徐巧云 胡良宇 王夢(mèng)芝
(揚(yáng)州大學(xué)動(dòng)物科學(xué)與技術(shù)學(xué)院,揚(yáng)州 225009)
蛋氨酸在動(dòng)物體內(nèi)代謝途徑與周轉(zhuǎn)機(jī)制
徐巧云 胡良宇*王夢(mèng)芝**
(揚(yáng)州大學(xué)動(dòng)物科學(xué)與技術(shù)學(xué)院,揚(yáng)州 225009)
蛋氨酸(Met)是動(dòng)物機(jī)體的必需氨基酸,可作為合成蛋白質(zhì)的底物,也是機(jī)體代謝重要的甲基和巰基供體,同時(shí)還參與多胺的形成。為此,Met的供應(yīng)狀況以及其在體內(nèi)的代謝途徑影響著機(jī)體的生長(zhǎng)性能、生理活動(dòng),乃至于DNA和功能蛋白質(zhì)的甲基化修飾,進(jìn)而影響機(jī)體正常的生命活動(dòng)。本文就Met的4種代謝通路及其相應(yīng)的周轉(zhuǎn)機(jī)制進(jìn)行綜述,以期為Met代謝機(jī)理研究和合理科學(xué)應(yīng)用提供參考。
蛋氨酸;代謝途徑;周轉(zhuǎn)機(jī)制
*同等貢獻(xiàn)作者
**通信作者:王夢(mèng)芝,副教授,碩士生導(dǎo)師,E-mail: mengzhiwangyz@126.com
蛋氨酸(methionine,Met)是構(gòu)成蛋白質(zhì)的一種含硫的非極性脂肪族氨基酸,又稱(chēng)甲硫氨酸,也是唯一含硫醚結(jié)構(gòu)的氨基酸。Met具有非極性側(cè)鏈,呈厭水性,有L型及DL型,天然存在的都是L型。作為必需氨基酸,除作為底物合成蛋白質(zhì)外,Met還是機(jī)體主要的甲基和巰基供體。研究表明,在蛋氨酸腺苷轉(zhuǎn)移酶作用下,Met激活后轉(zhuǎn)變成S-腺苷蛋氨酸(S-adenosyl methionine,SAM),可提供1個(gè)甲基參與體內(nèi)甲基轉(zhuǎn)移作用的生化反應(yīng),在機(jī)體生理功能和生化反應(yīng)中起到不可替代的重要代謝與調(diào)控作用[1]。如,體內(nèi)合成膽堿即需要Met提供甲基,通過(guò)參與膽堿的合成、DNA和蛋白質(zhì)的甲基化等過(guò)程參與機(jī)體組織生理代謝活動(dòng)[2]。SAM在S-腺苷蛋氨酸依賴(lài)性甲基化酶作用下發(fā)生轉(zhuǎn)甲基生成S-腺苷高半胱氨酸(S-adenosylhomocysteine,SAH),SAH進(jìn)一步水解生成高半胱氨酸(homocys-teine,Hcy)。除此之外,Hcy依次在β-胱硫醚合成酶和γ-胱硫醚酶的作用下生成半胱氨酸(cysteine,Cys),進(jìn)而參與谷胱甘肽、?;撬岬壬锘钚晕镔|(zhì)的合成過(guò)程[3]。Met所含的巰基能清除自由基,具有一定的抗氧化能力[4]。另外,Met還參與多胺的形成,促進(jìn)細(xì)胞的生長(zhǎng)和蛋白質(zhì)的合成[5]。Met在動(dòng)物體內(nèi)的多種代謝途徑相互之間有協(xié)同和競(jìng)爭(zhēng)的關(guān)系,并影響其相應(yīng)的生物學(xué)功能,但其具體代謝機(jī)制及生理作用的解釋尚不完整。本文即對(duì)Met在動(dòng)物機(jī)體中各代謝途徑及其相應(yīng)的代謝調(diào)控等的研究進(jìn)行綜合分析,以期為Met在機(jī)體內(nèi)的代謝機(jī)理研究,以及在動(dòng)物生產(chǎn)中的科學(xué)應(yīng)用提供一些參考。
Met是無(wú)法在動(dòng)物機(jī)體內(nèi)自身生成,必須由外部提供的必需氨基酸,也是多種家畜在多種飼糧條件下的限制性氨基酸[6],在動(dòng)物生產(chǎn)中已經(jīng)有了較為廣泛的研究和應(yīng)用。不同的畜禽品種及其不同生理階段有不同的Met需求量。例如,Klemesrud等[7]認(rèn)為,生長(zhǎng)牛需要可代謝蛋白質(zhì)0.39 kg/d,其中所需Met為3.1%。NRC(2001)[8]建議奶牛的可代謝蛋白質(zhì)中含有2.4%的Met。Saki等[9]回歸分析則表明,22~36周齡蛋雞的Met或Met+Cys需要量分別為0.31%、0.60%。