馬雷+李令一+楊中漢
[摘要] 人體中除了儲(chǔ)存能量的白色脂肪外,還有特化的產(chǎn)熱型脂肪組織,包括經(jīng)典棕色脂肪和米色脂肪兩種。不同于嚙齒類(lèi)動(dòng)物經(jīng)典棕色脂肪的終身存在,人類(lèi)的經(jīng)典棕色脂肪組織成人期會(huì)退化幾乎消失,但米色脂肪在寒冷刺激、過(guò)量?jī)翰璺影坊颚履I上腺素能受體激動(dòng)劑等處理后分散存在于白色脂肪中并代謝產(chǎn)熱,可能在開(kāi)發(fā)針對(duì)肥胖及其相關(guān)的2型糖尿病治療靶點(diǎn)方面發(fā)揮潛在作用。因此,本文對(duì)現(xiàn)階段米色脂肪與肥胖、糖尿病、脂肪肝、腫瘤等疾病的關(guān)系研究進(jìn)行簡(jiǎn)單回顧,并對(duì)其進(jìn)行分析和總結(jié),為米色脂肪的進(jìn)一步研究和應(yīng)用奠定基礎(chǔ)。
[關(guān)鍵詞] 米色脂肪;肥胖;糖尿??;脂肪肝;腫瘤
[中圖分類(lèi)號(hào)] R575 [文獻(xiàn)標(biāo)識(shí)碼] A [文章編號(hào)] 1673-7210(2017)09(a)-0030-04
[Abstract] Besides energy-stocking white adipose tissue, there are two types of thermogenic adipose tissues including classical brown adipose tissue and beige adipose tissue. Human classical brown adipose tissue may regress by adulthood and almost disappear, which is distinct from rodent animal life-through existence. Beige adipocytes sporadically reside with white adipocytes and emerge in response to certain environmental cues, such as chronic cold exposure, excess catecholamine or β-adrenergic stimulation. Beiging of adipose tissue may play a potential role in developing an attractive therapeutic target for obesity and obesity-associated diseases, including type 2 diabetes. In this paper, we review, analyze and summarize the present research on the beige fat and obesity, diabetes, fatty liver, tumor and other diseases, for the further research and application of beige adipose tissue.
[Key words] Beige adipose; Obesity; Diabetes; Fatty liver; Tumor
