張 成 耿照玉 趙曉惠
(安徽農(nóng)業(yè)大學(xué)動(dòng)物科技學(xué)院,合肥 230036)
白藜蘆醇的生物學(xué)功能及其在畜禽生產(chǎn)中的應(yīng)用
張 成 耿照玉 趙曉惠
(安徽農(nóng)業(yè)大學(xué)動(dòng)物科技學(xué)院,合肥 230036)
白藜蘆醇是一種天然多酚類化合物,存在于多種植物中。近年來,白藜蘆醇因具有多種有益生物學(xué)功能,得到了人們的廣泛關(guān)注,將其作為一種新型的飼料添加劑應(yīng)用于畜禽生產(chǎn)已見報(bào)道。本文綜述了白藜蘆醇的抗氧化、抗炎癥、抗肥胖功能及其在畜禽生產(chǎn)中的應(yīng)用現(xiàn)狀,旨在為白藜蘆醇在畜禽生產(chǎn)中的合理應(yīng)用提供依據(jù)。
白藜蘆醇;抗氧化;炎癥;肥胖;畜禽生產(chǎn);應(yīng)用
白藜蘆醇是天然存在的一種多酚類化合物,于1940年被日本科學(xué)家Takaoka首先從毛葉藜蘆中提取得到[1]。它廣泛存在于葡萄、花生、虎杖等70余種植物或其果實(shí)中,是植物的一種次生性代謝產(chǎn)物,在植物抵抗病菌感染時(shí)起著重要的作用。20世紀(jì)90年代,流行病學(xué)調(diào)查發(fā)現(xiàn),雖然西方人飲食習(xí)慣相似,動(dòng)物性脂肪的攝入均較高,但法國人心血管疾病的發(fā)病率最低,人們把這一現(xiàn)象稱為“法蘭西悖論”,后來研究發(fā)現(xiàn)這一現(xiàn)象與法國人喜愛喝富含白藜蘆醇的葡萄酒有關(guān)[2-4]。1997年,Jang等[5]發(fā)現(xiàn),白藜蘆醇是一種潛在的抗腫瘤劑。2003年,Howiitz等[6]發(fā)現(xiàn),白藜蘆醇能延長酵母的壽命達(dá)70%。隨后,Wood等[7]和Baur等[8]分別發(fā)現(xiàn)白藜蘆醇能延長后生動(dòng)物(蠕蟲和果蠅)和小鼠的壽命。這些具有里程碑意義的研究推動(dòng)了人們對(duì)白藜蘆醇生物學(xué)功能的持續(xù)關(guān)注,研究結(jié)果表明其具有廣泛的生物學(xué)活性,如抗氧化、抗炎癥、調(diào)節(jié)糖脂代謝、保護(hù)心血管和延長壽命等[9]。近年來,隨著人們對(duì)抗生素副作用認(rèn)識(shí)的增強(qiáng)及對(duì)畜禽產(chǎn)品安全性要求的提高,天然植物提取物以其安全高效、無殘留、不產(chǎn)生抗藥性等特點(diǎn),替代抗生素等傳統(tǒng)的飼料添加劑應(yīng)用于畜禽生產(chǎn)已經(jīng)成為熱點(diǎn),現(xiàn)在將白藜蘆醇應(yīng)用于畜禽生產(chǎn)已見報(bào)道。本文就白藜蘆醇所具有的抗氧化、抗炎癥、抗肥胖功能及其在畜禽生產(chǎn)中的應(yīng)用現(xiàn)狀進(jìn)行綜述。
白藜蘆醇的化學(xué)名為3,4,5-三羥基-反-均二苯代乙烯,分子式為C14H12O3,相對(duì)分子質(zhì)量為228.2,難溶于水,易溶于有機(jī)溶劑甲醇、乙醇和丙酮等[10]。自然界中,白藜蘆醇以自由態(tài)及其糖苷2種形式存在,具有順式和反式2種異構(gòu)體,即順式白藜蘆醇、反式白藜蘆醇及順式白藜蘆醇糖苷、反式白藜蘆醇糖苷,其中反式異構(gòu)體的活性遠(yuǎn)高于順式異構(gòu)體。反式異構(gòu)體的穩(wěn)定性好,而順式異構(gòu)體不穩(wěn)定,在紫外線誘導(dǎo)下較易轉(zhuǎn)變成反式異構(gòu)體,因此植物體內(nèi)白藜蘆醇及其糖苷主要以反式異構(gòu)體為主[11]。
白藜蘆醇的生物學(xué)利用率低,這主要是由于其低水溶性、高代謝率和高排出速度造成的[12-13]。腸道、肝臟和肺臟是白藜蘆醇代謝的主要器官[14]。Wenzel等[13]指出,約75%的白藜蘆醇通過尿液和糞便排出,生物學(xué)利用率幾乎為零。Azorín-Ortuo等[12]發(fā)現(xiàn),給豬灌服白藜蘆醇(5.9 mg/kg BW)6 h后,白藜蘆醇及其代謝產(chǎn)物65.1%存在于胃腸道,7.7%存在于尿液,1.2%存在于膽汁,但僅僅0.5%存在于組織器官。
