劉華巖 王軍
芍藥苷對(duì)Aβ1-42誘導(dǎo)的小膠質(zhì)細(xì)胞炎性反應(yīng)和趨化性的影響
劉華巖 王軍
目的 探討芍藥苷(PF)對(duì)β-淀粉樣蛋白(Aβ)1-42誘導(dǎo)的小膠質(zhì)細(xì)胞炎性反應(yīng)和趨化性的影響。方法 原代培養(yǎng)大鼠小膠質(zhì)細(xì)胞,分別用0、5、25、50 μmol/LPF預(yù)處理細(xì)胞后,采用CCK-8法和LDH法檢測(cè)細(xì)胞毒性。將培養(yǎng)的細(xì)胞分為空白對(duì)照組(正常培養(yǎng)基)、陽(yáng)性對(duì)照組(Aβ1-42處理細(xì)胞)和實(shí)驗(yàn)組(PF+Aβ1-42處理細(xì)胞)。采用ELISA法檢測(cè)各組腫瘤壞死因子-α(TNF-α)、白細(xì)胞介素-1β(IL-1β)、白細(xì)胞介素-6(IL-6)和趨化因子配體1(CXCL1)、趨化因子配體2(CCL2)的表達(dá)水平。采用Transwell小室進(jìn)行小膠質(zhì)細(xì)胞體外趨化實(shí)驗(yàn),觀(guān)察各組細(xì)胞趨化遷移情況。結(jié)論 培養(yǎng)大鼠原代小膠質(zhì)細(xì)胞純度達(dá)90%以上,CCK-8法和LDH法測(cè)定均顯示PF對(duì)小膠質(zhì)細(xì)胞無(wú)明顯細(xì)胞毒作用(均P>0.05)。PF可抑制Aβ1-42誘導(dǎo)的小膠質(zhì)細(xì)胞分泌促炎性介質(zhì)TNF-α、IL-1β、IL-6和趨化因子CXCL1、CCL2(均P<0.01)。同時(shí),PF可抑制小膠質(zhì)細(xì)胞向Aβ1-42的趨化(均P<0.05)。結(jié)論 PF可抑制Aβ1-42誘導(dǎo)的嚙齒動(dòng)物小膠質(zhì)細(xì)胞生成促炎性介質(zhì)和趨化因子,并抑制小膠質(zhì)細(xì)胞向Aβ1-42趨化遷移,提示PF可能為阿爾茨海默病的治療提供新的契機(jī)。
阿爾茨海默病;β-淀粉樣蛋白;小膠質(zhì)細(xì)胞;炎癥;趨化
阿爾茨海默病(Alzheimer disease,AD)是一種常見(jiàn)的神經(jīng)退行性疾病,主要以記憶力下降等認(rèn)知功能障礙為特點(diǎn)。AD主要病理機(jī)制為腦內(nèi)β-淀粉樣蛋白(beta-amyloid,Aβ)沉積。小膠質(zhì)細(xì)胞在A(yíng)D的發(fā)展中具有雙重作用[1]。防止Aβ介導(dǎo)的小膠質(zhì)細(xì)胞的過(guò)度活化和遷移已被認(rèn)為是延緩AD進(jìn)展的潛在手段。芍藥苷(paeoniflorin,PF)是一種水溶性單萜苷[2],具有抗炎和抗氧化能力且無(wú)明顯不良反應(yīng)及毒性作用[3]。研究證實(shí)PF在腦缺血及神經(jīng)退行性疾病中具有神經(jīng)保護(hù)作用。目前有關(guān)PF對(duì)Aβ刺激下小膠質(zhì)細(xì)胞的炎性反應(yīng)和趨化性的作用知之甚少。本研究采用體外實(shí)驗(yàn)Aβ1-42刺激小膠質(zhì)細(xì)胞模擬AD環(huán)境,旨在探討PF對(duì)Aβ1-42刺激小膠質(zhì)細(xì)胞炎性反應(yīng)和趨化性的影響。
1.1 實(shí)驗(yàn)動(dòng)物 新出生當(dāng)天SD大鼠,雌雄不限,體重約8 g,由中國(guó)醫(yī)科大學(xué)動(dòng)物部提供。
1.2 主要儀器及試劑 包括共聚焦顯微鏡(OLYMPUS公司)、倒置相差顯微鏡(廈門(mén)麥克奧迪醫(yī)療診斷系統(tǒng)有限公司)、酶標(biāo)儀(美國(guó)伯騰儀器有限公司)、CO2培養(yǎng)箱(上海力申科學(xué)儀器有限公司)、DMEM培養(yǎng)基(Gibco公司)、PF(大連美侖生物技術(shù)有限公司)、Aβ1-42(北京博奧森生物公司)、CD11b抗體(Abcam公司)、CCK-8試劑盒(碧云天生物技術(shù)有限公司)、乳酸脫氫酶(LDH)試劑盒(南京建成生物工程研究所)、ELISA試劑盒(USCN公司、Boster公司)。