Met可通過(guò)小腸吸收通道被吸收進(jìn)入機(jī)體的血液、肝臟、乳腺、皮膚等各組織進(jìn)行代謝,但所進(jìn)食的Met在體內(nèi)是一個(gè)動(dòng)態(tài)代謝的過(guò)程[10]。Met在機(jī)體組織中被轉(zhuǎn)運(yùn)入細(xì)胞的活性受細(xì)胞內(nèi)Met庫(kù)的影響,轉(zhuǎn)運(yùn)進(jìn)入細(xì)胞速率的差異是由于細(xì)胞內(nèi)Met濃度的影響,并不改變轉(zhuǎn)運(yùn)系統(tǒng)[11]。采用35S標(biāo)記Met對(duì)大鼠的研究表明,孕期至產(chǎn)后大鼠門(mén)靜脈Met總的周轉(zhuǎn)速率(K)在0.020 31~0.028 70變化[12]。
Met在各種動(dòng)物機(jī)體、各種組織細(xì)胞中參與代謝活動(dòng),其代謝過(guò)程有多種酶參與的、復(fù)雜的生物化學(xué)反應(yīng)體系。作為底物的Met參與蛋白質(zhì)的生物合成,在原核生物中甲酰化的Met還是其蛋白質(zhì)生物合成的起始氨基酸。Met另外還可被ATP活化轉(zhuǎn)變成SAM,作為甲基供體參與肌酸、膽堿的合成;同時(shí)在代謝中還有轉(zhuǎn)硫作用的功能[13]??傮w來(lái)看,Met代謝主要是由圍繞Met-Hcy循環(huán)的4個(gè)代謝通路組成。第1條通路是Met庫(kù)和蛋白質(zhì)之間的可逆交換,生長(zhǎng)動(dòng)物體內(nèi)Met的主要去路是參與蛋白質(zhì)合成;第2條通路是轉(zhuǎn)甲基化生成SAM,SAM是重要的活性甲基供體,在轉(zhuǎn)甲基后可通過(guò)膽堿或四氫葉酸再甲基化而生成Met,以形成Met循環(huán)以避免體內(nèi)轉(zhuǎn)甲基作用導(dǎo)致的Met的大量損耗;第3條通路是SAM參與多胺形成;第4條通路是轉(zhuǎn)巰基反應(yīng)生成胱硫醚,并進(jìn)一步生成Cys,轉(zhuǎn)巰基反應(yīng)是不可逆反應(yīng)。下面將就4種通路分別討論其代謝機(jī)制及生理作用。
Met作為蛋白質(zhì)生物合成的底物,直接參與蛋白質(zhì)的合成。Met在蛋氨酰tRNA合成酶催化下,利用ATP供能,在氨基酸羧基上進(jìn)行活化,形成氨基酰-腺苷一磷酸(AMP),再與氨基酰tRNA合成酶結(jié)合形成三聯(lián)復(fù)合物,此復(fù)合物再與轉(zhuǎn)運(yùn)Met的tRNA結(jié)合。tRNA將氨基酰轉(zhuǎn)移到tRNA的氨基酸臂(即3′末端CCA-OH)上,在mRNA的指導(dǎo)下由其反密碼子辨識(shí)密碼帶到mRNA相應(yīng)的位置上作用,延長(zhǎng)肽鏈并最終合成蛋白質(zhì)。同時(shí),氨酰tRNA合成酶專(zhuān)一性極強(qiáng),并進(jìn)行回查,一旦發(fā)現(xiàn)連接錯(cuò)誤,會(huì)及時(shí)將其水解,以保證翻譯的正確性[14]。
作為動(dòng)物機(jī)體蛋白質(zhì)合成的必需氨基酸,Met是多種飼糧條件下的多數(shù)動(dòng)物生長(zhǎng)和生產(chǎn)的限制性氨基酸,甚至第一限制性氨基酸,如產(chǎn)毛動(dòng)物[15]。肉雞缺乏Met表現(xiàn)為甲狀腺素(T3)的水平較低[16]。Met影響動(dòng)物的生理、生長(zhǎng)或生產(chǎn),如幼鼠缺少M(fèi)et即不能正常地生長(zhǎng)發(fā)育;生長(zhǎng)期雞只采食、不增重,以及胰島素樣生長(zhǎng)因子(IGF)-1、IGF-2等生長(zhǎng)相關(guān)因子的水平降低[17]。而動(dòng)植物蛋白質(zhì)的生理價(jià)值在一定程度上取決于其Met含量。研究表明,隨著仔豬飼糧提高0.28%~0.48% Met水平,料重比顯著降低,平均日增重顯著增加,采食量也有增加的趨勢(shì)[3]。Wen等[3]在1~21日齡和22~42日齡肉雞飼糧中分別添加0.60%和0.53% Met,結(jié)果表明,肉雞的日增重和胸肌率有所提高,料重比降低,且肝臟的蛋白質(zhì)降解能力隨著飼糧Met水平的上升而有所下降。
