郝磊,劉磊,董岸鶯,田洪,張玉波,周虎傳,宋川,牟長河*
(1解放軍第324醫(yī)院腦血管病中心,重慶 400020;2解放軍第273醫(yī)院心腎呼吸科,庫爾勒 841000)
大鼠缺血再灌注損傷腦內(nèi)骨髓間充質(zhì)干細(xì)胞移植抑制TNF-α表達(dá)的上調(diào)促進(jìn)TGFβ1表達(dá)的上調(diào)
郝磊1,劉磊1,董岸鶯2,田洪1,張玉波1,周虎傳1,宋川1,牟長河1*
(1解放軍第324醫(yī)院腦血管病中心,重慶 400020;2解放軍第273醫(yī)院心腎呼吸科,庫爾勒 841000)
目的 探討骨髓間充質(zhì)干細(xì)胞(bone marrow derived mesenchymal stem cells, bMSCs)移植對大鼠缺血再灌注損傷腦腫瘤壞死因子-α(tumor necrosis factor-α,TNF-α)、轉(zhuǎn)化生長因子β1 (transforming growth factor β1, TGFβ1)表達(dá)的影響。方法 首先分離、培養(yǎng)與鑒定大鼠bMSCs。72只大鼠隨機(jī)分為假手術(shù)組、模型組、bMSCs移植組和移植對照組,每組18只。模型組、bMSCs移植組與移植對照組均復(fù)制大腦中動(dòng)脈栓塞缺血/再灌注(middle cerebral artery occlusion infarction/reperfusion,MCAO Ⅰ/R)腦卒中大鼠腦梗死模型。模型復(fù)制1d后,bMSCs移植組于右側(cè)腦室移植bMSCs,移植對照組注射相同劑量的生理鹽水。細(xì)胞移植后第1d、第3d和第7d,分別對各組動(dòng)物進(jìn)行神經(jīng)功能缺損度評分法(neurological severity scores, NSS)評分。采用TTC法檢測腦梗死體積,隨后取梗死灶周圍缺血半暗帶腦組織及其余各組相應(yīng)組織,采用Real-time PCR、Western blot與免疫熒光染色分別檢測各組織TNF-α、TGFβ1 mRNA及其蛋白的表達(dá)變化。結(jié)果 bMSCs移植后第3 d和第7d,bMSCs移植組NSS明顯低于移植對照組和模型組。bMSCs移植后7d,bMSCs移植組腦梗死體積明顯低于模型組及移植對照組。bMSCs移植后第1d、第3d和第7d,模型組與移植對照組中TNF-α和TGFβ1的表達(dá)明顯高于假手術(shù)組,BMSCs移植組的TNF-α表達(dá)增加不如模型組與移植對照組明顯,而TGFβ1表達(dá)的增加顯著高于模型組與移植對照組。結(jié)論 bMSCs移植可促進(jìn)腦梗死大鼠神經(jīng)功能恢復(fù),減少腦梗死體積,其機(jī)制可能與其抑制促炎細(xì)胞因子TNF-α的表達(dá)增加和促進(jìn)抗炎細(xì)胞因子TGFβ1的表達(dá)增加有關(guān)。
骨髓間充質(zhì)干細(xì)胞;腦缺血再灌注;腫瘤壞死因子α;轉(zhuǎn)化生長因子β1
腦卒中是導(dǎo)致人類殘疾、死亡疾病中的重要病因之一[1],其中缺血性腦卒中約占87%。缺血性腦卒中時(shí)腦組織缺血、缺氧,同時(shí)發(fā)生非特異性炎癥反應(yīng)。過度的炎癥反應(yīng)可加劇組織繼發(fā)性損傷[2]。合理控制炎癥反應(yīng)可減輕組織損傷,是治療腦卒中的重要策略之一。近些年來,干細(xì)胞,尤其間充質(zhì)干細(xì)胞(mesenchymal stem cells, MSCs)在組織再生和修復(fù)中的作用已成為本領(lǐng)域的研究熱點(diǎn)。MSCs可促進(jìn)腦卒中動(dòng)物損傷腦組織的修復(fù)及損傷神經(jīng)的改善[3,4],但其機(jī)制并不清楚。
腫瘤壞死因子α( tumor necrosis factor α,TNFα)參與腦缺血后炎癥與細(xì)胞死亡的過程,其過度表達(dá)可加劇腦損傷。腦缺血后其小膠質(zhì)細(xì)胞分泌轉(zhuǎn)化生長因子β1(transforming growth factor β1, TGFβ1)等細(xì)胞因子參與腦的損傷與修復(fù), 是缺血后炎癥反應(yīng)發(fā)生的重要方面。
本文首先分離、培養(yǎng)并鑒定大鼠骨髓間充質(zhì)干細(xì)胞(bone marrow derived mesenchymal stem cells,BMSCs),然后復(fù)制大腦中動(dòng)脈栓塞缺血/再灌注(middle cerebral artery occlusion infarction/reperfusion,MCAO Ⅰ/R)腦卒中大鼠腦梗死模型,將bMSCs移植于大鼠腦梗死局部,隨后分別對各時(shí)相動(dòng)物行神經(jīng)功能評分,采用Real-time PCR與Western blot分別檢測各時(shí)相腦組織TNFα、TGFβ1 mRNA及其蛋白的表達(dá)變化。以此探討bMSCs移植對其神經(jīng)功能改善及TNFα、TGFβ1表達(dá)的影響,以期為研究bMSCs可能通過調(diào)控炎癥反應(yīng)在介導(dǎo)腦卒中神經(jīng)功能改善中的可能機(jī)制奠定基礎(chǔ)。