脂肪組織不僅可以儲(chǔ)存能量,還是具有代謝、免疫功能的內(nèi)分泌器官,對(duì)生物體的代謝平衡具有重要作用[1-3]。哺乳動(dòng)物體內(nèi)一般存在三種類(lèi)型脂肪組織,分別是白色脂肪組織(WAT)、經(jīng)典棕色脂肪組織(cBAT)、誘導(dǎo)性棕色脂肪組織(iBAT)或米色脂肪組織(BAT)。傳統(tǒng)上認(rèn)為,人類(lèi)的經(jīng)典棕色脂肪僅存在于初生嬰兒及嬰幼兒肩胛間區(qū)、腋窩及頸后部并隨年歲增長(zhǎng)而消失,在童年及成年后不再保留;而其他哺乳動(dòng)物如小鼠等在成年后仍保留有一定量棕色脂肪組織。但近來(lái)發(fā)現(xiàn),在成人頸部背側(cè)脊骨區(qū)域、鎖骨上方以及主動(dòng)脈周?chē)炔课淮嬖谡T導(dǎo)性或功能性棕色脂肪組織[4-6],即米色脂肪,在寒冷刺激時(shí)負(fù)責(zé)非顫式產(chǎn)熱[7-8]。人們把嚙齒類(lèi)動(dòng)物的皮下白色脂肪組織在某些誘導(dǎo)因素作用下出現(xiàn)的棕色樣脂肪細(xì)胞稱為米色脂肪細(xì)胞或淺褐色脂肪細(xì)胞[9-11],經(jīng)典棕色脂肪和米色脂肪起源是有區(qū)別的。例如,經(jīng)典棕色脂肪細(xì)胞起源于Myf5+細(xì)胞系,而米色脂肪細(xì)胞卻來(lái)自PDGFRα+脂肪前體細(xì)胞[12-13],或更可能由白色脂肪轉(zhuǎn)分化而來(lái)[1]。另外,經(jīng)典棕色和米色脂肪細(xì)胞具有不同的分子標(biāo)志:人和鼠經(jīng)典棕色脂肪細(xì)胞的標(biāo)志有Ebf3、Eva1、Fbxo31、Zic1,而米色脂肪細(xì)胞的特征標(biāo)志為T(mén)mem26、Tbx1和CD137[14-16]。BAT在接受一定的刺激后可以燃燒脂肪并產(chǎn)熱,是一種重要的產(chǎn)熱脂肪,米色脂肪對(duì)肥胖和糖尿病等多種疾病有治療作用。下面闡述米色脂肪與疾病的關(guān)系及其臨床意義。
1 米色脂肪對(duì)肥胖的作用
據(jù)報(bào)道,2015年,全球肥胖兒童大約有1.077億,肥胖成人大約6.037億。同年,全球大約400萬(wàn)人的死因與高體重指數(shù)直接相關(guān),占全部死亡人數(shù)的7.1%[17]。因此防治肥胖顯得尤為重要,傳統(tǒng)思路是減少能量攝入和增加能量消耗。而經(jīng)典的棕色脂肪和最近發(fā)現(xiàn)的米色脂肪均具有產(chǎn)熱或能量消耗作用。因此,激活棕色脂肪或米色脂肪將成為防治肥胖極具吸引力的新方向。很多研究已經(jīng)表明棕色或米色脂肪(統(tǒng)稱為BAT),可以調(diào)節(jié)脂代謝[18-21]。與β3腎上腺素受體激動(dòng)劑處理7 d之后的小鼠相比,兩者進(jìn)食過(guò)程中BAT和WAT的葡萄糖和脂肪酸轉(zhuǎn)運(yùn)均顯著增加,表明BAT的激活可促進(jìn)脂質(zhì)的利用,調(diào)節(jié)全身能量,改善血管內(nèi)皮細(xì)胞脂蛋白的穩(wěn)態(tài)[18]。有研究者利用短期寒冷刺激增加小鼠體內(nèi)的BAT活性,結(jié)果不但使血液中三酰甘油(TG)水平顯著下降,而且高密度脂蛋白的水平也明顯升高,活化的BAT能夠在肥胖甚至高脂血癥小鼠中使血漿葡萄糖和TG濃度正?;痆19],而在病理生理環(huán)境中,寒冷刺激有效地改善了高脂血癥以及胰島素抵抗的癥狀?;罨腂AT通過(guò)促進(jìn)富含TG的脂蛋白(TRLs)在血液中轉(zhuǎn)運(yùn)脂質(zhì)并將其轉(zhuǎn)運(yùn)至BAT中來(lái)控制體內(nèi)血管的脂質(zhì)平衡[19],將BAT移植到小鼠體內(nèi),可以有效地降低小鼠體重及其脂肪含量[20],因此激活脂肪米色化或棕色化可能是減脂防治肥胖的有效方法[21]。endprint
2 米色脂肪對(duì)糖尿病的作用