對(duì)于Met作為營(yíng)養(yǎng)物質(zhì)底物參與合成蛋白質(zhì)的研究表明,豚鼠巨核細(xì)胞利用標(biāo)記35S-Met的蛋白質(zhì)合成在其攝入后24 h內(nèi)完成[18];采用13C-Met、3H-Met同位素標(biāo)記研究仔豬Met的代謝結(jié)果表明,有約80%的Met用于了機(jī)體蛋白質(zhì)的合成[19]。相應(yīng)的補(bǔ)充一定量的Met則可提高動(dòng)物的生長(zhǎng)、生產(chǎn)等性能[20-21],比如,飼糧補(bǔ)充Met可以提高綿羊的產(chǎn)毛性能;補(bǔ)充Met以及替代物皆明顯的增加大鼠增重[22];補(bǔ)充瘤胃保護(hù)性Met可以提高奶牛產(chǎn)奶高峰至中期的牛奶產(chǎn)量[23],提高必需氨基酸的利用效率[24]。目前,畜牧生產(chǎn)中已廣泛使用合成Met添加劑,以補(bǔ)充天然飼料原料中Met的不足,提高飼料中蛋白質(zhì)的消化利用率。
甲基化是蛋白質(zhì)和核酸的一種重要的修飾,如DNA甲基化能關(guān)閉某些基因的活性,去甲基化則誘導(dǎo)了基因的重新活化和表達(dá)[25];而組蛋白甲基化的功能主要體現(xiàn)在異染色質(zhì)形成、基因印記、X染色體失活和轉(zhuǎn)錄調(diào)控方面[26]。作為體內(nèi)最主要的甲基供體,Met供給量則影響著體內(nèi)的甲基化反應(yīng)。14C標(biāo)記Met的研究表明,大鼠肝臟核蛋白含有0.6%標(biāo)記的Met、而組蛋白中含有1.5%標(biāo)記的Met[27]。
S-腺苷甲硫氨酸合成酶(S-adenosylmethionine synthetase),亦稱(chēng)蛋氨酸腺苷轉(zhuǎn)移酶 (methionine adenosyltransferase,MAT),催化Met和ATP形成SAM。附著在SAM中的甲基基團(tuán)高度活化,在轉(zhuǎn)甲基反應(yīng)中多種甲基轉(zhuǎn)移酶(methyl transferase,MTs)的催化下很容易轉(zhuǎn)到受體底物上而形成許多甲基化合物。SAM的供給量影響著細(xì)胞內(nèi)從DNA甲基化[28]到與細(xì)胞膜流動(dòng)性有關(guān)的磷脂甲基化[29]等多數(shù)的甲基化反應(yīng)。如,大腦組織中關(guān)鍵蛋白質(zhì)甲基化的變化在神經(jīng)組織退化過(guò)程中起著很重要的作用;嚙齒類(lèi)動(dòng)物飼糧中Met等甲基供體的缺乏程度與DNA低甲基化程度有一定的關(guān)系,并影響著肝癌等疾病的發(fā)生程度[30],而SAM的增加則能夠緩解肝癌的發(fā)展[31]。如圖1所示,為SAM在機(jī)體內(nèi)的代謝通路。SAM在轉(zhuǎn)甲基后生成SAH,后者可在腺苷高半胱氨酸水解酶(AdoHcy hydrolase,AHCY)催化下進(jìn)一步水解Hcy。作為重要的代謝中間產(chǎn)物,Hcy可通過(guò)甜菜堿高半胱氨酸甲基轉(zhuǎn)移酶(betaine-homocysteine methyltransferase,BHMT)由膽堿的代謝產(chǎn)物甜菜堿(betaine)提供甲基,或通過(guò)5-甲基四氫葉酸高半胱氨酸甲基轉(zhuǎn)移酶(methyltetrahydrofolate-homocysteine methylhyltransferase,MS)由葉酸(folate)提供甲基再甲基化生成Met,形成轉(zhuǎn)甲基-再甲基化的Met循環(huán)(methionine cycle)。
MAT:蛋氨酸腺苷轉(zhuǎn)移酶; MTs:甲基轉(zhuǎn)移酶; AHCY:腺苷高半胱氨酸水解酶; BHMT:甜菜堿高半胱氨酸甲基轉(zhuǎn)移酶; MS:5-甲基四氫葉酸高半胱氨酸甲基轉(zhuǎn)移酶; MTHFR:亞甲基四氫葉酸還原酶; THF:四氫呋喃; ATP:腺嘌呤核苷三磷酸; methionine:蛋氨酸; AdoMet:腺苷基蛋氨酸; AdoHcy:腺苷高半胱氨酸; Homocysteine:高半胱氨酸; betaine:甜菜堿; glycine:甘氨酸; Folate Cycle:葉酸循環(huán).