1.3 方法
1.3.1 大鼠原代小膠質(zhì)細(xì)胞的分離培養(yǎng):參照文獻(xiàn)方法[4]分離培養(yǎng)原代小膠質(zhì)細(xì)胞。將新生SD大鼠腦組織剪碎后用0.25%(質(zhì)量濃度)胰酶消化30 min,利用DMEM培養(yǎng)基(含10% FBS)置于5%(體積分?jǐn)?shù))CO2、37℃培養(yǎng)箱進(jìn)行培養(yǎng)。細(xì)胞生長(zhǎng)至第5天時(shí),密度可達(dá)70%,進(jìn)行固定,并鑒定純度。第一代細(xì)胞生長(zhǎng)至5~6 d時(shí),進(jìn)行傳代處理。加入胰酶消化細(xì)胞后,輕輕搖晃培養(yǎng)瓶,收集小膠質(zhì)細(xì)胞繼續(xù)培養(yǎng)。純度鑒定:將細(xì)胞固定于4%(質(zhì)量濃度)多聚甲醛中15 min。PBS洗3次后,滴加0.1%(質(zhì)量濃度)TritonX-100室溫孵育30 min。PBS洗3次后,滴加山羊血清室溫15 min。滴加抗體CD11b(1∶50稀釋),4℃過(guò)夜。PBS洗3次后,滴加Cy3標(biāo)記二抗(1∶200稀釋),室溫60 min。PBS洗3次后,滴加DAPI以復(fù)染細(xì)胞核。PBS洗3次后,滴加抗熒光淬滅劑,封片,于激光共聚焦顯微鏡下觀(guān)察,400倍鏡下拍照。
1.3.2 細(xì)胞毒性檢測(cè):(1)PF的配制:稱(chēng)取4.8 mg的PF粉末完全溶解于1 mL DMSO中,其濃度為0.01 mol/L,置4℃冰箱備用。因PF處理不同類(lèi)型細(xì)胞所需濃度差異很大[5-6],故本研究用不同濃度PF處理小膠質(zhì)細(xì)胞,以?xún)?yōu)化PF的實(shí)驗(yàn)濃度。(2)CCK-8法細(xì)胞毒性檢測(cè):將細(xì)胞接種于96孔培養(yǎng)板中,每孔2×103個(gè)細(xì)胞,每組設(shè)5個(gè)復(fù)孔,分為4組,分別用0、5、25、50 μmol/LPF處理細(xì)胞24h,加入10 μmol/L CCK-8溶液繼續(xù)培養(yǎng)1 h,利用酶標(biāo)儀測(cè)定其450 nm下吸光度〔D(λ)450 nm〕值。(3)LDH法細(xì)胞毒性檢測(cè):按上述步驟(2)方法接種細(xì)胞、分組以及PE處理細(xì)胞24 h,離心留取上清,按照試劑盒說(shuō)明加樣,混勻后37℃水浴15 min。加入2,4-二硝基苯肼,混勻后再置37℃水浴15 min。加入0.4 mol/L NaOH溶液,混勻后室溫放置5 min。利用酶標(biāo)儀檢測(cè)其D(λ)450 nm值。
1.3.3 纖維化Aβ的制備及分組:將Aβ1-42肽首先充分溶于DMSO,濃度為10 mmol/L,混勻,加入DPBS,終濃度為250 μmol/L,充分混勻。置于37℃溫箱中孵育1周,以充分形成纖維化。使用前用培養(yǎng)液稀釋成10 μmol/L。分為3組:空白對(duì)照組(正常培養(yǎng)基)、陽(yáng)性對(duì)照組(Aβ1-42組:10 μmol/L Aβ1-42處理細(xì)胞24 h)和實(shí)驗(yàn)組(PF+Aβ1-42組:50 μmol/L PF處理細(xì)胞24 h,然后10 μmol/L Aβ1-42處理細(xì)胞24 h)。