糖尿病是一組以高血糖為特征的代謝性疾病。高血糖則是由于胰島素分泌缺陷或其生物作用受損,或兩者兼有引起。為了控制血糖水平,患有2型糖尿病的患者需要持續(xù)性地進(jìn)行胰島素注射治療。而產(chǎn)熱脂肪組織由于其消耗糖脂等產(chǎn)熱的能力,已經(jīng)吸引了糖尿病研究人員的注意,對(duì)其生物學(xué)行為特征及在糖尿病等相關(guān)代謝紊亂性疾病的潛在治療作用進(jìn)行了研究[22]。如經(jīng)過(guò)24 h冷暴露后,小鼠體內(nèi)BAT激活,可減輕體重并改善胰島素抵抗[23]。BAT在全身能量消耗、葡萄糖體內(nèi)平衡和人胰島素敏感性方面發(fā)揮作用[24-25],提示BAT對(duì)人類(lèi)糖尿病具有潛在的治療價(jià)值。敲除小鼠BAT組織的胰島素受體后,小鼠B細(xì)胞數(shù)量減少且胰島素分泌降低,并最終引發(fā)糖尿病[26]。若將BAT移植到1型糖尿病小鼠的皮下,可使小鼠的血糖、糖耐量及組織炎癥狀態(tài)得到明顯改善[26],這揭示了棕色脂肪在生理上維持體內(nèi)平衡的兩個(gè)作用:首先,胰島素受體在棕色脂肪發(fā)育過(guò)程中起主導(dǎo),其次是BAT在調(diào)節(jié)胰島素分泌和葡萄糖的動(dòng)態(tài)平衡中起作用。另外,當(dāng)棕色脂肪移植到健康的小鼠體內(nèi)后,可觀察到葡萄糖耐量有所改善。另一項(xiàng)研究中,將胎兒棕色脂肪細(xì)胞移植到NOD小鼠(1型糖尿病模型)中,導(dǎo)致肝臟中葡萄糖的生成減少,在胰島素缺失的情況下阻止了糖尿病的進(jìn)一步惡化,而通過(guò)移植棕色脂肪細(xì)胞發(fā)現(xiàn)了胰島素樣生長(zhǎng)因子-1(IGF-1)可以改善內(nèi)分泌狀態(tài)如減少血漿胰高血糖素水平[27]。這些動(dòng)物實(shí)驗(yàn)都說(shuō)明了BAT在維持糖代謝穩(wěn)態(tài)、調(diào)節(jié)血糖水平中發(fā)揮重要作用。
3 米色脂肪對(duì)脂肪肝的作用
BAT不僅是葡萄糖和脂肪酸的代謝場(chǎng)所,還是其他代謝物的主要代謝場(chǎng)所[28]。除了肥胖和糖尿病外,在其他的代謝相關(guān)性疾病如動(dòng)脈粥樣硬化和脂肪肝也可能存在積極影響。如人源化脂蛋白的小鼠模型中所示,BAT的活化使脂肪酸從富含TG的脂蛋白選擇性地被攝取到BAT中,使其活化增強(qiáng),隨后加速了肝臟對(duì)膽固醇富集殘留物的清除。這些現(xiàn)象都說(shuō)明BAT的活化增加了能量的消耗并降低血漿中TG和膽固醇的水平[29],激活BAT可能是治療高脂血癥驅(qū)動(dòng)的動(dòng)脈粥樣硬化的有效方法。另外極低密度脂蛋白(VLDL)小鼠模型研究顯示[30],被BAT激活的高糖皮質(zhì)激素可改善皮質(zhì)酮誘導(dǎo)的高脂蛋白血癥,可能是因?yàn)闇p少了肝臟脂肪的從頭合成(DNL)及富含TG的脂蛋白分泌。臨床研究顯示,具有BAT活性的成人個(gè)體與不具有BAT活性的個(gè)體相比,可檢測(cè)到BAT活性的成人個(gè)體具有較低的非酒精性脂肪性肝病(NAFLD)患病率和較低的血漿丙氨酸氨基轉(zhuǎn)移酶(ALT)和天門(mén)冬氨酸氨基轉(zhuǎn)移酶(AST)水平[31-32]。此外,BAT陽(yáng)性的受試者體內(nèi)BAT的活性與CT掃描的平均肝衰減與脾臟衰減比例成反比,表明BAT可能參與了人類(lèi)肝臟的代謝紊亂癥狀[31]。近來(lái)報(bào)道,棕色和米色脂肪細(xì)胞顯著影響人體內(nèi)肝臟的脂質(zhì)平衡和NAFLD患病率,成人中活化BAT的存在對(duì)其血脂特征和肝功能都有積極的影響,且與脂肪肝的患病率相關(guān)[32]。因此推測(cè),激活棕色脂肪組織可能是預(yù)防和治療血脂異常和脂肪肝的潛在方法。
4 米色脂肪對(duì)腫瘤的潛在作用