2.1抗氧化功能及機(jī)理
正常生理狀態(tài)下,動(dòng)物機(jī)體內(nèi)活性氧簇(ROS)含量處于動(dòng)態(tài)平衡狀態(tài),但當(dāng)動(dòng)物遭受應(yīng)激刺激后,機(jī)體內(nèi)ROS會(huì)大量積聚,誘使組織細(xì)胞脂質(zhì)氧化、蛋白質(zhì)變性及DNA氧化損傷[15-16],最終導(dǎo)致畜禽生產(chǎn)性能下降甚至疾病發(fā)生。因此,及時(shí)清除機(jī)體內(nèi)多余ROS對(duì)于維持動(dòng)物健康及生產(chǎn)具有重要意義。大量研究表明,白藜蘆醇具有很強(qiáng)的清除自由基和提高機(jī)體抗氧化能力的功能。體外試驗(yàn)表明,人角化細(xì)胞經(jīng)過10 mmol/L的白藜蘆醇預(yù)處理24 h可顯著降低煙霧誘導(dǎo)產(chǎn)生的ROS和蛋白羰基含量[17]。體內(nèi)試驗(yàn)表明,小鼠飼糧中添加2 000和4 000 mg/kg白藜蘆醇顯著降低肝臟中ROS含量和血清中的丙二醛(MDA)含量[18]??寡趸冈谇宄杂苫^程中起著重要的作用。超氧化物歧化酶(SOD)、過氧化氫酶(CAT)、谷胱甘肽過氧化物酶(GPx)等抗氧化酶共同組成了機(jī)體內(nèi)的酶性抗氧化系統(tǒng)。研究表明,白藜蘆醇顯著提高小鼠肝臟中SOD和GPx活性及血清中SOD活性[18]。Bujanda等[19]以大鼠為研究對(duì)象發(fā)現(xiàn),飼糧添加白藜蘆醇可顯著增強(qiáng)肝臟中CAT活性。谷胱甘肽(GSH)在消除自由基方面起著重要作用,是動(dòng)物機(jī)體非酶性抗氧化系統(tǒng)的重要組成部分。體內(nèi)試驗(yàn)[18]和體外試驗(yàn)[20-21]均表明,白藜蘆醇能夠顯著提高GSH的表達(dá)量。
核因子E2相關(guān)因子2(Nrf2)作為轉(zhuǎn)錄因子調(diào)控一系列抗氧化相關(guān)基因的表達(dá),從而調(diào)控抗氧化能力[22-23]。Nrf2的轉(zhuǎn)錄活性受到胞質(zhì)阻抑蛋白Kelch樣環(huán)氧氯丙烷相關(guān)蛋白-1(Keap-1)的調(diào)控。正常生理?xiàng)l件下,Nrf2在細(xì)胞質(zhì)中與Keap-1結(jié)合形成復(fù)合體,誘導(dǎo)Nrf2經(jīng)過泛素-蛋白酶體系統(tǒng)降解,從而阻止Nrf2進(jìn)入細(xì)胞核中啟動(dòng)靶基因的表達(dá);但當(dāng)遭受氧化應(yīng)激等刺激后,Keap-1與Nrf2解偶聯(lián),Nrf2的泛素化受到抑制,易位進(jìn)入細(xì)胞核中發(fā)揮轉(zhuǎn)錄因子的作用,啟動(dòng)相關(guān)靶基因的表達(dá)[24]。在細(xì)胞核中,Nrf2與小Maf結(jié)合形成二聚體后與多種抗氧化基因前端啟動(dòng)子區(qū)抗氧化反應(yīng)元件(ARE)結(jié)合,激活這些基因表達(dá),以此增強(qiáng)機(jī)體對(duì)氧化應(yīng)激的抗性。這些受調(diào)控的抗氧化酶基因包括:還原型煙酰胺腺嘌呤二核苷酸苯醌氧化還原酶1(NQO1)、CAT、SOD、谷胱甘肽還原酶、亞鐵血紅素加氧酶1(HO-1)等[23]。Ghanim等[25]研究表明,口服100 mg白藜蘆醇5 h后,受試者單核細(xì)胞中Keap-1含量顯著下降,Nrf2的DNA結(jié)合能力顯著上升,并且伴隨NQO1含量的上升。Ungvari等[26]用原代人冠狀動(dòng)脈內(nèi)皮細(xì)胞研究表明,白藜蘆醇能顯著增加Nrf2及其下游抗氧化基因NQO1和HO-1的表達(dá)量,且白藜蘆醇對(duì)這些基因的調(diào)控是Nrf2依賴性的。因此,白藜蘆醇可能介導(dǎo)Nrf-2信號(hào)通路發(fā)揮其抗氧化功能。
2.2抗炎功能及機(jī)理