1.3.4 細(xì)胞因子和趨化因子檢測(cè):采用ELISA法分別檢測(cè)腫瘤壞死因子-α(tumor necrosis factor-α,TNF-α)、白細(xì)胞介素-1β(interleukin-1β,IL-1β)、IL-6、趨化因子配體1(chemokineC-X-C motifligand 1,CXCL1)和趨化因子配體2(chemokineC-C motifligand 2,CCL2)。以TNF-α檢測(cè)為例介紹操作過(guò)程。
檢測(cè)前將所有試劑和標(biāo)本緩慢均衡至室溫,按照說(shuō)明書(shū)準(zhǔn)備標(biāo)準(zhǔn)品、檢測(cè)稀釋液A和B、檢測(cè)溶液A和B、濃洗滌液和底物溶液。操作步驟:分別設(shè)標(biāo)準(zhǔn)孔、待測(cè)樣品孔、空白孔。設(shè)標(biāo)準(zhǔn)孔7孔,依次加入100 μL不同濃度標(biāo)準(zhǔn)品,空白孔加入100 μL標(biāo)準(zhǔn)品稀釋液,余孔加入稀釋后的待測(cè)樣品100 μL,酶標(biāo)板加上覆膜,37℃溫育2 h。棄去液體,甩干。每孔加檢測(cè)溶液A工作液100 μL,酶標(biāo)板加上覆膜,37℃溫育1 h。棄去孔內(nèi)液體,每孔用350 μL的洗滌液洗滌,浸泡2 min,吸除酶標(biāo)板內(nèi)的液體,重復(fù)洗板3次。每孔加檢測(cè)溶液B工作液100 μL,加上覆膜,37℃溫育30 min。棄去孔內(nèi)液體,甩干,洗板5次。每孔加底物溶液90 μL,酶標(biāo)板加上覆膜,37℃避光顯色。每孔加入終止溶液50 μL終止反應(yīng),此時(shí)藍(lán)色立轉(zhuǎn)黃色。立即用酶標(biāo)儀檢測(cè)各孔D(λ)450 nm值,取各復(fù)孔平均值,使用Curve expert 1.3軟件進(jìn)行分析,制作標(biāo)準(zhǔn)曲線(xiàn)并計(jì)算各待測(cè)樣品細(xì)胞因子及趨化因子水平。
1.3.5 小膠質(zhì)細(xì)胞體外趨化實(shí)驗(yàn):用Transwell小室(孔徑8 μm)進(jìn)行體外實(shí)驗(yàn)。選用對(duì)數(shù)生長(zhǎng)期細(xì)胞,棄培養(yǎng)基,用PBS洗3次,胰酶消化,待細(xì)胞將要從培養(yǎng)瓶壁脫落時(shí),倒去多余的胰酶。加入無(wú)血清培養(yǎng)基,將細(xì)胞從培養(yǎng)瓶壁上吹落并分散成單細(xì)胞懸液。進(jìn)行細(xì)胞計(jì)數(shù),并稀釋成1×105個(gè)/mL的細(xì)胞懸液備用。將Transwell小室放入24孔板中,分為3組:空白對(duì)照組(Control組:下室為正常培養(yǎng)基)、陽(yáng)性對(duì)照組(Aβ1-42組:下室為用10 μmol/L Aβ1-42培養(yǎng)細(xì)胞24 h后的培養(yǎng)基)和實(shí)驗(yàn)組(PF+Aβ1-42組:50 μmol/L PF處理細(xì)胞24 h后,細(xì)胞移至上室,下室為用10 μmol/L Aβ1-42培養(yǎng)細(xì)胞24 h后的培養(yǎng)基)。分別取細(xì)胞懸液200 μL加入上室,細(xì)胞數(shù)均為5×104個(gè)/孔,置于培養(yǎng)箱培養(yǎng)24 h。取出Transwell小室,用PBS上下各沖洗1次;用棉簽擦去微孔膜上層細(xì)胞;多聚甲醛室溫下固定20 min,蘇木素染液染色5 min,蒸餾水沖洗。在200倍倒置顯微鏡下對(duì)遷移至微孔膜下層的細(xì)胞計(jì)數(shù)。每個(gè)樣本選取5個(gè)視野計(jì)數(shù)細(xì)胞,取均數(shù)。
1.4 統(tǒng)計(jì)學(xué)處理 采用SPSS17.0軟件進(jìn)行統(tǒng)計(jì)分析,數(shù)據(jù)以均數(shù)±標(biāo)準(zhǔn)差表示,多組均數(shù)間比較采用單因素方差分析,兩兩比較采用Bonferroni法。以P<0.05為差異有統(tǒng)計(jì)學(xué)意義。