圖1蛋氨酸的轉(zhuǎn)甲基途徑
Fig.1 Methionine transmethylation pathway[12]
該循環(huán)的生理意義在于可間接再生成獲得Met,以防在轉(zhuǎn)甲基通路中Met的大量消耗。采用14C、3H標(biāo)記Met灌注仔豬的研究表明,標(biāo)記的Met有約26%參與了轉(zhuǎn)甲基反應(yīng),約8%參與了再甲基化反應(yīng)[19]。分別給35日齡的肉仔雞飼喂含0.55%和0.25% Met的飼糧,19 d試驗(yàn)期后發(fā)現(xiàn):肉雞腹脂率分別為1.62%和1.73%;飼糧轉(zhuǎn)化效率分別為3.1和3.4[32]。Elshorbagy等[33]采用Met限制以及Met+Cys飼喂大鼠試驗(yàn)表明,補(bǔ)飼Cys可通過(guò)調(diào)節(jié)輔酶A去飽和酶1(stearoyl-CoA desaturase-1,SCD-1)活性改善低Met飼糧導(dǎo)致的肥胖。雖然研究表明,生產(chǎn)中Met作為必需氨基酸含量減少0.10%~0.20%時(shí),飼糧甜菜堿和膽堿(各500 mg/kg)能夠減緩因?yàn)镸et不足時(shí)導(dǎo)致的肉雞胸肌產(chǎn)量下降,但不能夠替代其作為必需氨基酸的功能[34],但迄今為止,各甲基供體提供機(jī)體甲基化反應(yīng)的定量關(guān)系還不是十分明了[35]。
多胺包括腐胺、亞精胺和精胺等,通過(guò)調(diào)控細(xì)胞的信號(hào)轉(zhuǎn)導(dǎo)、DNA復(fù)制和轉(zhuǎn)錄,以及蛋白質(zhì)翻譯等發(fā)揮其促進(jìn)生長(zhǎng)的作用;去除多胺則導(dǎo)致細(xì)胞分化的停止[36]。研究證實(shí),多胺是通過(guò)調(diào)控細(xì)胞蛋白質(zhì)的翻譯起始和翻譯延長(zhǎng)機(jī)制影響細(xì)胞的分化[37-38]。細(xì)胞的分化速度還與細(xì)胞內(nèi)多胺的水平有一定的關(guān)系。一般來(lái)說(shuō),細(xì)胞內(nèi)有相對(duì)穩(wěn)定的毫摩爾級(jí)水平的自由多胺,并維持在很窄的范圍變化。過(guò)低的多胺水平導(dǎo)致細(xì)胞分化與生長(zhǎng)速度的降低,而過(guò)高的多胺水平則對(duì)細(xì)胞有毒害作用;對(duì)多胺水平的精準(zhǔn)調(diào)控取決于多胺的合成、相互的轉(zhuǎn)化、轉(zhuǎn)運(yùn)的速度以及定期的氧化分解[39]。
Met代謝的中間產(chǎn)物SAM在S-腺苷蛋氨酸脫羧酶(SAM decarboxylase,AdoMetDC)催化下形成脫羧的S-腺苷蛋氨酸(decarboxylated AdoMet,dcAdoMet)參與多胺的形成[1]。如圖2所示,dcAdoMet和腐胺(putrescine)在亞精胺合成酶(SPD synthase,SPDS)的催化下生成亞精胺(spermidine),同時(shí)產(chǎn)生甲硫腺苷(methylthioadenosine,MTA);進(jìn)而亞精胺再和dcAdoMet在精胺合成酶(SPM synthase,SPMS)作用下生成精胺(spermine)和MTA[5]。副產(chǎn)物MTA可在甲硫腺苷磷酸化酶(MTA phosphorylase,MTAP)催化下生成5-甲硫核糖1-磷酸(5-methylthioribose-1-phosphate),可進(jìn)一步被代謝為Met和腺嘌呤,進(jìn)而補(bǔ)充消耗的Met[5]。
arginine:精氨酸; ariginase:精氨酸酶; ornithine:鳥(niǎo)氨酸; ODC:鳥(niǎo)氨酸脫羧酶; putrescine:腐胺; SPDS:亞精胺合成酶; spermidine:亞精胺; MTA:甲硫腺苷; dcAdoMet:脫羧腺苷甲硫氨酸; SPMS:精胺合成酶; spermine:精胺; MTAP:甲硫腺苷磷酸化酶; 5-methylthioribose-1-phosphate: 5-甲硫核糖1-磷酸; Polyamine synthesis:多胺合成;Methionine salvation pathway:蛋氨酸釋放途徑; AdoMetDC:腺苷甲硫氨酸脫羧酶; AdoMetDC: S-腺苷蛋氨酸脫羧酶; AdoMet:腺苷基蛋氨酸; 5′-deoxyadenosine 5′-radical: 5′-脫氧腺苷5′-自由基; AdoMet radical: 腺苷基蛋氨酸自由基; ARE: 抗氧化反應(yīng)元件.