在部分腫瘤如嗜鉻細(xì)胞瘤已經(jīng)觀察到米化現(xiàn)象即白色脂肪向棕色脂肪轉(zhuǎn)分化[33-34],提示脂肪細(xì)胞米色化對(duì)腫瘤的發(fā)生、發(fā)展具有潛在的作用,且由于脂肪在腫瘤中的重要作用,以及棕色脂肪、肥胖和腫瘤這三者的密切聯(lián)系,BAT在腫瘤的發(fā)生、發(fā)展以及治療中一定存在某些聯(lián)系,現(xiàn)就從能量代謝、免疫調(diào)控的角度對(duì)兩者的關(guān)系進(jìn)行闡述。
4.1 米色脂肪與腫瘤能量代謝
腫瘤的發(fā)生、發(fā)展及轉(zhuǎn)移與能量代謝密切相關(guān)。目前關(guān)于腫瘤細(xì)胞能量代謝的研究火熱,研究人員希望利用其代謝特點(diǎn),找到靶向腫瘤能量代謝通路中的潛在藥物作用靶點(diǎn),從而達(dá)到控制腫瘤的目的。而脂肪的米色化可以促進(jìn)脂肪和葡萄糖的分解,增強(qiáng)體內(nèi)的糖脂代謝。研究表明,惡性乳腺腫瘤的脂肪其BAT的活性大于良性乳腺腫瘤的BAT活性[35]。另外,誘導(dǎo)脂肪米色化后可以促進(jìn)乳腺癌細(xì)胞侵襲轉(zhuǎn)移[36]。推測(cè)米色化可能通過(guò)促進(jìn)脂肪分解,提高脂肪β氧化的水平為腫瘤的發(fā)生、發(fā)展提供能量。
4.2 米色脂肪與腫瘤免疫
在腫瘤發(fā)生與發(fā)展的過(guò)程中,機(jī)體免疫系統(tǒng)起重要作用。而很多免疫細(xì)胞和分子也參與了BAT的調(diào)節(jié)[37-38]。比如白細(xì)胞介素-33(IL-33)可以激活二型固有淋巴細(xì)胞(ILC2)促進(jìn)BAT的生成[39]。而最近有報(bào)道稱IL-33與ILC2具有一定的抗腫瘤活性[40]。某些腫瘤如嗜鉻細(xì)胞瘤也通過(guò)誘導(dǎo)米色化高表達(dá)細(xì)胞因子如人成纖維細(xì)胞生長(zhǎng)因子-21(FGF-21)對(duì)腫瘤發(fā)揮作用[41],推測(cè)在促進(jìn)脂肪米色化時(shí)某些免疫分子會(huì)通過(guò)代謝調(diào)節(jié)的方式影響腫瘤的發(fā)生、發(fā)展[42]。
5 展望
綜上所述,脂肪組織的米色化與肥胖、糖尿病、脂肪肝等相關(guān)代謝紊亂性疾病及腫瘤密切相關(guān)。因此,通過(guò)激活米色脂肪,使其發(fā)揮消耗多余能量、改善機(jī)體糖耐量和增強(qiáng)胰島素敏感性等作用,那么人類(lèi)肥胖、糖尿病等問(wèn)題將得到有效治療。但其激活的具體調(diào)控機(jī)制還有待進(jìn)一步明確。另外,目前關(guān)于米色脂肪的大部分研究都是在嚙齒類(lèi)動(dòng)物體內(nèi)進(jìn)行,而這些動(dòng)物的脂肪分布與人類(lèi)還有差異;腫瘤與脂肪米色化的相互關(guān)系也有待進(jìn)一步研究確定,因此以脂肪米色化為靶點(diǎn)的疾病治療和藥物研發(fā)任重而道遠(yuǎn)。
[參考文獻(xiàn)]
[1] Barbatelli G,Murano I,Madsen L,et al. The emergence of cold-induced brown adipocytes in mouse white fat depots is determined predominantly by white to brown adipocyte transdifferentiation [J]. Am J Physiol Endocrinol Metab,2010,298(6):E1244-E1253.endprint
[2] Lagowska K,Jeszka J. Adiposetissueas an endocrineorgan [J]. J Clin Endocrinol Metab,2004,89(4):639-651.