2.1 大鼠原代小膠質(zhì)細(xì)胞純度鑒定 正常狀態(tài)下小膠質(zhì)細(xì)胞多為靜息狀態(tài),貼壁生長(zhǎng),呈長(zhǎng)形或三角形,胞體小,核小而致密,胞質(zhì)少,突起細(xì)長(zhǎng)而呈高度分枝狀(圖1A)。用CD11b/DAPI免疫熒光染色可見(jiàn)小膠質(zhì)細(xì)胞純度達(dá)90%以上(圖1B)。
圖1 大鼠原代小膠質(zhì)細(xì)胞形態(tài)(A,倒置相差顯微鏡)與純度鑒定〔B,免疫熒光染色,CD11b陽(yáng)性(紅染)為小膠質(zhì)細(xì)胞,DAPI(藍(lán)染)為細(xì)胞核復(fù)染〕
2.2 PF對(duì)小膠質(zhì)細(xì)胞細(xì)胞毒性影響 CCK-8法和LDH法測(cè)定結(jié)果均顯示,5、25、50 μmol/L PF預(yù)處理組D(λ)450 nm值與0 μmol/L PF組比較均無(wú)統(tǒng)計(jì)學(xué)差異(FCCK-8法=0.29,P>0.05;FLDH法=1.38,P>0.05),表明即使是在50 μmol/L高濃度情況下,PF對(duì)原代小膠質(zhì)細(xì)胞亦無(wú)明顯細(xì)胞毒作用。本文選擇50 μmol/L進(jìn)行后續(xù)實(shí)驗(yàn)。具體結(jié)果見(jiàn)圖2。
注:A:CCK-8法;B:LDH法;PF:芍藥苷,圖3、4、6同 圖2 不同PF濃度對(duì)小膠質(zhì)細(xì)胞活力的影響(n=5)
2.3 PF抑制Aβ1-42引起的小膠質(zhì)細(xì)胞分泌促炎性介質(zhì) 空白對(duì)照組、Aβ1-42組和PF+Aβ1-42組間比較,TNF-α、IL-1β和IL-6表達(dá)水平均有統(tǒng)計(jì)學(xué)差異(FTNF-α=82.34,P<0.01;FIL-1β=44.86,P<0.01;FIL-6=39.42,P<0.01)。兩兩比較,Aβ1-42組小膠質(zhì)細(xì)胞表達(dá)的促炎性細(xì)胞因子較空白對(duì)照組增多(均P<0.01),而PF可部分抑制由Aβ1-42引起的TNF-α、IL-1β和IL-6分泌增多(均P<0.01)。結(jié)果見(jiàn)圖3。
2.4 PF抑制Aβ1-42誘導(dǎo)的小膠質(zhì)細(xì)胞分泌趨化因子 空白對(duì)照組、Aβ1-42組和PF+Aβ1-42組小膠質(zhì)細(xì)胞分泌的CXCL1和CCL2比較差異有統(tǒng)計(jì)學(xué)意義(FCXCL1=81.84,P<0.01;FCCL2=68.45,P<0.01)。兩兩比較,Aβ1-42組小膠質(zhì)細(xì)胞分泌的CXCL1和CCL2水平較空白對(duì)照組升高(均P<0.01),而PF可抑制由Aβ1-42引起的趨化因子分泌的增加(均P<0.01)。結(jié)果見(jiàn)圖4。
注:TNF-α:腫瘤壞死因子α;IF-1β:白細(xì)胞介素-1β;IF-6:白細(xì)胞介素-6;Aβ:淀粉樣蛋白β,圖4~6同;與空白對(duì)照組比較,*P<0.01;與Aβ1-42組比較,#P<0.01 圖3 ELISA法檢測(cè)PF對(duì)Aβ1-42刺激下小膠質(zhì)細(xì)胞產(chǎn)生TNF-α、IL-1β和IL-6的影響
注:CXCL1:趨化因子配體1;CCL2:趨化因子配體2;與空白對(duì)照組比較,*P<0.01;與Aβ1-42組比較,# P<0.01 圖4 ELISA法檢測(cè)PF對(duì)Aβ1-42刺激下小膠質(zhì)細(xì)胞產(chǎn)生CXCL-1和CCL2的影響