圖2蛋氨酸和精氨酸與多胺的合成
Fig.2 Synthesis of methionine, arginine and polyamines[12]
理論上講,Met作為多胺合成的前體物之一,其水平影響SAM的合成,進(jìn)而可能影響到多胺的水平。但一般情況下,組織細(xì)胞有效的機(jī)制可以調(diào)控多胺在較小范圍內(nèi)波動(dòng)并維持其正常的水平。其調(diào)節(jié)機(jī)制與不同組織細(xì)胞中代謝Met的MAT同工酶的類(lèi)型有關(guān)。MAT酶有MAT1A和MAT2A2種基因型。研究表明,MAT2A基因的表達(dá)產(chǎn)物同工酶MAT Ⅱ代謝產(chǎn)生較高的多胺水平,并表現(xiàn)出較高的細(xì)胞生長(zhǎng)速度[40]。同時(shí),SAM濃度對(duì)同工酶MAT Ⅱ有很強(qiáng)的負(fù)反饋抑制,表現(xiàn)為在SAM濃度增加時(shí)通過(guò)負(fù)反饋抑制MAT Ⅱ以維持組織多胺的水平[41],維持組織的甲基化反應(yīng);在SAM濃度降低時(shí)則可提高SAH脫羧酶和ODC的活性,以促進(jìn)組織多胺的生成[42],以維持機(jī)體各組織細(xì)胞的代謝與生長(zhǎng)。總體來(lái)說(shuō),機(jī)體的組織更傾向于通過(guò)調(diào)節(jié)轉(zhuǎn)巰基和脫羧基等反應(yīng)來(lái)維持組織的甲基化程度和多胺水平,以維持機(jī)體生理和生命活動(dòng)的穩(wěn)定。
Met是動(dòng)物體內(nèi)最根本的含硫化合物,如圖3所示,為蛋氨酸的轉(zhuǎn)巰基途徑,中間產(chǎn)物Hcy在胱硫醚-β-合成酶(cystathionine-β-synthase,CBS)催化下與絲氨酸(serine)縮合生成胱硫醚(cystathionine),再經(jīng)胱硫醚-γ-裂解酶(cystathionine-γ-lyase,CSE)催化水解生成Cys、α-酮丁酸(α-ketobutyrate)和氨[41,28]。代謝所產(chǎn)生的Cys是體內(nèi)重要的抗氧化劑和自由基清除物谷胱甘肽(glutathione,GSH)的前體物;所產(chǎn)生的α-酮丁酸則轉(zhuǎn)變?yōu)殓晁釂熙oA,通過(guò)三羧酸循環(huán)進(jìn)行代謝。同時(shí),CBS酶和CSE酶在催化過(guò)程中產(chǎn)生內(nèi)源性硫化氫(H2S)分子,Cys在經(jīng)天冬氨酸轉(zhuǎn)氨酶(aspartate aminotransferase,AST)和巰基丙酮酸硫基轉(zhuǎn)移酶(mercaptopyruvate sulfurtransferase,MST)的進(jìn)一步催化代謝為丙酮酸鹽(pyruvate)過(guò)程中也產(chǎn)生內(nèi)源性H2S分子。而H2S被認(rèn)為是繼一氧化氮、一氧化碳以后被發(fā)現(xiàn)的第3種內(nèi)源性氣體信號(hào)分子,可通過(guò)細(xì)胞內(nèi)信號(hào)途徑調(diào)節(jié)許多重要細(xì)胞功能[43-44]。研究表明,大蒜對(duì)心血管保護(hù)的作用機(jī)制也是通過(guò)在紅細(xì)胞內(nèi)使大蒜素衍生的多硫化物代謝產(chǎn)生的H2S而發(fā)揮作用[45]。
homocysteine: 高半胱氨酸; CBS: 胱硫醚-β-合成酶; cystathionine:胱硫醚; CSE:胱硫醚-γ-裂解酶; α-ketobutyrate :α-酮丁酸; cysteine:半胱氨酸; mitochondria:線粒體; glutathione:谷胱甘肽; lanthionine:羊毛硫氨酸; serine: 絲氨酸; H2S:硫化氫; pyruvate:丙酮酸鹽; NH3: 氨氣; mercaptopyruvate:巰基丙酮酸; MST:巰基丙酮酸硫基轉(zhuǎn)移酶; AST:天冬氨酸轉(zhuǎn)氨酶.