[3] Chmelar J,Chung KJ,Chavakis T. The role of innate immune cells in obese adipose tissue inflammation and development of insulin resistance [J]. Thromb Haemost,2013, 109(3):399-406.
[4] Cypess AM,Lehman S,Williams G,et al. Identification and importance of brown adipose tissue in adult humans [J]. N Engl J Med,2009,360(15):1509-1517.
[5] Virtanen K,Lidell MJ,Heglind M,et al. Functional brown adipose tissue in healthy adults [J]. N Engl J Med,2009, 360(15):1518-1525.
[6] van Marken Lichtenbelt WD,Vanhommerig JW,Smulders NM,et al. Cold activated brown adipose tissue in healthy men [J]. N Engl J Med,2009,360:1500-1508.
[7] Cohen P,Spiegelman BM. Brown and beige fat:molecular parts of a thermogenic machine [J]. Diabetes,2015,64(7):2346-2351.
[8] 高洋,魏著英,白春玲,等.哺乳動(dòng)物脂肪細(xì)胞的分化及調(diào)控[J].中國(guó)細(xì)胞生物學(xué)學(xué)報(bào),2015(12):1708-1712.
[9] Wu J,Bostrm P,Sparks L,et al. Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human [J]. Cell,2012,150(2):366-376.
[10] Wu J,Cohen P,Spiegelman BM. Adaptive thermogenesis in adipocytes:is beige the new brown? [J]. Genes Dev,2013,27(3):234-250.
[11] 汪凱,任安經(jīng),章衛(wèi)平.米色脂肪:一種新型的脂肪[J].第二軍醫(yī)大學(xué)學(xué)報(bào),2014,35(2):195-199.
[12] Seale P,Bjork B,Yang W,et al. PRDM16 controls a brown fat/skeletal muscle switch [J]. Nature,2008,454(7207):961-967.
[13] Lee YH,Petkova AP,Mottillo EP,et al. In vivo identification of bipotential adipocyte progenitors recruited by β3-adrenoceptor activation and high-fat feeding [J]. Cell Metab,2012,15(4):480-491.
[14] Sharp LZ,Shinoda K,Ohno H,et al. Human BAT possesses molecular signatures that resemble beige/brite cells [J]. PLoS One,2012,7(11):e49452.
[15] de Jong JM,Larsson O,Cannon B,et al. A stringent validation of mouse adipose tissue identity markers [J]. Am J Physiol Endocrinol Metab,2015,308(12):E1085-E1105.
[16] Peirce V,Carobbio S,Vidalpuig A. The different shades of fat [J]. Nature,2014,510(7503):76-83.
[17] Gregg EW,Shaw JE. Global health effects of overweight and obesity [J]. N Engl J Med,2017,377(1):80-81.
[18] Bartelt A,Heeren J. The holy grail of metabolic disease:brown adipose tissue [J]. Curr Opin Lipidol,2012,23(3):190-195.
[19] Bartelt A,Bruns OT,Reimer R,et al. Brown adipose tissue activity controls triglyceride clearance [J]. Nat Med,2011,17(2):200-205.endprint
[20] Stanford KI,Middelbeek RJ,Townsend KL,et al. Brown adipose tissue regulates glucose homeostasis and insulin sensitivity [J]. J Clin Invest,2013,123(1):215-223.
[21] Vernochet C,Mcdonald ME,F(xiàn)armer SR. Brown adipose tissue:a promising target to combat obesity [J]. Drug News Perspect,2010,23(7):409-417.
[22] Lizcano F,Vargas D. Biology of beige adipocyte and possible therapy for type 2 diabetes and obesity [J]. Int J Endocrinol,2016,2016(12):1-10.
[23] Bartelt A,Merkel M,Heeren J. A new,powerful player in lipoprotein metabolism:brown adipose tissue [J]. J Mol Med(Berl),2012,90(8):887-893.