動(dòng)物免疫系統(tǒng)常受到細(xì)菌、病毒、內(nèi)毒素等刺激而處于激活狀態(tài)。免疫系統(tǒng)激活常引起動(dòng)物行為、代謝和神經(jīng)內(nèi)分泌的改變,最終導(dǎo)致動(dòng)物的生長受阻和健康狀態(tài)的惡化,這種現(xiàn)象稱為免疫應(yīng)激。動(dòng)物處于免疫應(yīng)激狀態(tài)時(shí)會(huì)迫使機(jī)體產(chǎn)生炎性反應(yīng),從而緩解或者抵抗免疫應(yīng)激的傷害。因此炎性反應(yīng)的高低是動(dòng)物體處于免疫應(yīng)激狀態(tài)強(qiáng)弱的標(biāo)志。體內(nèi)外試驗(yàn)均表明,白藜蘆醇具有抗炎功能。Bujanda等[19]發(fā)現(xiàn),大鼠飼糧中添加白藜蘆醇可顯著降低血清中腫瘤壞死因子(TNF)-α含量。Ghanim等[25]研究表明,白藜蘆醇可顯著降低受試者血漿中脂多糖(LPS)濃度,并顯著降低單核細(xì)胞中Toll樣受體4蛋白和白細(xì)胞介素(IL)-1β基因的表達(dá)量。?lholm等[27]研究表明,白藜蘆醇的干預(yù)顯著緩解IL-1β刺激而提高的人脂肪組織移植體IL-6、IL-8及IL-1的基因表達(dá)量。Boscolo等[28]研究表明,白藜蘆醇能顯著抑制植物血凝素誘導(dǎo)的人外周血單核細(xì)胞的增殖和干擾素γ及TNF-α的釋放。Ahn等[29]以3T3-L1脂肪細(xì)胞為研究材料發(fā)現(xiàn),白藜蘆醇顯著降低經(jīng)TNF-α誘導(dǎo)產(chǎn)生IL-6的分泌量及基因表達(dá)量。Zhu等[30]的研究也得到了相似的結(jié)果,并且表明這一過程與白藜蘆醇抑制核轉(zhuǎn)錄因子kappa B(NF-κB)的活性有關(guān)。
NF-κB調(diào)控著一系列與炎癥相關(guān)的基因表達(dá),因此NF-κB信號(hào)通路在炎癥發(fā)生發(fā)展過程中起著重要作用[31]。NF-κB的激活受NF-κB抑制性蛋白(IκB)和IκB激酶復(fù)合體(IKK)的調(diào)節(jié)。當(dāng)NF-κB與IκB結(jié)合時(shí),使NF-κB不能進(jìn)入細(xì)胞核中發(fā)揮轉(zhuǎn)錄活性。TNF、IL-1、過氧化氫(H2O2)和內(nèi)毒素等促炎因子可促進(jìn)IκB的降解,從而釋放NF-κB進(jìn)入細(xì)胞核中發(fā)揮轉(zhuǎn)錄活性,調(diào)控炎癥相關(guān)基因的表達(dá),最終激發(fā)炎癥反應(yīng)[32]。研究表明,白藜蘆醇能顯著抑制不同類型細(xì)胞炎性因子的表達(dá),如TNF-α、IL-β等,從而抑制NF-κB的活化[30,31,33-35]。Pellegatta等[36]以人內(nèi)皮細(xì)胞為研究對(duì)象發(fā)現(xiàn),白藜蘆醇影響NF-κB的合成及磷酸化具有時(shí)間效應(yīng),短時(shí)間內(nèi)并不能抑制NF-κB的合成,但延長處理時(shí)間(過夜)能顯著降低IκB酪氨酸磷酸化,下調(diào)NF-κB轉(zhuǎn)錄水平,從而抑制NF-κB的合成。Ashikawa等[32]指出,白藜蘆醇主要通過降低IKK活性,阻止IκB的磷酸化,進(jìn)而抑制NF-κB的活化。因此,白藜蘆醇可能是介導(dǎo)NF-κB信號(hào)通路發(fā)揮其抗炎癥功能。
2.3抑制脂肪沉積的抗肥胖功能及機(jī)理
肥胖已經(jīng)成為當(dāng)今世界影響人類健康的主要疾病。肥胖與許多的慢性疾病密切相關(guān),比如糖尿病、中風(fēng)、高血壓等[37]。因此,如何防止和治療肥胖及由肥胖帶來的相關(guān)問題是當(dāng)今科學(xué)研究的熱點(diǎn)之一。對(duì)于畜禽生產(chǎn)而言,脂肪的過量沉積不僅造成飼料資源的浪費(fèi),而且導(dǎo)致動(dòng)物產(chǎn)品品質(zhì)下降、繁殖性能降低等問題。因此,控制畜禽脂肪沉積對(duì)于畜禽生產(chǎn)而言至關(guān)重要。