圖3蛋氨酸的轉(zhuǎn)巰基途徑
Fig.3 Methionine trans-mercapto pathway[12]
Met可通過(guò)轉(zhuǎn)巰基反應(yīng)轉(zhuǎn)變成重要的Cys,采用14C、3H標(biāo)記Met研究表明,仔豬機(jī)體中有約20%的標(biāo)記Met用于了轉(zhuǎn)巰基反應(yīng)[46]。Met的轉(zhuǎn)巰基通路對(duì)機(jī)體有重要的作用,如提供酶蛋白、膜蛋白等的巰基,維持機(jī)體正常的各項(xiàng)生理生化反應(yīng)[47];同時(shí)富電子的巰基也能適應(yīng)多種氧化狀態(tài)[48];Cys還是GSH的前體物質(zhì),含有巰基的三肽GSH,具有清除自由基、過(guò)氧化物等抗氧化作用和清除重金屬及黃曲霉毒素等解毒作用。Maaike等[19]研究發(fā)現(xiàn),Met水平的降低將導(dǎo)致轉(zhuǎn)巰基反應(yīng)合成Cys的降低,而最終會(huì)降低機(jī)體GSH的水平,進(jìn)而影響機(jī)體的抗氧化功能;Castellano等[49]給斷奶仔豬飼喂限制Met飼糧的結(jié)果表明,肝臟組織GSH水平的降低,皮下脂肪組織氧化狀態(tài)和抗氧化酶活性的提高。值得注意的是,轉(zhuǎn)巰基反應(yīng)生成的Cys并不能再轉(zhuǎn)化為Met,飼糧的Cys僅能部分取代用于轉(zhuǎn)巰基途徑的Met。Finkelstein等[41]給大鼠飼糧額外地添加Cys的研究證實(shí)降低了大鼠肝臟CBS酶活性,以及SAM和絲氨酸的水平,即可降低Met的轉(zhuǎn)巰基代謝而更多地保留Met;而在限制飼糧Met基礎(chǔ)上再補(bǔ)給Cys,并不能提高肝臟中Met的含量[50]。研究還發(fā)現(xiàn),腸道組織利用Met轉(zhuǎn)甲基和轉(zhuǎn)巰基表現(xiàn)為有較高的Hcy凈產(chǎn)量[51]。目前,對(duì)于不同組織的轉(zhuǎn)巰基已經(jīng)有一定的研究結(jié)果,但仍需要在不同種屬及其不同部位做進(jìn)一步的研究以闡明Met在機(jī)體各組織中的轉(zhuǎn)巰基反應(yīng)規(guī)律。
綜上研究表明,Met作為機(jī)體營(yíng)養(yǎng)代謝的必需氨基酸,對(duì)于動(dòng)物機(jī)體的蛋白質(zhì)合成是不可替代的;同時(shí),Met是機(jī)體重要的甲基供體、巰基供體、內(nèi)源性氣體信號(hào)分子H2S的代謝源,而且還調(diào)控機(jī)體多胺的形成。因此,Met的適量供應(yīng)和其代謝的正常進(jìn)行是維持機(jī)體的生理、生長(zhǎng),乃至生命活動(dòng)正常的基礎(chǔ);相反其供應(yīng)的不足則可能導(dǎo)致相關(guān)代謝的紊亂,以至于產(chǎn)生因核酸或功能性蛋白質(zhì)甲基化不足等導(dǎo)致的癌變或其他病理變化。迄今的研究雖然已經(jīng)表明,機(jī)體對(duì)Met的代謝途徑有一定的系統(tǒng)性的調(diào)節(jié),但對(duì)于其在機(jī)體內(nèi)各代謝途徑的量化比例、供應(yīng)不足時(shí)各代謝通路的變化及其對(duì)機(jī)體的影響、相關(guān)代謝替代物之間的代謝分配關(guān)系等還都不得而知,有待于進(jìn)一步的研究與闡明。
[1] LU S C.S-Adenosylmethionine[J].The International Journal of Biochemistry & Cell Biology,2000,32(4):391-395.
[2] ZEISEL S H.Choline:critical role during fetal development and dietary requirements in adults[J].Annual Review of Nutrition,2006,26(1):229-250.
[3] 胡誠(chéng)軍,江青艷,孔祥峰.畜禽蛋氨酸代謝及其生理功能研究進(jìn)展[J].飼料工業(yè),2016,37(15):23-27.
[4] LEVINE R L,MOSKOVITZ J,STADTMAN E R.Oxidation of methionine in proteins: roles in antioxidant defense and cellular regulation[J].IUBMB Life,2000,50(4/5):301-307.
[5] LU S C,MATO J M.S-adenosylmethionine in liver health,injury,and cancer[J].Physiolo cal Reviews,2012,92(4):1515-1542.
[6] WU G.Dietary requirements of synthesizable amino acids by animals:a paradigm shift in protein nutrition[J].Journal of Animal Science and Biotechnology,2014,5:34.
[7] KLEMESRUD M J, KLOPFENSTEIN T J, LEWIS A J. Metabolize methionine and lysine require ments of growing cattle[J].Journal Animal Science,2000,78(1):199-206.
[8] NRC. Nutrient requirements of dairy cattle[S].Seventh Revised Edition.Washington,D.C.:The National Academies Press,2001.
[9] SAKI A A,NASERI HARSINI R,TABATABACI M M,et al.Estimates of methionine and sulfur amino acid requirements for laying hens using different models[J].Revista Brasileira De Ciência Avícola,2012,14(3): 209-216
[10] BARTSOCAS C S,THIER S O,CRAWFORD J D.Transport ofL-methionine in rat intestine and kidney[J].Pediatric Research,1974,8(6):673-678.
[11] TAUTT J.Transport of methionine by normal and transformed rat embryo fibrobla[J]. Acta Biochimica Polonica,1982,29(3/4):213-218.