1 試劑、藥品與動(dòng)物
本實(shí)驗(yàn)使用的主要材料包括胎牛血清購自美國Sigma公司。DMEM高糖培養(yǎng)基購自美國HyClone公司。反轉(zhuǎn)錄試劑盒PrimeScriptTMRT、定量PCR試劑盒SYBR Premix Ex TaqTMⅡ購自大連寶生物公司。引物設(shè)計(jì)與合成由上海捷瑞公司完成。羊抗人TGFβ1多克隆抗體、鼠抗人TNF-α單克隆抗體、鼠抗人GAPDH單克隆抗體購自美國Santa Cruz公司。辣根過氧化物酶標(biāo)記的驢抗羊ⅠgG與羊抗鼠ⅠgG、Alexa Fluor 488標(biāo)記的驢抗羊ⅠgG與Cy3標(biāo)記的羊抗鼠ⅠgG購自碧云天生物技術(shù)研究所。SuperSignalTMwest femto maximum sensitivity substarte購自美國Thermo公司。流式細(xì)胞儀檢測用抗體CD44、CD45及CD90購自美國Ebioscience公司。PVDF膜購自美國Bio-Rad 公司。全自動(dòng)PCR儀購自美國Biometra公司。ABⅠ7500熒光定量PCR儀購自美國ABⅠ公司。激光共聚焦顯微鏡購自德國Leica公司。
SPF級雄性SD大鼠90只,購自第三軍醫(yī)大學(xué)實(shí)驗(yàn)動(dòng)物中心,生產(chǎn)許可證號是SCXK(渝)2012-0003,體質(zhì)量190-210g,其中18只用于bMSCs分離培養(yǎng),其余用于動(dòng)物模型復(fù)制及對照,于恒溫18~22 ℃及恒濕50%~80%環(huán)境飼養(yǎng)。
2 骨髓間充質(zhì)干細(xì)胞的分離、培養(yǎng)及鑒定
參照我們前期工作[5]中所用方法分離、培養(yǎng)及鑒定大鼠bMSCs:大鼠經(jīng)麻醉后,頸椎脫臼處死,無菌條件下用培養(yǎng)液反復(fù)沖洗其髓腔,獲得細(xì)胞懸液,加入Percoll細(xì)胞分離液,離心,取其交界處白膜層細(xì)胞,按約2×107ml-1的細(xì)胞密度種植培養(yǎng),6~9d后,挑取其單克隆細(xì)胞繼續(xù)培養(yǎng),待細(xì)胞生長至80%~100%培養(yǎng)面積時(shí)進(jìn)行傳代擴(kuò)增。取培養(yǎng)4~6d的第3代bMSCs制成細(xì)胞懸液,經(jīng)PBS洗滌并計(jì)數(shù),確保每組細(xì)胞不少于1×105個(gè)。在細(xì)胞樣本中分別加入CD44、CD45及CD90抗體,避光,37 ℃孵育1.5 h,以不加抗體的細(xì)胞為對照。PBS再次重懸各待測細(xì)胞,流式儀分別檢測不同抗體標(biāo)記的細(xì)胞百分率,具體按各抗體說明書進(jìn)行。實(shí)驗(yàn)重復(fù)3次。
3 動(dòng)物分組、腦梗死模型復(fù)制與相應(yīng)處理
SD大鼠72只,隨機(jī)分為模型組(MCAO Ⅰ/R)、bMSCs處理組(MCAO Ⅰ/R+bMSCs)、移植對照組(MCAO Ⅰ/R+saline)和假手術(shù)組(Sham),每組18只,每組按 1、3、7d三個(gè)時(shí)相點(diǎn)又分3個(gè)亞組(6只/亞組)。改良線栓法復(fù)制大鼠MCAO Ⅰ/R梗死模型[6]。栓塞側(cè)均選擇右側(cè)大腦。全過程于無菌條件的10×手術(shù)顯微鏡下操作,具體如下,大鼠于術(shù)前禁食12 h,陸眠寧Ⅱ肌肉注射(0.25 ml/kg)麻醉大鼠,去除頸部毛發(fā),正常消毒鋪巾,在右側(cè)鼓泡并做切口,斜向內(nèi)至胸骨上窩正中處。分離該處皮下脂肪組織與頸前肌、胸鎖乳突肌構(gòu)成的三角形間隙上方的筋膜,暴露頸動(dòng)脈鞘、游離頸總動(dòng)脈與頸內(nèi)動(dòng)脈。結(jié)扎頸總動(dòng)脈近心端,并用血管夾夾閉頸總動(dòng)脈遠(yuǎn)心端。在結(jié)扎線頭端約 3 mm 處用眼科剪開一小口,插入線栓頭端,將直徑為 0.26 mm 的栓線沿頸總動(dòng)脈插入頸內(nèi)動(dòng)脈,經(jīng)頸內(nèi)動(dòng)脈送入顱內(nèi),進(jìn)入約1.8 cm有阻力感時(shí)停止,結(jié)扎固定線栓,縫合皮膚。待大腦中動(dòng)脈栓塞150 min后將線栓拔出約1 cm實(shí)現(xiàn)血流再灌注。MCAO Ⅰ/R組、MCAO Ⅰ/R +bMSCs組與MCAO Ⅰ/R+saline組均復(fù)制腦梗死模型,Sham組僅行假手術(shù)操作。復(fù)制模型后1d,在腦立體定位儀協(xié)助下,、MCAO Ⅰ/R +bMSCs組于側(cè)腦室移植30 μl第3代bMSCs懸液,MCAO Ⅰ/R+saline組注射相同劑量的生理鹽水。
4 神經(jīng)功能評估