研究表明,白藜蘆醇能調(diào)節(jié)脂質(zhì)代謝,抑制脂肪沉積[38]。體外試驗(yàn)表明,白藜蘆醇顯著促進(jìn)脂肪細(xì)胞的凋亡[39-40],顯著抑制前體脂肪細(xì)胞的增殖和分化[41-42],且顯著降低脂肪細(xì)胞的生脂能力[43]。過氧化物酶體增殖物激活受體γ(PPARγ)、脂蛋白脂肪酶(LPL)、脂肪酸合成酶(FAS)、乙酰-CoA羧化酶(ACC)等是脂肪代謝過程中重要的調(diào)控因子。Floyd等[44]研究表明,白藜蘆醇顯著降低3T3-L1脂肪細(xì)胞PPARγ和LPL的基因表達(dá)。Alberdi等[45]研究表明,白藜蘆醇顯著降低大鼠的皮下脂肪、腸系膜脂肪、附睪脂肪和腎周脂肪組織的沉積量,其機(jī)理可能與白藜蘆醇顯著降低FAS、ACC等生脂因子的基因表達(dá),顯著提高脂肪降解因子的基因表達(dá)有關(guān)。Zhang等[46]以豬為研究對(duì)象證實(shí),白藜蘆醇能通過調(diào)控脂肪代謝相關(guān)基因的表達(dá),從而降低機(jī)體脂肪沉積。因此,白藜蘆醇可能是通過抑制脂肪合成及轉(zhuǎn)運(yùn)相關(guān)調(diào)控因子的表達(dá),同時(shí)提高脂肪分解代謝相關(guān)因子的表達(dá),進(jìn)而發(fā)揮其抗肥胖功能。
3.1提高畜禽生產(chǎn)性能
Sahin等[47]研究表明,飼糧添加白藜蘆醇對(duì)鵪鶉采食量(FI)、產(chǎn)蛋率、蛋重、蛋形指數(shù)和蛋殼厚度無顯著影響,但顯著提高蛋黃寬度。本實(shí)驗(yàn)室的研究結(jié)果顯示,飼糧添加400 mg/kg白藜蘆醇,飼喂科寶肉雞21 d,顯著提高飼料轉(zhuǎn)化效率(FCR)[48]。熱應(yīng)激會(huì)導(dǎo)致畜禽生產(chǎn)性能降低,而白藜蘆醇可有效緩解熱應(yīng)激對(duì)肉雞生產(chǎn)性能的不利影響。研究發(fā)現(xiàn),飼糧添加白藜蘆醇(200、400、600 mg/kg)線性提高烏骨雞FI、平均日增重(ADG)及FCR[49]。疫苗接種使肉雞遭受應(yīng)激,影響生產(chǎn)性能。Zhang等[50]研究表明,飼糧添加白藜蘆醇(200、400、800 mg/kg)線性提高疫苗接種應(yīng)激肉雞的ADG。豬上的研究結(jié)果表明,飼糧添加白藜蘆醇(300、600 mg/kg)對(duì)育肥豬體增重和FI無顯著影響[46],但可顯著提高豬卵母細(xì)胞的發(fā)育能力[51]。因此,白藜蘆醇具有提高畜禽生產(chǎn)性能的功能,但其在不同畜禽生產(chǎn)動(dòng)物及其不同生理階段飼糧中的適宜添加比例尚需研究確定。
3.2改善畜禽胴體品質(zhì)和肉品質(zhì)
3.3提高畜禽免疫功能
法式囊、胸腺和脾臟是家禽重要的免疫器官,在家禽體液免疫及細(xì)胞免疫中起著關(guān)鍵作用,提高其指數(shù)對(duì)于家禽免疫功能有積極的意義[53]。張彩云等[55]研究發(fā)現(xiàn),飼糧添加白藜蘆醇(500、1 000、2 000 mg/kg)可線性提高肉雞法氏囊指數(shù),同時(shí)1 000 mg/kg的添加水平可顯著提高血清中免疫球蛋白G(IgG)和免疫球蛋白M(IgM)含量。Liu等[49]研究表明,飼糧添加白藜蘆醇(200、400、800 mg/kg)線性提高熱應(yīng)激烏骨雞法式囊指數(shù)、胸腺指數(shù)和脾臟指數(shù)。Zhang等[50]研究表明,飼糧添加白藜蘆醇(200、400、800 mg/kg)線性降低疫苗接種應(yīng)激肉雞肝臟NF-κB基因及脾臟IL-1β、IL-6和TNF-α基因表達(dá)量,線性提高脾臟指數(shù)。Liu等[56]研究表明,飼糧添加400 mg/kg白藜蘆醇可顯著降低熱應(yīng)激肉雞空腸中NF-κB含量。此外,以豬為研究對(duì)象發(fā)現(xiàn),白藜蘆醇可顯著降低接種藍(lán)耳病弱毒苗育肥豬血清中IL-1β含量,顯著提高藍(lán)耳病特異性抗體滴度[57]。因此,白藜蘆醇提高畜禽免疫功能可能是通過提高免疫器官指數(shù)及調(diào)控NF-κB信號(hào)通路相關(guān)因子表達(dá)實(shí)現(xiàn)的,但目前研究報(bào)道較少且不深入,還有待進(jìn)一步研究。
