm), C: Normal group; D: Sham group; E: CCI group; F: CCI+antagonist group; G:CUMS group, H: CUMS+antagonist group; I: 5-HT1A positive count of each group. *P < 0.05, compared with Sham group; ***P < 0.001, compared with Normal group; #P < 0.05, CCI group vs. CCI+antagonist group; ###P < 0.001, CUMS group vs. CUMS+antagonist group.
在生理機制方面,疼痛與抑郁共病的發(fā)生機制十分復(fù)雜,并且沒有統(tǒng)一的說法。Leonard等[13]認為慢性疼痛能使中樞和外周產(chǎn)生炎癥反應(yīng),進而激活氧化/硝化應(yīng)激通路導(dǎo)致抑郁。Maes等[14]認為下丘腦-垂體-腎上腺軸在慢性疼痛和PICs作用下明顯亢進,促進抑郁的產(chǎn)生。Fukuhara等[15]認為慢性疼痛導(dǎo)致腦內(nèi)腦源性營養(yǎng)因子的改變以及神經(jīng)再生修復(fù)障礙產(chǎn)生抑郁。Kim等[16]則是通過改變吲哚2,3雙加氧酶和色氨酸2,3雙加氧酶的活性,認為疼痛與抑郁共病與色氨酸代謝通路有關(guān)。Millan等[17]的研究結(jié)果提示5-HT1A受體可以促進傷害性感受過程,而Szewczyk[18]則認為5-HT1A受體主要參與了抑郁的發(fā)生,原因在于RVM內(nèi)的5-HT1A受體表達增加,通過負反饋作用調(diào)節(jié)5-HT神經(jīng)元放電,減少神經(jīng)元突觸后膜5-HT神經(jīng)遞質(zhì)釋放以及減少放電頻率;另一種觀點認為,抑郁情緒的產(chǎn)生機制是因為5-HT1A自身受體超敏,導(dǎo)致其與Gi蛋白偶聯(lián)增加,抑制了突觸后膜釋放5-HT[19]。那么5-HT1A受體是否參與了疼痛與抑郁共病,目前還未見報道。本實驗結(jié)果顯示,CCI組大鼠5-HT1A受體表達增多,對CCI組的大鼠注射5-HT1A受體拮抗劑后,大鼠的漂浮不動狀態(tài)時間有所減少,也就是抑郁情緒得到緩解,同時大鼠的痛閾閾值增高,疼痛也減輕,這從反面證實了5-HT1A受體參與了疼痛與抑郁共病的發(fā)生。因此本實驗推測,RVM內(nèi)5-HT1A受體過度表達,導(dǎo)致與5-HT結(jié)合增多,使突觸間隙內(nèi)的5-HT含量減少,最終通過色氨酸代謝通路的改變,導(dǎo)致疼痛與抑郁共病的產(chǎn)生。
圖4 免疫組化對脊髓背角5-HT的表達檢測(100×, bar = 100 μm)A:Normal組;B:Sham組;C:CCI組;D:CUMS組;E:CCI+拮抗劑組;F:CUMS+拮抗劑組;G:各組陽性計數(shù)*P < 0.05,**P < 0.01,與 Normal組比較Fig.4 Immunohistochemistmy showing the expressions of 5-HT (100×, bar = 100 μm)A: Normal group; B: Positive count of each group; C: CCI group; D: CUMS group; E: CCI+ antagonist group; F: CUMS+antagonist group* P < 0.05, **P < 0.01, compared with Normal group.
本實驗結(jié)果還發(fā)現(xiàn),抑郁情緒可以影響疼痛。Ikeda等[20]通過臨床實驗,將癌癥晚期病人放在具有薰衣草香味的環(huán)境中,發(fā)現(xiàn)欣快的感覺會減輕疼痛。還發(fā)現(xiàn)將動物處于檸檬味環(huán)境中兩周,能增加對熱刺激的痛閾,減輕福爾馬林誘發(fā)的痛行為。令人欣快的情緒可以減輕疼痛,那么抑郁等不良情緒是否加劇疼痛呢?付等通過條件性位置回避實驗,利用足底注射福爾馬林等方式,發(fā)現(xiàn)痛厭惡情緒可以使疼痛加重[21]。本實驗CUMS組脊髓內(nèi)5-HT表達增加,痛閾降低,而以往研究證實病理情況下,疼痛與5-HT表達呈正相關(guān)。因此,本實驗推測抑郁發(fā)生時,5-HT1A受體表達增多,在負反饋調(diào)節(jié)下,5-HT釋放減少,然后在大腦皮層更高級中樞的作用下,通過下行調(diào)節(jié)因素或者其他因素影響,使脊髓內(nèi)5-HT表達增加,從而產(chǎn)生閾值降低,痛覺過敏的現(xiàn)象。反之,在拮抗劑的作用下,5-HT被抑制釋放減弱,在下行抑制系統(tǒng)的作用下,脊髓5-HT表達減少,導(dǎo)致對疼痛刺激耐受性提高。
綜上所述,我們得出結(jié)論,5-HT1A受體參與了疼痛與抑郁共病的發(fā)生,其機制可能是受傷害性信息刺激的影響,5-HT1A受體過度表達,影響了5-HT神經(jīng)能代謝,最終導(dǎo)致疼痛與抑郁共病的產(chǎn)生。
[1]Cryan JF, Page ME, Lucki I. Differential behavioral effects of the antidepressants reboxetine, fl uoxetine, and moclobemide in a modi fi ed forced swim test following chronic treatment. Psychopharmacology, 2005,182(3):335 ~ 344.