各組大鼠均于取材前4h按 Zea Longa等創(chuàng)立的 5 級神經(jīng)功能缺損度評分(neurological severity scores, NSS)法,從感覺、反射、平衡、運(yùn)動(dòng)方面進(jìn)行NNS。神經(jīng)功能缺損最嚴(yán)重者為5分,即神經(jīng)功能缺損愈嚴(yán)重其評分愈高。
5 腦梗死體積比的測算
取腦組織冠狀面切成2mm腦片,行2% 2,3,5—氯化三苯基四氮唑(2,3,5 - three phenyl tetrazole chloride,TTC)染色并拍照,采用圖像分析軟件(Ⅰmage-Pro Plus, Media Cybernetics Ⅰnc, USA)測算其梗死面積與損傷側(cè)腦半球的面積比,以此表示其梗死體積比。
6 腦組織局部 TNF-α與TGFβ1的mRNA表達(dá)檢測
設(shè)計(jì)并合成大鼠TNF-α基因(L00981.1)、TGFβ1基因(NM_021578.2)及GAPDH基因(AF106860.2)(內(nèi)參照)的Real-time PCR檢測引物(表1)。收集各時(shí)相點(diǎn)動(dòng)物腦缺血周邊區(qū)組織約50 mg,分別提取其總RNA并予以定量檢測。采用逆轉(zhuǎn)錄試劑盒將RNA逆轉(zhuǎn)錄為cDNA,逆轉(zhuǎn)錄反應(yīng)條件:42 ℃20 min、95 ℃ 5 min、4 ℃ 5 min。Real-time PCR 檢測按其試劑盒操作說明進(jìn)行,每一反應(yīng)體系含2μL cDNA,擴(kuò)增曲線反應(yīng)條件:95 ℃ 5 min 1個(gè)循環(huán);95 ℃ 5 s,60 ℃ 31 s,40個(gè)循環(huán)。熔解曲線反應(yīng)條件:95 ℃ 15 s,60 ℃ 30 s,95 ℃ 15 s。RotorGene 6.0 軟件收集循環(huán)閾值(CT值),以2-ΔΔCt值表示目的基因的相對表達(dá)量。實(shí)驗(yàn)重復(fù)3次。
表1 PCR的檢測引物、Tm值與產(chǎn)物大小Tab. 1 The primers, Tm value and product size of PCR detection
7 腦組織局部促TNF-α與TGFβ1表達(dá)的Western blot和免疫熒光檢測
Western blot分析:收集各時(shí)相點(diǎn)動(dòng)物腦缺血周邊區(qū)組織,分別提取各組織總蛋白并定量,SDSPAGE分離各蛋白后轉(zhuǎn)移到PVDF膜上。分別放入含鼠抗人TNF-α單克隆抗體(1:300稀釋)、羊抗人TGFβ1多克隆抗體(1:400)的封閉液(5%的脫脂奶粉的TBST)中,4℃過夜孵育,分別加入辣根過氧化物酶標(biāo)記的羊抗鼠ⅠgG(1:400)與辣根過氧化物酶標(biāo)記的驢抗羊ⅠgG(1:600),室溫孵育2 h, 最后用增強(qiáng)化學(xué)發(fā)光顯色,以GAPDH作內(nèi)參。實(shí)驗(yàn)重復(fù)3次。
免疫熒光染色:取各時(shí)相點(diǎn)動(dòng)物腦缺血周邊區(qū)組織制成石蠟切片,胃蛋白酶消化以修復(fù)抗原后,用上述TNF-α和TGFβ1第一抗體、Cy3標(biāo)記的羊抗鼠ⅠgG(紅色)與Alexa Fluor 488標(biāo)記的驢抗羊ⅠgG(綠色)分別對TNF-α、TGFβ1抗原進(jìn)行免疫熒光染色,甘油磷酸緩沖液封片,激光共聚焦顯微鏡予以觀測,每張切片采集5~10個(gè)視野圖像。Image-Pro-Plus圖像分析軟件(Media Cybernetics Ⅰnc,USA)測算各圖像的TNF-α、TGFβ1蛋白的平均面積密度(mean area density,MAD)(%),并予以比較與分析。實(shí)驗(yàn)重復(fù)3次。
8 統(tǒng)計(jì)學(xué)處理
所得數(shù)據(jù)采用ⅠBM SPSS 16.0軟件進(jìn)行統(tǒng)計(jì)學(xué)分析,t檢驗(yàn)與單因素方差分析分別用于兩組間和多組間比較,數(shù)據(jù)以均值±標(biāo)準(zhǔn)差(±s)表示,P<0.05為差異具統(tǒng)計(jì)意義。
1 骨髓間充質(zhì)干細(xì)胞的分離、培養(yǎng)與鑒定
倒置顯微鏡觀察可見培養(yǎng)1~6d的bMSCs散在克隆生長,胞體呈圓形、不規(guī)則形,大部分呈梭形、紡錘形。7~10d后, 挑取其單克隆傳代培養(yǎng)。傳代擴(kuò)增的bMSCs,長勢良好,生長至85%~95%匯片時(shí)進(jìn)行再次傳代擴(kuò)增,此時(shí)的bMSCs分布均勻,形態(tài)以梭形為主(圖1),bMSCs生長旺盛,生長速度較原代bMSCs明顯加快,6~8d可傳代擴(kuò)增。
圖1 第三代骨髓間充質(zhì)干細(xì)胞分布均勻,多數(shù)細(xì)胞呈長梭形。比例尺,100μmFig. 1 The third generation bMSCs distribute evenly with majority of cells displaying long spindle shape. Scale bar, 300μm