3.4提高畜禽抗氧化能力
Zhang等[52]以育肥豬為研究對(duì)象發(fā)現(xiàn),飼糧添加白藜蘆醇(300、600 mg/kg)飼喂49 d可顯著提高肌肉總抗氧化能力(T-AOC)和GPx基因表達(dá)量,同時(shí)顯著降低肌肉MDA含量。以肉雞為研究對(duì)象發(fā)現(xiàn),飼糧添加2 000 mg/kg白藜蘆醇顯著提高肉雞肌肉和肝臟中T-AOC和SOD活性,同時(shí)顯著降低MDA含量[58]。Liu等[49]研究表明,飼糧添加白藜蘆醇(200、400、800 mg/kg)線性提高熱應(yīng)激烏骨雞血清中GSH含量及GPx、SOD和CAT活性,線性降低血清MDA含量。與此一致,本實(shí)驗(yàn)室的研究結(jié)果顯示,飼糧添加白藜蘆醇(400 mg/kg)顯著提高熱應(yīng)激肉雞肌肉T-AOC及CAT活性,顯著降低肌肉MDA含量[54]。此外,飼糧添加白藜蘆醇(400 mg/kg)可顯著提高運(yùn)輸應(yīng)激肉雞肌肉SOD活性,顯著降低肌肉MDA含量[48]。如前所述,Nrf2信號(hào)通路在機(jī)體抗氧化過程中起著至關(guān)重要的作用。Sahin等[59]以鵪鶉為研究對(duì)象發(fā)現(xiàn),白藜蘆醇可線性提高肝臟中Nrf2含量,并線性提高肝臟SOD、CAT及GPx活性。據(jù)此,白藜蘆醇提高畜禽抗氧化能力可能通過介導(dǎo)Nrf2抗氧化信號(hào)途徑實(shí)現(xiàn),但尚需進(jìn)一步研究予以闡明。
研發(fā)高效、無抗藥性和安全的飼料添加劑是動(dòng)物營養(yǎng)研究的一個(gè)重要方向。天然植物提取物因其多功能性、高效性等獨(dú)特的特性受到了越來越多的關(guān)注。近年來,白藜蘆醇的生物學(xué)功能陸續(xù)被報(bào)道,引起了動(dòng)物營養(yǎng)領(lǐng)域研究者的關(guān)注。但是,當(dāng)前關(guān)于白藜蘆醇生物學(xué)功能的研究主要是以嚙齒動(dòng)物為研究對(duì)象開展,在畜禽上的研究報(bào)道還較少。因此,真正將白藜蘆醇應(yīng)用于畜禽生產(chǎn)實(shí)踐仍然面臨挑戰(zhàn)。首先,白藜蘆醇應(yīng)用于畜禽生產(chǎn)的安全性還需評(píng)定;其次,白藜蘆醇應(yīng)用于不同畜禽生產(chǎn)的適宜添加量還需大量研究予以確定;最后,白藜蘆醇對(duì)畜禽生產(chǎn)的作用機(jī)理還鮮有報(bào)道,還需深入的研究予以闡明。
[1] TAKAOKA M.Phenolic substance of white hellebore (VeratrumgrandiflorumLoes fil.).Ⅲ.Constitution of resveratrol[J].Nippon Kagaku Kaishi,1940,61:30-34.
[2] RENAUD S,DE LORGERIL M.Wine,alcohol,platelets,and the French paradox for coronary heart disease[J].The Lancet,1992,339(8808):1523-1526.
[3] FRANKEL E N,WATERHOUSE A L,KINSEllA J E.Inhibition of human LDL oxidation by resveratrol[J].Lancet,1993,341(8852):1103-1104.
[4] LIPPI G,FRANCHINI M,FAVALORO E J,et al.Moderate red wine consumption and cardiovascular disease risk:beyond the "French paradox"[J].Seminars in Thrombosis and Hemostasis,2010,36(1):59-70.