[2]Walker AK, Kavelaars A, Heijnen CJ,et al. Neuroin flammation and comorbidity of pain and depression. Pharmacol Rev, 2013, 66(1):80 ~ 101.
[3]Kovacs D, Eszlari N, Petschner P,et al. Interleukin-6 promoter polymorphism interacts with pain and life stress influencing depression phenotypes. J Neural Transm, 2016, 123:1 ~ 8.
[4]Celada P, Puig M, Amargósbosch M,et al.The therapeutic role of 5-HT1A and 5-HT2A receptors in depression. J Psychiatry Neurosci, 2004, 29(4): 252 ~ 265.
[5]王英,鄢建勤. P2X3受體在疼痛機制中的作用.中國疼痛醫(yī)學(xué)雜志, 2009, 15(3):177 ~ 180.
[6]Gabay E, Tal M. Pain behavior and nerve electrophysiology in the CCI model of neuropathic pain. Pain,2004, 110(1-2):354 ~ 360.
[7]Gong X, He M, Yang J,et al. Effects of Xiaoyao Powder on the gastrointestinal motility in CUMS model rats.Pharmacology & Clinics of Chinese Materia Medica,2013, 29(5):3 ~ 5.
[8]Qi X, Lin W, Li J,et al. The depressive-like behaviors are correlated with decreased phosphorylation of mitogenactivated protein kinases in rat brain following chronic forced swim stress. Behav Brain Res, 2006, 175(175):233 ~ 240.
[9]Hawker GA, Gignac MA, Badley E,et al. A longitudinal study to explain the pain-depression link in older adults with osteoarthritis. Arthritis Care Res, 2011,63(10):1382 ~ 1390.
[10]Zhang YQ, Wu GC, [Endogenous descending inhibitory/facilitatory system and serotonin (5-HT)modulating spinal nociceptive transmission]. Sheng Li Ke Xue Jin Zhan, 2000. 31(3): 211 ~ 216.
[11]Viisanen H, Pertovaara A. Roles of the rostroventromedial medulla and the spinal 5-HT(1A) receptor in descending antinociception induced by motor cortex stimulation in the neuropathic rat. Neurosci Lett, 2010, 476(3): 133 ~ 137.
[12]Rivat C, Becker C, Blugeot A,et al. Chronic stress induces transient spinal neuroin fl ammation, triggering sensory hypersensitivity and long-lasting anxietyinduced hyperalgesia. Pain, 2010, 150(2):358 ~ 368.
[13]Leonard B, Maes M. Mechanistic explanations how cellmediated immune activation, in fl ammation and oxidative and nitrosative stress pathways and their sequels and concomitants play a role in the pathophysiology of unipolar depression. Neurosci Biobehav Rev, 2012, 36(2):764 ~ 785.
[14]Maes M, Galecki P, Yong SC,et al. A review on the oxidative and nitrosative stress (O&NS) pathways in major depression and their possible contribution to the(neuro)degenerative processes in that illness. Prog neuropsychoph, 2011, 35(3):676 ~ 692.
[15]Fukuhara K, Ishikawa K, Yasuda S,et al. Intracerebroventricular 4-Methylcatechol (4-MC) Ameliorates Chronic Pain Associated with Depression-Like Behavior via Induction of Brain-Derived Neurotrophic Factor (BDNF).Cell Mol Neurobiol, 2011, 32(6):971 ~ 977.
[16]Kim H, Chen L, Lim G,et al. Brain indoleamine 2,3-dioxygenase contributes to the comorbidity of pain and depression. J Clin Invest, 2012, 122(8):2940 ~ 2954.