流式細(xì)胞術(shù)(flow cytometry, FCM)檢測表明,bMSCs穩(wěn)定表達(dá)中胚層來源細(xì)胞的表型標(biāo)志CD44與CD90,其陽性率分別為98.7%和83.0%,不表達(dá)或微弱表達(dá)造血細(xì)胞的表型標(biāo)志CD45,其陽性率為0.804%(圖2)。
圖 2 骨髓間充質(zhì)干細(xì)胞的CD44、CD90及CD45的陽性率(%)的流式細(xì)胞儀檢測。A,CD44;B,CD90;C,CD45Fig. 2 Flow cytometry detection for the positive rates(%) of CD44 (A), CD90 (B) and CD45 (C) in bone marrow mesenchymal stem cells.
2 骨髓間充質(zhì)干細(xì)胞移植改善缺血后腦梗死大鼠神經(jīng)功能缺損
神經(jīng)功能缺損度評分發(fā)現(xiàn),細(xì)胞移植后第1d, MCAO Ⅰ/R組、MCAO Ⅰ/R+bMSCs組與MCAO Ⅰ/R+ saline組大鼠神經(jīng)功能評分無明顯差異,但均高于Sham組;細(xì)胞移植后第3d,MCAO Ⅰ/R+bMSCs組神經(jīng)功能評分仍然高于Sham組,但低于MCAO Ⅰ/R組與MCAO Ⅰ/R+saline組;細(xì)胞移植后第7d,MCAOⅠ/R組、MCAOⅠ/R+bMSCs組與MCAO Ⅰ/R+saline組神經(jīng)功能評分均降低,但仍高于Sham組,但MCAO-Ⅰ/R+bMSCs組評分顯著低于MCAOⅠ/R組(表2)。此結(jié)果表明:bMSCs移植可以改善腦梗死大鼠神經(jīng)功能缺損癥狀。
表2 骨髓間充質(zhì)干細(xì)胞移植對缺血腦梗死大鼠神經(jīng)功能缺損的影響Tab. 2 Effect of bone marrow derived mesenchymal stem cells transplantation on neurological severity scores of the rats with cerebral ischemia-reperfusion injury
3 骨髓間充質(zhì)干細(xì)胞移植減少缺血后腦梗死體積
缺血后腦梗死體積進(jìn)行TTC染色檢測發(fā)現(xiàn),bMSCs移植后第1d、第3d,假手術(shù)組動(dòng)物腦梗死體積為0,MCAO Ⅰ/R組、MCAO Ⅰ/R+bMSCs組與MCAO Ⅰ/R+saline組腦梗死體積無明顯差異;第7d,MCAO Ⅰ/R+bMSCs組腦梗死體積明顯低于MCAOⅠ/R組及MCAO Ⅰ/R+saline組(圖3),由此表明bMSCs移植可減少缺血后腦梗死體積。
圖3 骨髓間充質(zhì)干細(xì)胞移植對缺血腦梗死體積影響的TTC染色檢測。A,梗死體積的大體觀察;B,梗死體積的統(tǒng)計(jì)學(xué)分析。*:與MCAOⅠ/R組、MCAO Ⅰ/R+saline組比較,P<0.01;n=6Fig. 3 The effect of bone marrow derived mesenchymal stem cells transplantation on cerebral infarction volume detected by TTC staining. A, general observation of infarct tissue; B, statistical analysis of infarct volumes; *: P<0.01, vs MCAO Ⅰ/R group, MCAO Ⅰ/R+saline group; n=6
4 骨髓間充質(zhì)干細(xì)胞移植在缺血再灌注腦組織中抑制TNF-α 蛋白的上調(diào)促進(jìn)TGFβ1 蛋白的上調(diào)
Western blot檢測表明,bMSCs移植后第1d,與假手術(shù)組比較,模型組、bMSCs處理組與對照組TNF-α和TGFβ1蛋白水平明顯升高,但bMSCs處理組TNF-α蛋白水平明顯低于模型組與對照組而TGFβ1蛋白水平明顯高于模型組與對照組(圖4A)。移植后第3d,與移植后第1d比較,模型組、bMSCs處理組與對照組TNF-α和TGFβ1蛋白水平繼續(xù)明顯升高,但bMSCs處理組TNF-α蛋白水平仍明顯低于模型組與對照組,TGFβ1蛋白水平繼續(xù)高于模型組與對照組(圖4B)。移植后第7d,模型組、bMSCs處理組與對照組TNF-α蛋白水平低于移植后第3d,但仍高于同時(shí)間的假手術(shù)組;TGFβ1蛋白水平仍繼續(xù)升高;同時(shí),bMSCs處理組TNF-α蛋白水平仍明顯低于模型組與對照組,TGFβ1蛋白水平仍明顯高于模型組和對照組(圖4C)。