[5] JANG M,CAI L N,UDEANI G O,et al.Cancer chemopreventive activity of resveratrol,a natural product derived from grapes[J].Science,1997,275(5297):218-220.
[6] HOWIITZ K T,BITTERMAN K J,COHEN H Y,et al.Small molecule activators of sirtuins extendSaccharomycescerevisiaelifespan[J].Nature,2003,425(6954):191-196.
[7] WOOD J G,ROGINA B,LAVU S,et al.Sirtuin activators mimic caloric restriction and delay ageing in metazoans[J].Nature,2004,430(7000):686-689.
[8] BAUR J A,PEARSON K J,PRICE N L,et al.Resveratrol improves health and survival of mice on a high-calorie diet[J].Nature,2006,444(7117):337-342.
[9] RAEDERSTORFF D,KUNZ I,SCHWAGER J.Resveratrol,from experimental data to nutritional evidence:the emergence of a new food ingredient[J].Annals of the New York Academy of Sciences,2013,1290:136-141.
[10] 張?zhí)m勝,劉光明.白藜蘆醇的研究概述[J].大理學(xué)院學(xué)報(bào),2007,16(4):72-74.
[11] 韓晶晶,劉煒,畢玉平.白藜蘆醇的研究進(jìn)展[J].生物工程學(xué)報(bào),2008,24:1851-1859.
[13] WENZEL E,SOMOZA V.Metabolism and bioavailability oftrans-resveratrol[J].Molecular Nutrition & Food Research,2005,49(5):472-481.
[14] SHARAN S,NAGAR S.Pulmonary metabolism of resveratrol:invitroandinvivoevidence[J].Drug Metabolism and Disposition,2013,41(5):1163-1169.
[15] PELLE E,MAES D,PADULO G A,et al.Aninvitromodel to test relative antioxidant potential:ultraviolet-induced lipid peroxidation in liposomes[J].Archives of Biochemistry and Biophysics,1990,283(2):234-240.
[16] PELLE E,MAMMONE T,MARENUS K,et al.Ultraviolet-B-induced oxidative DNA base damage in primary normal human epidermal keratinocytes and inhibition by a hydroxyl radical scavenger[J].Journal of Investigative Dermatology,2003,121(1):177-183.
[17] STICOZZI C,CERVELLATI F,MURESAN X M,et al.Resveratrol prevents cigarette smoke-induced keratinocytes damage[J].Food & Function,2014,5(9):2348-2356.
[18] ZHU W,CHEN S F,LI Z L,et al.Effects and mechanisms of resveratrol on the amelioration of oxidative stress and hepatic steatosis in KKAy mice[J].Nutrition & Metabolism,2014,11(1):35.
[19] BUJANDA L,HIJONA E,LARZABAL M,et al.Resveratrol inhibits nonalcoholic fatty liver disease in rats[J].BMC Gastroenterology,2008,8:40.
[20] KODE A,RAJENDRASOZHAN S,CAITO S,et al.Resveratrol induces glutathione synthesis by activation of Nrf2 and protects against cigarette smoke-mediated oxidative stress in human lung epithelial cells[J].American Journal of Physiology Lung Cellular and Molecular Physiology,2008,294(3):L478-L488.
[21] UNGVARI Z,LABINSKYY N,MUKHHOPADHYAY P,et al.Resveratrol attenuates mitochondrial oxidative stress in coronary arterial endothelial cells[J].American Journal of Physiology:Heart and Circulatory Physiology,2009,297(5):H1876-H1881.
[22] KANG K W,LEE S J,KIM S G.Molecular mechanism of Nrf2 activation by oxidative stress[J].Antioxidants & Redox Signaling,2005,7(11/12):1664-1673.
[23] ZHU Y,ZHANG Y J,LIU W W,et al.Salidroside suppresses HUVECs cell injury induced by oxidative stress through activating the Nrf2 signaling pathway[J].Molecules,2016,21(8):1033.
[24] YAMAMOTO T,SUZUKI T,KOBAYASHI A,et al.Physiological significance of reactive cysteine residues of Keap1 in determining Nrf2 activity[J].Molecular and Cellular Biology,2008,28(8):2758-2770.
[25] GHANIM H,SIA C L,KORZENIEWSKI K,et al.A resveratrol and polyphenol preparation suppresses oxidative and inflammatory stress response to a high-fat,high-carbohydrate meal[J].The Journal of Clinical Endocrinology & Metabolism,2011,96(5):1409-1414.
[26] UNGVARI Z,BAGI Z,FEHER A,et al.Resveratrol confers endothelial protectionviaactivation of the antioxidant transcription factor Nrf2[J].American Journal of Physiology:Heart and Circulatory Physiology,2010,299(1):H18-H24.
[27] ?LHOLM J,PAULSEN S K,CULLBERG K B,et al.Anti-inflammatory effect of resveratrol on adipokine expression and secretion in human adipose tissue explants[J].International Journal of Obesity,2010,34(10):1546-1553.