[24] Chondronikola M,Volpi E,B?覬rsheim E,et al. Brown adipose tissue improves whole-body glucose homeostasis and insulin sensitivity in humans [J]. Diabetes,2014,63(12):4089-4099.
[25] Lee P,Smith S,Linderman J,et al. Temperature-acclimated brown adipose tissue modulates insulin sensitivity in humans [J]. Diabetes,2014,63(11):3686-3698.
[26] Guerra C,Navarro P,Valverde AM,et al. Brown adipose tissue-specific insulin receptor knockout shows diabetic phenotype without insulin resistance [J]. J Clin Invest,2001,108(8):1205-1213.
[27] Gunawardana SC,Piston DW. Insulin-independent reversal of type 1 diabetes in non-obese diabetic mice with brown adipose tissue transplant [J]. Am J Physiol Endocrinol Metab,2015,308(12):E1043-E1045.
[28] Bartelt A,Bruns OT,Reimer R,et al. Brown adipose tissue activity controls triglyceride clearance [J]. Nat Med,2011,17(2):200-205.
[29] Berbée JFP,Boon MR,Khedoe PP,et al. Brown fat activation reduces hypercholesterolemia and protects from atherosclerosis development [J]. Nat Commun,2015,6:6356.
[30] Jc VDB,Boon MR,Steenbergen J,et al. Cold exposure partially corrects disturbances in lipid metabolism in a male mouse model of glucocorticoid excess [J]. Endocrinology,2015,156(11):4115-4128.
[31] Yilmaz Y,Ones T,Purnak T,et al. Association between the presence of brown adipose tissue and non-alcoholic fatty liver disease in adult humans [J]. Aliment Pharmacol Ther,2011,34(3):318-323.
[32] Ozguven S,Ones T,Yilmaz Y,et al. The role of active brown adipose tissue in human metabolism [J]. Eur J Nucl Med Mol Imaging,2016,43(2):355-361.
[33] Frontini A,Vitali A,Perugini J,et al. White-to-brown transdifferentiation of omental adipocytes in patients affected by pheochromocytoma [J]. Biochim Biophys Acta,2013,1831(5):950-959.
[34] Vergnes L,Davies GR,Lin JY,et al. Adipocyte browning and higher mitochondrial function in periadrenal but not SC fat in pheochromocytoma [J]. J Clin Endocrinol Metab,2016,101(11):4440-4448.endprint
[35] Wang F,Gao S,Chen F,et al. Mammary fat of breast cancer:gene expression profiling and functional characterization [J]. PLoS One,2014,9(10):e109742.
[36] Pervin S,Singh R,Parveen M,et al. Increased expression of beige/brown adipose markers from host and breast cancer cells influence xenograft formation in mice [J]. Mol Cancer Res,2016,14(1):78-92.
[37] Chatzigeorgiou A,Chavakis T. Immune cells and metabolism [J]. Handb Exp Pharmacol,2016,233:221-249.
[38] Ip BC,Hogan AE,Nikolajczyk BS. Lymphocyte roles in metabolic dysfunction:of men and mice [J]. Trends Endocrinol Metab,2015,26(2):91-100.
[39] Lee MW,Odegaard J,Mukundan L,et al. Activated type 2 innate lymphoid cells regulate beige fat biogenesis [J]. Cell,2015,160(1-2):74-87.
[40] Kim J,Kim W,Moon UJ,et al. Intratumorally establishing type 2 innate lymphoid cells blocks tumor growth [J]. J Immunol,2016,196(5):2410-2423.
[41] Hondares E,Gallego-Escuredo JM,F(xiàn)lachs P,et al. Fibroblast growth factor-21 is expressed in neonatal and pheochromocytoma-induced adult human brown adipose tissue [J]. Metabolism,2014,63(3):312-317.
[42] Scheele C,Nielsen S. Metabolic regulation and the anti-obesity perspectives of human brown fat [J]. Redox Biol,2017,12:770-775.
(收稿日期:2017-05-25 本文編輯:李亞聰)endprint