圖4 骨髓間充質(zhì)干細(xì)胞移植對缺血再灌注腦組織中TNF-α和TGFβ1 蛋白水平影響的Western blot檢測。上,代表性Western blot;下,蛋白相對水平的統(tǒng)計(jì)學(xué)分析;A,1d;B,3d;C,7d;#:與MCAO Ⅰ/R組、MCAO Ⅰ/R+saline組比較,0.01<P<0.05;*:與Sham組、MCAOⅠ/R組、MCAO Ⅰ/R+saline組比較,P<0.01;n=6Fig. 4 The effect of bone marrow derived mesenchymal stem cells transplantation on protein levels of TNF-α and TGFβ1 in the ischemia-reperfusion cerebral tissues. Upper panel, representative Western blots; lower panel, statistical analysis for relative protein expression levels. A, 1d; B, 3d; C, 7d; #: 0.01<P<0.05 vs MCAO Ⅰ/R group, MCAO Ⅰ/R+saline group; *: P<0.01 vs Sham group, MCAO Ⅰ/R group, MCAO Ⅰ/R+saline group; n=6
免疫熒光染色檢測顯示,bMSCs移植后,假手術(shù)組各時(shí)相點(diǎn)TNF-α和TGFβ1免疫反應(yīng)陽性細(xì)胞數(shù)和反應(yīng)強(qiáng)度無明顯變化;與bMSCs移植后第1d天比較,移植后第3d的模型組、bMSCs處理組與對照組TNF-α陽性細(xì)胞數(shù)增多,免疫反應(yīng)性顯著增強(qiáng),第7d有所降低,而此3組TGFβ1免疫反應(yīng)陽性細(xì)胞和反應(yīng)強(qiáng)度隨時(shí)間逐漸增加。bMSCs移植后第1d、第3d和第7d,bMSCs處理組TNF-α陽性細(xì)胞數(shù)和免疫反應(yīng)性明顯低于模型組與對照組,而TGFβ1陽性細(xì)胞數(shù)和免疫染色強(qiáng)度則顯著高于模型組與對照組。對照組各時(shí)相點(diǎn)的TNF-α和TGFβ1陽性細(xì)胞數(shù)和免疫反應(yīng)強(qiáng)度均與模型組相似(圖5,表3)。
圖5 骨髓間充質(zhì)干細(xì)胞移植7 d對缺血再灌注損傷腦組織中TNF-α和TGFβ1 蛋白水平影響的免疫熒光檢測。比例尺,50μmFig. 5 The effect of bone marrow derived mesenchymal stem cells on protein levels of TNF-α and TGFβ1 in the cerebral tissues with ischemia-reperfusion injury seven days after transplantation. The samples from different groups were stained for TNF-α (red) or TGFβ1 (green). scale bar, 50μm
表3 骨髓間充質(zhì)干細(xì)胞移植對缺血再灌注損傷腦組織中TNF-α和TGFβ1免疫反應(yīng)性影響的統(tǒng)計(jì)學(xué)分析Tab. 3 Statistical analysis of bone marrow derived mesenchymal stem cells transplantation effect on TNF-α- and TGFβ1-immuoreactivities in the cerebral tissues with ischemia-reperfusion injury
5 骨髓間充質(zhì)干細(xì)胞移植在缺血再灌注腦組織中抑制TNF-α mRNA的上調(diào)、促進(jìn)TGFβ1 mRNA的上調(diào)
Real-time PCR 檢測證實(shí),bMSCs移植后第1d,與Sham組比較,MCAO Ⅰ/R組、MCAO Ⅰ/R+bMSCs組與MCAO Ⅰ/R+saline組TNF-α和TGFβ1的mRNA表達(dá)升高;與MCAO Ⅰ/R與MCAO Ⅰ/R+saline組相比, MCAO Ⅰ/R+bMSCs組TNF-α的mRNA表達(dá)降低,而TGFβ1的mRNA表達(dá)則明顯升高。移植后第3d,與移植后第1d比較,MCAO Ⅰ/R組、MCAOⅠ/R+bMSCs組與MCAO Ⅰ/R+saline組TNF-α和TGFβ1的mRNA表達(dá)繼續(xù)升高;與同時(shí)間點(diǎn)的MCAOⅠ/R與MCAO Ⅰ/R+saline組比較,MCAO Ⅰ/R+bMSCs組TNF-α的mRNA表達(dá)仍明顯降低,TGFβ1的mRNA表達(dá)仍較高。移植后第7d,MCAO Ⅰ/R組、MCAO Ⅰ/R+bMSCs組與MCAO Ⅰ/R+saline組TNF-α的mRNA表達(dá)較移植后第3d者下降,TGFβ1的mRNA表達(dá)則繼續(xù)上升;與同時(shí)間點(diǎn)的MCAO Ⅰ/R與MCAO Ⅰ/R+saline組比較,MCAO Ⅰ/R+bMSCs組TNF-α的mRNA表達(dá)也明顯降低,TGFβ1的mRNA表達(dá)仍然升高(圖6)。