[17]Bervoets K, Rivet JM, Millan MJ. 5-HT1A receptors and the tail-flick response. IV. Spinally localized 5-HT1A receptors postsynaptic to serotoninergic neurones mediate spontaneous tail-flicks in the rat. J Pharmacol Exp Ther, 1993, 264(1):95 ~ 104.
[18]Szewczyk B, Albert P R, Rogaeva A,et al. Decreased expression of Freud-1/CC2D1A, a transcriptional repressor of the 5-HT1A receptor, in the prefrontal cortex of subjects with major depression. Int J Neuropsychoph,2010, 13(8): 1089 ~ 1101.
[19]Horiguchi N, Ago Y, Asada K,et al. Involvement of spinal 5-HT 1A, receptors in isolation rearing-induced hypoalgesia in mice. Psychopharmacology, 2013,227(2):251 ~ 261.
[20]Ikeda H, Takasu S, Murase K. Contribution of anterior cingulate cortex and descending pain inhibitory system to analgesic effect of lemon odor in mice. Mol Pain, 2014,10(1):1 ~ 8.
[21]付彤童, 徐靜, 萬燕杰,等. 痛厭惡情緒對疼痛的影響及其可能機制. 中國疼痛醫(yī)學(xué)雜志, 2016, 22(6):428 ~ 435.
THE MECHANISMS OF 5-HT1A RECEPTORS IN THE ROSTROVENTROMEDIAL MEDULLA IN MEDIATING PAIN-DEPRESSION COMORBIDITY IN SCIATIC NERVE LIGATION RATS*
WANG Wei1, XU Jing2Δ, WAN Yan-Jie2
(1The Key Laboratory of Anesthesiology, Institute of Anesthesiology of Jiangsu Province, Xuzhou Medical university,Xuzhou 221004, China;2Pain Department, Shanghai Pudong Gongli Hospital, Shanghai 200120, China)
Objective:To explore the mechanisms involved in pain-depression comorbidity of 5-HT1A receptors in the rostroventromedial medulla(RVM) of rats with sciatic nerve ligation (chronic constriction injury, CCI). Methods: Thirty six male SD rats were randomly divided into 6 groups: Normal control group (Normal,n= 6) , Sham operation group (Sham,n= 6), sciatic nerve ligation group (CCI,n= 6),CCI+antagonist group (n= 6), chronic stress depression model group (CUMS,n= 6), CUMS+antagonist group (n= 6). Normal control group did not perform any operation. Sham group had no other operation except intracranial stereotaxic injection of saline solution. In CCI and CUMS groups, the 5-HT1A receptor antagonist Way-100635 (0.1 mg/Kg) were injected into the brain aftre 30 days, after the successful modeling. Then, the mechanical withdrawal threshold (MWT) and the thermal withdrawal latency (TWL)were measured. At the end of the behavior test, the forced swimming test was conducted in all groups and the immobility time was recorded. After the forced swimming test, rats were sacri fi ced and the RVM and lumbosacral enlargement were taken out. The Western blotting and immuno fl uorescence were used to detect the 5-HT1A receptors in RVM and the immuno fl uorescence was used to test the 5-HT expression in spinal cord. Results: Compared with Sham group, the CCI group showed a decreased trend of MWT and TWL and the lowest MWT and TWL were observed at 2 weeks, then they maintain stability. The fl oating time in forced swimming test was signi fi cantly prolonged compared with Sham group (P< 0.05). At the same time, the expression of 5-HT1A receptors in the RVM and 5-HT in the spinal cord were increased (P< 0.05).The expression of 5-HT in the spinal cord was decreased (P< 0.05) after 5-HT1A receptor antagonist was injected into the RVM. The TWL and MWT of the CUMS group were gradually decreased and the time of the fl oating state reach the maximum compared with Normal group. Besides, the expression of 5-HT1A receptor in the RVM was more obviously than that in the CCI group and the expression of 5-HT in the spinal cord was increased. When the 5-HT1A receptor antagonist was administered, the MWT and TWL of CCI and CUMS group were higher than before and the expression of 5-HT1A receptors in RVM were increased and the expression of 5-HT in the spinal cord and the forced swimming time were all decreased (P< 0.05).Conclusion: 5-HT1A receptor of RVM may be involved in the mechanism of the generation of paindepression comorbidity.
Chronic pain; Descending facilitatory/inhibition system; 5-HT1A receptor; RVM; CCI model;CUMS model
10.3969/j.issn.1006-9852.2017.04.004
浦東新區(qū)衛(wèi)生系統(tǒng)學(xué)科帶頭人培養(yǎng)計劃項目(PWRd2014-05)
△通訊作者 djxx02@163.com