[28] BOSCOLO P,DEL SIGNORE A,SABBIONI E,et al.Effects of resveratrol on lymphocyte proliferation and cytokine release[J].Annals of Clinical and Laboratory Science,2003,33(2):226-231.
[29] AHN J,LEE H,KIM S,et al.Resveratrol inhibits TNF-α-induced changes of adipokines in 3T3-L1 adipocytes[J].Biochemical and Biophysical Research Communications,2007,364(4):972-977.
[30] ZHU J,YONG W,WU X H,et al.Anti-inflammatory effect of resveratrol on TNF-α-induced MCP-1 expression in adipocytes[J].Biochemical and Biophysical Research Communications,2008,369(2):471-477.
[31] MANNA S K,MUKHOPADHYAY A,AGGARWAL B B.Resveratrol suppresses TNF-induced activation of nuclear transcription factors NF-κB,activator protein-1,and apoptosis:potential role of reactive oxygen intermediates and lipid peroxidation[J].The Journal of Immunology,2000,164(12):6509-6519.
[32] ASHIKAWA K,MAJUMDAR S,BANERJEE S,et al.Piceatannol inhibits TNF-induced NF-κB activation and NF-κB-mediated gene expression through suppression of IκBalpha kinase and p65 phosphorylation[J].The Journal of Immunology,2002,169(11):6490-6497.
[33] ESTROV Z,SHISHODIA S,FADERL S,et al.Resveratrol blocks interleukin-1β-induced activation of the nuclear transcription factor NF-κB,inhibits proliferation,causes S-phase arrest,and induces apoptosis of acute myeloid leukemia cells[J].Blood,2003,102(3):987-995.
[34] HOLMES-MCNARY M,BALDWIN A S,Jr.Chemopreventive properties oftrans-resveratrol are associated with inhibition of activation of the IκB kinase[J].Cancer Research,2000,60(13):3477-3483.
[35] CSISZAR A,SMITH K,LABINSKYY N,et al.Resveratrol attenuates TNF-α-induced activation of coronary arterial endothelial cells:role of NF-κB inhibition[J].American Journal of Physiology:Heart and Circulatory Physiology,2006,291(4):H1694-H1699.
[36] PELLEGATTA F,BERTELLI A A,STAELS B,et al.Different short-and long-term effects of resveratrol on nuclear factor-κB phosphorylation and nuclear appearance in human endothelial cells[J].The American Journal of Clinical Nutrition,2003,77(5):1220-1228.
[37] JAMES P T,RIGBY N,LEACH R O.The obesity epidemic,metabolic syndrome and future prevention strategies[J].European Journal of Cardiovascular Prevention and Rehabilitation,2004,11(1):3-8.
[38] 陳小玲,黃志清,郭秀蘭,等.白藜蘆醇調(diào)節(jié)畜禽脂質(zhì)代謝的機(jī)制[J].動(dòng)物營養(yǎng)學(xué)報(bào),2012,24(10):1861-1865.
[39] RAYALAM S,DELLA-FERA M A,YANG J Y,et al.Resveratrol potentiates genistein’s antiadipogenic and proapoptotic effects in 3T3-L1 adipocytes[J].The Journal of Nutrition,2007,137(12):2668-2673.
[40] MADER I,WABITSCH M,DEBATIN K M,et al.Identification of a novel proapoptotic function of resveratrol in fat cells:SIRT1-independent sensitization to TRAIL-induced apoptosis[J].The FASEB Journal,2010,24(6):1997-2009.
[41] PICARD F,KURTEV M,CHUNG N,et al.Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-gamma[J].Nature,2004,429(6993):771-776.
[42] BAI L,PANG W J,YANG Y J,et al.Modulation of Sirt1 by resveratrol and nicotinamide alters proliferation and differentiation of pig preadipocytes[J].Molecular and Cellular Biochemistry,2008,307(1/2):129-140.
[43] FISCHER-POSOVSZKY P,KUKULUS V,TEWS D,et al.Resveratrol regulates human adipocyte number and function in a Sirt1-dependent manner[J].The American Journal of Clinical Nutrition,2010,92(1):5-15.
[44] FLOYD Z E,WANG Z Q,KILROY G,et al.Modulation of peroxisome proliferator-activated receptor γ stability and transcriptional activity in adipocytes by resveratrol[J].Metabolism,2008,57(Suppl.1):S32-S38.
[45] ALBERDI G,RODRGUEZ V M,MIRANDA J,et al.Changes in white adipose tissue metabolism induced by resveratrol in rats[J].Nutrition & Metabolism,2011,8(1):29.
[46] ZHANG C,LUO J Q,YU B,et al.Effects of resveratrol on lipid metabolism in muscle and adipose tissues:a reevaluation in a pig model[J].Journal of Functional Foods,2015,14:590-595.