圖6 骨髓間充質(zhì)干細(xì)胞移植對缺血再灌注腦組織中TNF-α和TGFβ1 mRNA表達(dá)影響的qRT-PCR檢測。#:與MCAO Ⅰ/R組、MCAO Ⅰ/R+saline組比較,0.01<P<0.05;*:與Sham組、MCAO Ⅰ/R組、MCAO Ⅰ/R+saline組比較,P<0.01;n=6Fig. 6 The effect of bone marrow derived mesenchymal stem cells transplantation on TNF-α and TGFβ1 mRNA levels in ischemia-reperfusion cerebral tissues. mRNA levels were determined using qRT-PCR. The quantitative results were represented in the bar graphs. A. TNF-α. B. TGFβ1. #: 0.01<P<0.05 vs MCAO Ⅰ/Rgroup, MCAO Ⅰ/R+saline group; *: P<0.01 vs Sham group, MCAO Ⅰ/Rgroup, MCAO Ⅰ/R+saline group; n=6
缺血性腦卒中是嚴(yán)重危害人類健康與生命安全的難治性常見病,當(dāng)栓塞或血栓阻塞血管導(dǎo)致腦組織缺血、缺氧時(shí),神經(jīng)元發(fā)生不可逆性死亡,同時(shí)啟動(dòng)以局部固有免疫細(xì)胞激活與外源性白細(xì)胞浸潤為特征的非特異性組織炎癥反應(yīng)。炎癥反應(yīng)是缺血性腦卒中病理過程中的重要因素,貫穿其發(fā)展過程的始終,與患者病情嚴(yán)重程度及預(yù)后密切相關(guān)。
MSCs具自我更新與多向分化潛能,可在不同微環(huán)境中分化為其所需細(xì)胞,特別是能分化為神經(jīng)細(xì)胞之特性,使其廣泛應(yīng)用于腦部疾患病的研究[7、8]。動(dòng)物實(shí)驗(yàn)發(fā)現(xiàn),bMSCs移植可促進(jìn)缺血性腦卒中后神經(jīng)功能恢復(fù),其機(jī)制主要集中于促進(jìn)神經(jīng)元再生、血管生成、抑制凋亡等方面。然而,MSCs移植促進(jìn)缺血性腦卒中后神經(jīng)功能恢復(fù)的機(jī)制是否還與腦卒中的關(guān)鍵環(huán)節(jié)—炎癥反應(yīng)存在必然聯(lián)系尚不清楚。
為了探討MSCs移植促進(jìn)神經(jīng)功能恢復(fù)的機(jī)制是否與炎癥反應(yīng)密切相關(guān),我們觀察了分離、培養(yǎng)的大鼠bMSCs移植對MCAO Ⅰ/R大鼠神經(jīng)功能缺損、腦梗死體積和腦組織內(nèi)TNF-α和TGFβ1表達(dá)的影響。結(jié)果顯示,雖然bMSCs移植后第1d NSS無明顯變化,但移植后第3d和7d,bMSCs移植可明顯降低MCAO Ⅰ/R大鼠的NSS;bMSCs移植第1d和第3d,對MCAO Ⅰ/R大鼠腦梗死體積無明顯影響,但在移植后第7d,移植bMSCs的MCAO Ⅰ/R大鼠腦梗死體積較未移植bMSCs的MCAO Ⅰ/R大鼠腦梗死體積小,表明bMSCs移植可減輕MCAO Ⅰ/R大鼠腦組織損傷和神經(jīng)功能缺損癥狀,具有神經(jīng)保護(hù)作用。
腦卒中缺血后,神經(jīng)元、星形膠質(zhì)細(xì)胞、小膠質(zhì)細(xì)胞及內(nèi)皮細(xì)胞激活,釋放致炎細(xì)胞因子,尤其是TNF-α啟動(dòng)炎癥反應(yīng)。在短暫性MCAO小鼠模型中,TNF-α mRNA表達(dá)在早期6h就開始升高[9、10]。TNF-α的迅速高表達(dá)通過增加血管內(nèi)皮細(xì)胞分泌黏附分子與趨化因子,使缺血區(qū)白細(xì)胞聚集與浸潤增強(qiáng),引起局部炎癥反應(yīng),致病變區(qū)加重缺血與再灌注損傷, 最終形成缺血-炎癥-血栓與出血-再缺血的惡性循環(huán)。輸注TNF-α可劑量依賴性方式加重MCAO梗死體積[11],而與野生型小鼠比較,TNF-α-/-小鼠的梗死體積降低[12],利用酶降低TNF-α的產(chǎn)生后,MCAO小鼠的梗死體積降低,神經(jīng)功能缺損改善[13]。
TGF β1是經(jīng)典的抗炎因子,在正常腦組織表達(dá)較低。有研究發(fā)現(xiàn),缺血后6h,TGF β1mRNA在全腦的表達(dá)即開始增加,進(jìn)一步升高直至第2d,以后開始下降[14]。在MCAO大鼠和狒狒模型中,缺血半暗帶TGF β1表達(dá)明顯增加[15]。缺血性腦卒中人腦組織中的TGF β1表達(dá)也是增加的[16]。TGF β1具神經(jīng)保護(hù)作用,外源性應(yīng)用TGF β1可降低MCAO大鼠腦組織梗死體積,改善其神經(jīng)功能缺損癥狀[17]。