2.5 PF抑制小膠質(zhì)細(xì)胞向Aβ1-42的趨化 空白對(duì)照組、Aβ1-42組和PF+Aβ1-42組小膠質(zhì)細(xì)胞向Aβ1-42遷移的能力比較差異有統(tǒng)計(jì)學(xué)意義(F=43.54,P<0.05)。與Aβ1-42組相比,PF預(yù)處理的小膠質(zhì)細(xì)胞表現(xiàn)出較弱的向Aβ1-42遷移的能力。具體結(jié)果見(jiàn)圖5、6。
圖5 倒置顯微鏡下觀(guān)察各組小膠質(zhì)細(xì)胞向Aβ1-42的趨化遷移(蘇木素染色,箭頭所示為蘇木素陽(yáng)性細(xì)胞)
注:與空白對(duì)照組比較,*P<0.01;與Aβ1-42組比較,#P<0.01 圖6 PF對(duì)小膠質(zhì)細(xì)胞向Aβ1-42趨化遷移的影響3討論
AD是導(dǎo)致老年人癡呆的常見(jiàn)病因[7],目前尚無(wú)有效的預(yù)防及治療辦法[8]。Aβ來(lái)源于β-和γ-分泌酶裂解的淀粉樣前體蛋白[9]。大量研究表明,Aβ水平的病理性升高促進(jìn)了腦內(nèi)Aβ低聚物的形成,導(dǎo)致突觸和/或神經(jīng)元網(wǎng)絡(luò)的進(jìn)行性瓦解[10]。小膠質(zhì)細(xì)胞是中樞神經(jīng)系統(tǒng)的固有免疫細(xì)胞。一方面,活化的小膠質(zhì)細(xì)胞能夠部分清除Aβ或Aβ-Aβ受體復(fù)合物,進(jìn)而降低Aβ的毒性;另一方面,聚集在神經(jīng)炎性斑塊的過(guò)度活化的小膠質(zhì)細(xì)胞會(huì)持續(xù)產(chǎn)生神經(jīng)毒性因子,導(dǎo)致腦損傷進(jìn)一步加重[11]。因此,調(diào)控Aβ誘導(dǎo)的小膠質(zhì)細(xì)胞的活化狀態(tài)對(duì)延緩AD進(jìn)展有潛在作用。
芍藥屬植物作為傳統(tǒng)中草藥在國(guó)內(nèi)已被用于治療疼痛或炎性反應(yīng)疾病,對(duì)芍藥根化學(xué)成分的研究發(fā)現(xiàn)其具有多種生物活性的化合物,包括單萜苷、三萜類(lèi)、黃酮類(lèi)等[12]。PF是一種從芍藥根中分離出來(lái)的單萜苷,近年來(lái)一些學(xué)者致力于PF的神經(jīng)保護(hù)作用及作用機(jī)制的研究。研究表明,PF能夠減輕嚙齒動(dòng)物缺血模型的腦損傷[13],并減輕谷氨酸或脂多糖引起的神經(jīng)元損傷[5,14],抑制脂多糖誘導(dǎo)的小膠質(zhì)細(xì)胞過(guò)度產(chǎn)生促炎性介質(zhì)[14],證實(shí)了PF在缺血?jiǎng)游锬X內(nèi)對(duì)小膠質(zhì)細(xì)胞異常活化的抑制作用及神經(jīng)保護(hù)作用。另有早期研究證明PF能夠減輕6-羥基多巴胺誘發(fā)的神經(jīng)功能缺損[15],提示PF在退行性疾病中亦具有神經(jīng)保護(hù)作用[16]。Wang等[6]通過(guò)體外實(shí)驗(yàn)證實(shí)PF可明顯減輕Aβ25-35誘導(dǎo)的神經(jīng)元線(xiàn)粒體功能障礙,其在A(yíng)D的治療中具有潛力。值得注意的是,Zhong等[17]研究發(fā)現(xiàn),給AD大鼠腹腔內(nèi)注射PF能明顯減輕記憶障礙和神經(jīng)元凋亡,表明PF在A(yíng)D治療中可能具有一定作用。本研究結(jié)果顯示,Aβ1-42可誘導(dǎo)嚙齒動(dòng)物小膠質(zhì)細(xì)胞TNF-α、IL-1β和IL-6的過(guò)度產(chǎn)生,而這種作用可被PF所抑制。該實(shí)驗(yàn)結(jié)果揭示了PF對(duì)受Aβ低聚物刺激的小膠質(zhì)細(xì)胞具有神經(jīng)保護(hù)作用。