[47] SAHIN K,AKDEMIR F,ORHAN C,et al.Effects of dietary resveratrol supplementation on egg production and antioxidant status[J].Poultry Science,2010,89(6):1190-1198.
[48] ZHANG C,WANG L,ZHAO X H,et al.Dietary resveratrol supplementation prevents transport-stress-impaired meat quality of broilers through maintaining muscle energy metabolism and antioxidant status[J].Poultry Science,2017,doi:10.3382/ps/pex004.
[49] LIU L L,HE J H,XIE H B,et al.Resveratrol induces antioxidant and heat shock protein mRNA expression in response to heat stress in black-boned chickens[J].Poultry Science,2014,93(1):54-62.
[50] ZHANG C Y,TIAN Y D,YAN F B,et al.Modulation of growth and immunity by dietary supplementation with resveratrol in young chickens receiving conventional vaccinations[J].American Journal of Veterinary Research,2014,75(8):752-759.
[51] SATO D,ITAMI N,TASAKI H,et al.Relationship between mitochondrial DNA copy number and SIRT1 expression in porcine oocytes[J].PLoS One,2014,9(4):e94488.
[52] ZHANG C,LUO J Q,YU B,et al.Dietary resveratrol supplementation improves meat quality of finishing pigs through changing muscle fiber characteristics and antioxidative status[J].Meat Science,2015,102:15-21.
[53] 劉麗莉.白藜蘆醇對(duì)烏骨雞熱應(yīng)激損傷的修復(fù)機(jī)制研究[D].博士學(xué)位論文.長沙:湖南農(nóng)業(yè)大學(xué),2014.
[54] ZHANG C,ZHAO X H,WANG L,et al.Resveratrol beneficially affects meat quality of heat-stressed broilers which is associated with changes in muscle antioxidant status[J].Animal Science Journal,2017,doi:10.1111/asj.12812.
[55] 張彩云,郭衛(wèi)建,龔芳,等.白藜蘆醇對(duì)肉仔雞免疫性能及血清生化指標(biāo)的影響[J].中國畜牧雜志,2010,46(19):51-53.
[56] LIU L L,FU C X,YAN M L,et al.Resveratrol modulates intestinal morphology and HSP70/90,NF-kappaB and EGF expression in the jejunal mucosa of black-boned chickens on exposure to circular heat stress[J].Food & Function,2016,7(3):1329-1338.
[57] 王俊文.飼糧添加白藜蘆醇對(duì)接種藍(lán)耳病弱毒苗育肥豬生產(chǎn)性能和免疫功能及肉品質(zhì)的影響[D].碩士學(xué)位論文.雅安:四川農(nóng)業(yè)大學(xué),2012.
[58] 張彩云,康相濤.白藜蘆醇對(duì)肉仔雞抗氧化能力和肉品質(zhì)的影響[J].江蘇農(nóng)業(yè)科學(xué),2011,27(3):587-591.
[59] SAHIN K,ORHAN C,AKDEMIR F,et al.Resveratrol protects quail hepatocytes against heat stress:modulation of the Nrf2 transcription factor and heat shock proteins[J].Journal of Animal Physiology and Animal Nutrition,2012,96(1):66-74.
Author,ZHANG Cheng, lecturer, E-mail: cheng20050502@126.com
Resveratrol:BiologicalFunctionsandApplicationinLivestockandPoultryProduction
ZHANG Cheng GENG Zhaoyu ZHAO Xiaohui
(CollegeofAnimalScienceandTechnology,AnhuiAgriculturalUniversity,Hefei230036,China)
Resveratrol is a naturally occurring polyphenol compound in many kinds of plants. In the last few years, resveratrol has aroused widespread concern because of its diverse beneficial biological functions. Moreover, there has been increasing concerns on the effects of resveratrol as a new type of feed additive in livestock and poultry production. This article summarized the antioxidant, anti-inflammatory and anti-obesity effects of resveratrol, as well as the actual application status in livestock and poultry production so as to provide the reference for resveratrol’s scientific application in livestock and poultry production.[ChineseJournalofAnimalNutrition,2017,29(11):3837-3843]
resveratrol; antioxidant; inflammation; obesity; livestock and poultry production; application
10.3969/j.issn.1006-267x.2017.11.001
S816.7
A
1006-267X(2017)11-3837-07
2017-04-10
安徽高校自然科學(xué)基金重點(diǎn)項(xiàng)目(KJ2016A240);國家自然科學(xué)基金青年項(xiàng)目(31702129)
張 成(1985—),男,四川雅安人,講師,博士,從事動(dòng)物營養(yǎng)與飼料科學(xué)研究。E-mail: cheng20050502@126.com
(責(zé)任編輯 王智航)