本實(shí)驗(yàn)對TNF-α表達(dá)水平檢測顯示,MCAO Ⅰ/R大鼠腦組織內(nèi)TNF-α表達(dá)水平明顯升高,移植bMSCs可抑制TNF-α表達(dá)水平的上調(diào)??梢姡琈CAO大鼠移植bMSCs后其神經(jīng)功能缺損的改善與bMSCs致使促炎因子TNF-α的表達(dá)下降密切相關(guān)。
本研究中,MCAO大鼠局灶性缺血后1d,腦組織TGFβ1mRNA及其蛋白明顯升高,一直持續(xù)到缺血后7d仍見高表達(dá)。而MCAO大鼠移植bMSCs后,腦組織TGFβ1的mRNA及其蛋白升高的幅度明顯增大,bMSCs移植后第7d,bMSCs處理組腦梗死體積明顯低于模型組及對照組。因此,bMSCs移植后MCAO大鼠神經(jīng)功能缺損癥狀的改善也與抗炎因子TGFβ1的表達(dá)升高密切相關(guān)。
[1] Liu L, Wang D, Wong KS, et al. Stroke and stroke care in China:huge burden, significant workload, and a national priority. Stroke, 2011, 42(12):3651-3654.
[2] Shafi N, Levine JM. Emergency management of acute ischemic stroke. Curr Atheroscler Rep, 2010, 12(4):230-235.
[3] Mochizuki N, Moriyama Y, Takagi N, et al. Ⅰntravenous injection of neural progenitor cells improves cerebral ischemia-induced learning dysfunction. Biol Pharm Bull, 2011, 34(2): 260-265.
[4] Wang SP, Wang ZH, Peng DY, et al. Therapeutic effect of mesenchymal stem cells in rats with intracerebral hemorrhage: reduced apoptosis and enhanced neuroprotection. Mol Med Rep, 2012, 6(4): 848-54.
[5] 郝磊, 田洪,牟長河,等. 沉默CX3CL1基因?qū)撬栝g充質(zhì)干細(xì)胞生長及其趨化效應(yīng)的影響. 第三軍醫(yī)大學(xué)學(xué)報(bào),2017,39(1):34-41.
[6] Liang QJ, Jiang M, Wang XH, et al. Pre-existing interleukin 10 in cerebral arteries attenuates subsequent brain injury caused by ischemia/reperfusion. ⅠUBMB Life, 2015, 67 (9): 710-719.
[7] Giunti D, Parodi B, Usai C, et al.Mesenchymal stem cells shape microglia effector functions through the release of CX3CL1. Stem Cells, 2012, 30(9):2044-53.
[8] Sheikh AM1, Nagai A, Wakabayashi K, et al. Mesenchymal stem cell transplantation modulates neuroinflammation in focal cerebral ischemia: contribution of fractalkine and ⅠL-5. Neurobiol Dis, 2011, 41(3): 717-724.
[9] Chang L, Chen Y, Li J, et al. Cocaine-and amphetamine-regulated transcript modulates peripheral immunity and protects against brain injury in experimental stroke. Brain Behav Ⅰmmun, 2011, 25 (2): 260-269.
[10] Offner H, Subramanian S, Parker SM, et al. Experimental stroke induces massive, rapid activation of the peripheral immune system. J Cereb Blood Flow Metab, 2006, 26 (5): 654-665.