研究證明,Aβ低聚物不僅誘導(dǎo)小膠質(zhì)細(xì)胞產(chǎn)生過(guò)多的促炎性介質(zhì),也可促進(jìn)小膠質(zhì)細(xì)胞分泌趨化因子[18-19],進(jìn)而導(dǎo)致其向AD腦內(nèi)神經(jīng)炎性斑塊過(guò)度的聚集和趨化。CXCL1和CCL2等趨化因子水平的升高,使更多的小膠質(zhì)細(xì)胞加速向腦內(nèi)Aβ募集[20]。因此,降低小膠質(zhì)細(xì)胞的趨化性已被視為控制AD病情進(jìn)展的一種很有前景的策略。有研究證明PF對(duì)3T3-L1[21]和HT-29[22]細(xì)胞中的CCL2具有抑制作用。因此本研究探討了PF對(duì)Aβ刺激后小膠質(zhì)細(xì)胞產(chǎn)生CCL2的影響,結(jié)果發(fā)現(xiàn)PF能夠減少由Aβ1-42刺激而導(dǎo)致小膠質(zhì)細(xì)胞產(chǎn)生過(guò)多的CCL2。此外,Zhang等[23]研究者發(fā)現(xiàn),與年齡匹配的健康受試者相比,AD患者外周血單核細(xì)胞表達(dá)更高水平的CXCL1,且CXCL1水平的提高加強(qiáng)了單核細(xì)胞向Aβ肽的遷移,提示在A(yíng)D進(jìn)展中CXCL1能夠促進(jìn)細(xì)胞的趨化性。本研究證實(shí)PF預(yù)處理可抑制Aβ1-42刺激的小膠質(zhì)細(xì)胞趨化因子的釋放,降低了小膠質(zhì)細(xì)胞的趨化性。
綜上所述,本研究結(jié)果顯示,PF預(yù)處理降低了Aβ誘導(dǎo)的嚙齒動(dòng)物小膠質(zhì)細(xì)胞過(guò)度生成促炎性介質(zhì)和趨化因子,使小膠質(zhì)細(xì)胞趨化性降低,進(jìn)而可能發(fā)揮神經(jīng)保護(hù)作用。有關(guān)PF在A(yíng)D治療中的具體作用及其潛在機(jī)制,尚需今后進(jìn)一步研究。
[1]Prinz M, Priller J. Microglia and brain macrophages in the molecular age: from origin to neuropsychiatric disease[J]. Nat Rev Neurosci, 2014, 15(5):300-312.
[2]Hu Zy, Xu L, Yan R, et al. Advance in studies on effect of paeoniflorin on nervous system[J]. China Journal of Chinese Materia Medica, 2013, 38(3):297-301.
[3]Wang QS, Gao T, Cui YL, et al. Comparative studies of paeoniflorin and albiflorin from Paeonia lactiflora on anti-inflammatory activities[J]. Pharm Biol, 2014, 52(9):1189-1195.
[4]Mclarnon J G, Choi H B, Lue L F, et al. Perturbations in calcium-mediated signal transduction in microglia from Alzheimer’s disease patients[J]. J Neurosci Res, 2005, 81(3):426-435.
[5]Rong S, Ke W, Dongdong W, et al. Protective effect of paeoniflorin against glutamate-induced neurotoxicity in PC12 cells via Bcl-2/Bax signal pathway[J]. Folia Neuropathologica, 2012, 50(3):270-276.