[12] PéNZES L,SIMON G.Intestinal absorption and turnover ofDL-methionine during reproduction in the rat[J].Journal of Physiological Anthropology,1968,18(3):288-296.
[13] BROSNAN J T,BROSNAN M E.The sulfur-containing amino acids:an overview[J].Journal of Nutrition,2006,136(6):1636S-1640S.
[14] LODISH H,BERK A J,ZIPURSKY S L,et al.The three roles of RNA in protein synt-hesis[M]//FREEMAN W H,et al.Laboratory notebook.New York:Molecular Cell Biology Press,2000.
[15] LIU S M,TAVENDALE M,BERMINGHAM E N,et al.The effects of parasite infection on methionine metabolism in sheep[J].Proceedings of the Australian Society of Animal Production,2002,24:133-136.
[16] CAREW L B,EVARTS K G,ALSTER F A.Growth and plasma thyroid hormone concentrations of chicks fed diets deficient in essential amino acids[J].Poultry Science,1997,76(10):1398-1404.
[17] CAREW L B,MCMURTRY J P,ALSTER F A.Effects of methionine deficiencies on plasma levels of thyroid hormones, insulin-like growth factors Ⅰ and Ⅱ,liver and bady weights, and feed intake in growing chickens[J].Poultry Science,2003,82(12):1932-1938.
[18] SCHICK B P.Synthesis of proteins from [35S]methionine by guinea pig megakaryoc ytesinvivoand time course of appearance of newly synthesized proteins in platelets[J].Blood,1990,76(5):887-891.
[19] MAAIKE A R,BARBARA S,SHAJI C,et al.Methionine transmethylation and transsulfuration in the piglet gastrointestinal tract[J].Proceedings of the National Academy of Science,2007,104(9):3408-3413.
[20] GOULAS C,ZERVAS G,PAPADOPOULOS G.Effect of dietary animal fat and methionine on dairy ewes milk yield and milk composition[J].Animal Feed Science and Technology,2003,105(1/2/3/4):43-54.
[21] PREYNAT A,LAPIERRE H,THIVIERGE M C,et al.Effects of supplements of folic acid, vitamin B12, and rumen protected methionine on whole body metabolism of methionine and glucose in lactating dairy cows[J].Journal Dairy Science,92:677-689.
[22] HEGEDüS M,FEKETE S,ANDRSOFSZKY E,et al.Effect of methionine and its derivatives on the weight gain and protein utilization of growing rats[J].Acta Veterinaria Hungarica,1998,46(4):421-429.
[23] IZUMI K,KIKUCHI C,OKAMOTO M.Effect of rumen protected methionine on lactation performance of dairy cows[J].Asian-Australasian Journal of Animal Science,2000,13(9):1235-1238.
[24] LEE C,GIALLONGO F,HRISTOV A N,et al.Effect of dietary protein level and rumenprotected amino acid supplementation on amino acid utilization for milk protein in lactating dairy cows[J].Journal of Dairy Science,2015,98(3):1885-1902.
[25] MOORE L D,LE T,FAN G.DNA methylation and its basic function[J].Neuropsychopharmacology Official Publication of the American College of Neuropsychopharmacology,2013,38(1):23-38.
[26] FISCHLE W,WANG Y M,ALLIS C D.Histone and chromatin cross-talk[J].Current Opinion in Cell Biology,2003,15(2):172-183.
[27] TURBERVILLE C,CRADDOCK V M.Methylation of nuclear proteins by dimethylnitrosamine and by methionine in the ratinvivo[J].Biochemical Journal,1971,124(4):725-739.
[28] MATO J M,ALVAREZ L,ORTIZ P,et al.S-adenosylmethionine synthesis:molecular mechanisms and clinical implications[J].Pulmonary Pharmacology & Therapeutics,1997,7 3(3):265-280.
[29] FRIEDEL H A,GOA K L,BENFIELD P.S-adenosyl-l-methionine.A review of its pharmacological properties and therapeutic potential in liver dysfunction and affective disorders in relation to its physiological role in cell metabolism[J].Drugs,1989,38(3):389-416.
[30] POTTER J D.Methyl supply,methyl metabolizing enzymes and colorectal neoplasia[J].Journal of Nutrition,2002,132(8):2410-2412.
[31] PASCALE R M,SIMILE M M,MIGLIO M D,et al.Chemoprevention of hepatocarcinogenesis:S-adenosyl-L-methionine[J].Alcohol,2002,27(3):193-198.
[32] KRAZ S,SENGUL T.Relationship between abdominal fat and methionine deficiency in broilers[J].Czech Journal of Animal Science 2005,50(8):362-368.
[33] ELSHORBAGY A K,VALDIVIA-GARCIA M, MATTOCKS D A,et al.Cysteine supplementation reverses methionine restriction effects on rat adiposity:significance of stearoylcoenzyme A desaturase[J].Journal of Lipid Research,2011,52(1):104-112.