[11] Barone FC, Arvin B, White RF, et al. Tumor necrosis factor-alpha. A mediator of focal ischemic brain injury. Stroke, 1997, 28 (6): 1233-1244.
[12] Lambertsen KL, Clausen BH, Babcock AA, et al. Microglia protect neurons against ischemia by synthesis of tumor necrosis factor. J Neurosci, 2009, 29 (5): 1319-1330.
[13] Wang X, Feuerstein GZ, Xu L, et al. Ⅰnhibition of tumor necrosis factor-alpha-converting enzyme by a selective antagonist protects brain from focal ischemic injury in rats. Mol Pharmacol, 2004, 65 (4): 890-896
[14] Lehrmann E, Kiefer R, Finsen B, et al. Cytokines in cerebral ischemia: expression of transforming growth factor beta-1 (TGF-beta 1) mRNA in the postischemic adult rat hippocampus. Exp Neurol, 1995, 131 (1): 114-123.
[15] Doyle KP, Cekanaviciute E, Mamer LE, et al. TGFbeta signaling in the brain increases with aging and signals to astrocytes and innate immune cells in the weeks after stroke. J Neuroinflammation, 2010, 7: 62.
[16] Krupinski J, Kumar P, Kumar S, et al. Ⅰncreased expression of TGF-beta 1 in brain tissue after ischemic stroke in humans. Stroke, 1996, 27 (5): 852-857.
[17] Ma M, Ma Y, Yi X, et al. Ⅰntranasal delivery of transforming growth factor-beta1 in mice after stroke reduces infarct volume and increases neurogenesis in the subventricular zone. BMC Neurosci, 2008, 9: 117.
Transplantation of bone marrow mesenchymal stem cells in the brain of rats with cerebral ischemia-reperfusion injury decreases expression of TNF-α and increases expression of TGFβ1
Hao Lei1, Liu Lei1, Dong Anying2, Tian Hong1, Zhang Yubo1, Zhou Huzhuan1, Song Chuan1, Mou Changhe1*
(1Center of cerebrovascular Disease, No.324 Hospital of PLA, Chongqing 400020, China;2Department of heart, kidney and respiration, No. 273 Hospital of PLA, Korla, Xinjiang 841000, China)
Objective To investigate the effect of bone marrow derived mesenchymal stem cells (bMSCs) transplantation on the expression of tumor necrosis factor-α(TNF-α) and transforming growth factor β1 ( TGFβ1) in rats with cerebral ischemia-reperfusion injury. Methods bMSCs were isolated from rat bone marrow, cultured and identified. Seventy two rats were randomized into sham operation group, model group, bMSCs transplantation group and transplantation control group, with 18 rats in each group. Rats in the model group, bMSCs transplantation group and transplantation control group were used for preparing middle cerebral artery occlusion infarction/reperfusion (MCAO Ⅰ/R) of cerebral infarction stroke rat model, and the remaining underwent the sham operation. 1d after modeling, bMSCs were transplanted into the rat lateral ventricle in the bMSCs transplantation group, and rats in the control group were given the injection of the same amount of normal saline. 1d, 3d and 7d after bMSCs transplantation, rat’s neurological function was scored by neurological severity scores (NSS), and cerebral infarct volume was tested by TTC staining. The peripheral ischemic infarct penumbra tissues and the corresponding tissues in other groups were removed in which the expression of TNFα, TGFβ1 at both mRNAand protein levels were evaluated by Real-time PCR, Western blotting and immunofluorescence stain respectively. Results 3d and 7d after transplantation of bMSCs, the NSS of bMSCs transplantation group was significantly lower than that of the transplantation control group and the model group. 7d after bMSCs transplantation, the infarct volume of bMSCs transplantation group was significantly lower than that of model group and transplantation control group. 1d, 3d and 7d after the transplantation, the expression of TNFα and TGFβ1 in model group and transplantation control group were significantly higher than that in the sham operation group, the increase of TNFα expression in bMSCs transplantation group was significantly lower than that in model group and transplantation control group, but the increase of TGFβ1 expression in bMSCs treatment group was significantly higher than that in model group and transplantation control group. Conclusion bMSCs transplantation may promote the recovery of neurological function and reduce the volume of cerebral infarction in rats with cerebral infarction. Its mechanism may be that bMSCs inhibit the increase of proinflammatory cytokines TNFα expression and promote the increase of anti-inflammatory cytokines TGFβ1 expression.
Bone marrow derived mesenchymal stem cells; cerebral ischemia-reperfusion; tumor necrosis factor-α; transforming growth factor β1
R743.3
A DOⅠ:10.16705/ j. cnki. 1004-1850.04.003
2017-01-28
2017-08-02
重慶市基礎(chǔ)與前沿研究計(jì)劃項(xiàng)目(CSTC 2014jcyjA10077)
郝磊,女(1982年),漢族,主治醫(yī)師,博士
*通訊作者(To whom correspondence should be addressed):mch324@163.com
中國組織化學(xué)與細(xì)胞化學(xué)雜志2017年4期