[34] WALDROUP P W,M A MOTL,F YAN,et al.Effects of betaine and choline on response to methionine supplementation to broiler diets formulated to industry standards[J].Journal of Applied Poultry Research,2006,15:58-71
[35] NICULESCU M D,ZEISEL S H.Diet,methyl donors and DNA methylation: interactions between dietary folate,methionine and choline[J].Journal of Nutrition,2002,132(8):2333S-2335S.
[36] THOMAS T,THOMAS T J.Polyamines in cell growth and cell death: molecular mechanisms and therapeutic applications[J].Cellular and Molecular Life Science,2001,58(2):244-58.
[37] LANDAU G,BERCOVICH Z,PARK M H,et al.The role of polyamines in supporting growth of mammalian cells is mediated through their requirement for translation initiation and elongation[J].Journal of Biological Chemistry,2010,285(17):12474-12481.
[38] MANDAL S,MANDAL A,JOHANSSON H E,et al.Depletion of cellular polyamines,spermidine and spermine,causes a total arrest in translation and growth in mammaliancells[J].Proceedings of the National Academy of Sciences of the United States of America,2013,110(6):2169-2174.
[39] YATIN M.Polyamines in living organisms[J].Journal of Cell and Molecular Biology,2002,1:57-67.
[40] CAI J,MAO Z,HWANG J J,et al.Differential expression of methionine adenosyltransferase genes influences the rate of growth of human hepatocellular carcinoma cells[J].Cancer Research,1998,58(7):1444-1450.
[41] FINKELSTEIN J D.Methionine metabolism in mammals[J].Journal of Nutritional Biochemistry,1990,1(5):228-237.
[42] KRAMER D L,SUFRIN J R,PORTER C W.Relative effects of S-adenosylmethionine depletion on nucleic acid methylation and polyamine biosynthesis[J].Biochemical Journal,1987,247(2):259-265.
[44] LOWICKA E,BELTOWSKI J.Hydrogen sulfide (H2S)-the third gas of interest for pharmacologists[J].Pharmacological Reports,2007,59(1):4-24.
[45] BENAVIDES G A,SQUADRITO G L,MILLS R W,et al.Hydrogen sulfide mediates the vasoactivity of garlic[J].Proceedings of the National Academy of Sciences of theUnited States of America,2007,104(46):17977-17982.
[46] LU S C.Regulation of hepatic glutathione synthesis[J].Seminars in Liver Disease,1998,18(4):331-343.
[48] GREK C L,ZHANG J,MANEVICH Y,et al.Causes and consequences of cysteine S-glutathionylation[J].Journal of Biological Chemistry,2013,288(37):26497-26504.
[49] CASTELLANO R,PERRUCHOT M H,CONDE-AGUILERA J A,et al.A methionine deficient diet enhances adipose tissue lipid metabolism and alters anti-oxidant pathways in young growing pigs[J].PLoS One,2015,10(7):e0130514.
[50] RIEDIJK M A,STOLL B,CHACKO S,et al.Methionine transmethylation and transsulfuration in the piglet gastrointestinal tract[J].Proceedings of the National Academy of Sciences of the United States of America,2007,104(9):3408-3413.
[51] KIM Y G,KIM S K,KWON J W,et al.Effects of cysteine on amino acid concentrations and transsulfuration enzyme activities in rat liver with protein-calorie malnutrition[J].Life Sciences,2003,72(10):1171-1181.
*Contributed equally
**Corresponding author, associate professor, E-mail: mengzhiwangyz@126.com
MetabolicPathwayandTurnoverMechanismofMethionineinAnimals
XU Qiaoyun HU Liangyu*WANG Mengzhi**
(CollegeofAnimalScienceandTechnology,YangzhouUniversity,Yangzhou225009,China)
As one of the essential amino acids, methionine (Met) is used to synthesize protein as substrate, and to provide important methyl and mercapto for animal metabolism; at the same time, it is also closely involved in the formation of polyamines. For this purpose, the supply and metabolic pathway of methionine in animal body would affect the growth performance, physiological activity, methylation modification of DNA and functional proteins further have an influence on animal normal life activities. This paper summarized recent researches on 4 kinds of metabolic pathways and related turnover mechanism of methionine to provide some information for the studies of methionine metabolic mechanisms and scientific application.[ChineseJournalofAnimalNutrition,2017,29(11):3877-3884]
methionine; metabolic pathway; turnover mechanism
10.3969/j.issn.1006-267x.2017.11.006
S811.3
A
1006-267X(2017)11-3877-08
2017-05-20
國(guó)家自然科學(xué)基金面上項(xiàng)目(31672446);楊勝先生門(mén)生社群面上項(xiàng)目(2016A20031);江蘇省優(yōu)勢(shì)學(xué)科(PAPD)
徐巧云(1993—),女,江蘇揚(yáng)州人,碩士研究生,動(dòng)物營(yíng)養(yǎng)與飼料科學(xué)專(zhuān)業(yè)。E-mail: 1172270605@99.com
(責(zé)任編輯 武海龍)