[6]Wang K, Zhu L, Zhu X, et al. Protective effect of paeoniflo-rin on Abeta25-35-induced SH-SY5Y cell injury by preventing mitochondrial dysfunction[J]. Cell Mol Neurobiol, 2014, 34(2):227-234.
[7]Whalley K. Neurodegenerative disease: Dishing up Alzheimer’s disease[J]. Nat Rev Neurosci, 2012, 13(3):149.
[8]Corbett A, Pickett J, Burns A, et al. Drug repositioning for Alzheimer’s disease[J]. Nat Rev Drug Discov, 2012, 11(11):833-846.
[9]Lee J, Culyba EK, Powers ET, et al. Amyloid-beta forms fibrils by nucleated conformational conversion of oligomers[J]. Nat Chem Biol, 2011, 7(9):602-609.
[10]Palop JJ, Mucke L. Amyloid-beta-induced neuronal dysfunction in Alzheimer’s disease: from synapses toward neural networks[J]. Nat Neurosci, 2010, 13(7):812-818.
[11]Heneka MT, Kummer MP, Latz E. Innate immune activation in neurodegenerative disease[J]. Nat Rev Immunol, 2014, 14(7):463-477.
[12]Wu SH, Wu DG, Chen YW. Chemical Constituents and Bioactivities of Plants from the Genus Paeonia[J]. Chem Biodivers, 2010, 7(1):90-104.
[13]Guo RB, Wang GF, Zhao AP, et al. Paeoniflorin protects against ischemia-induced brain damages in rats via inhibiting MAPKs/NF-kappaB-mediated inflammatory responses[J]. PLoS One, 2012, 7(11):e49701.
[14]Nam KN, Yae CG, Hong JW, et al. Paeoniflorin, a monoter-pene glycoside, attenuates lipopolysaccharide-induced neuronal injury and brain microglial inflammatory response[J]. Biotechnol Lett, 2013, 35(8):1183-1189.
[15]Liu DZ, Zhu J, Jin DZ, et al. Behavioral recovery following sub-chronic paeoniflorin administration in the striatal 6-OHDA lesion rodent model of Parkinson’s disease[J]. J Ethnopharmacol, 2007, 112(2):327-332.
[16]Liu YY, Sparatore A, Del Soldato P, et al. H2S releasing aspirin protects amyloid beta induced cell toxicity in BV-2 microglial cells[J]. Neuroscience, 2011, 193:80-88.
[17]Zhong SZ, Ge QH, Li Q, et al. Peoniflorin attentuates Abeta(1-42)-mediated neurotoxicity by regulating calcium homeostasis and ameliorating oxidative stress in hippocampus of rats[J]. J Neurol Sci, 2009, 280(1-2):71-78.
[18]Cai Z, Hussain MD, Yan LJ. Microglia, neuroin-flammation, and beta-amyloid protein in Alzheimer’s disease[J]. Int J Neurosci, 2014, 124(5):307-321.
[19]Morkuniene R, Zvirbliene A, Dalgediene I, et al. Antibodies bound to Abeta oligomers potentiate the neurotoxicity of Abeta by activating microglia[J]. J Neurochem, 2013, 126(5):604-615.
[20]Ginsberg SD, Westin K, Buchhave P, et al. CCL2 is associated with a faster rate of cognitive decline during early stages of Alzheimer’s disease[J]. PLoS ONE, 2012, 7(1):e30525.
[21]Kong P, Chi R, Zhang L, et al. Effects of paeoniflorin on tumor necrosis factor-α-induced insulin resistance and changes of adipokines in 3T3-L1 adipocytes[J]. Fitoterapia, 2013, 91:44-50.
[22]Zhang J, Dou W, Zhang E, et al. Paeoniflorin abrogates DSS-induced colitis via a TLR4-dependent pathway[J]. Am J Physiol Gastrointest Liver Physiol, 2014, 306(1):27-36.
[23]Zhang K, Tian L, Liu L, et al. CXCL1 contributes to beta-amyloid-induced transendothelial migration of monocytes in Alzheimer’s disease[J]. PLoS One, 2013, 8(8):e72744.
(本文編輯:時(shí)秋寬)
Effect of paeoniflorin on the Aβ1-42-induced inflammation and chemotaxis of microglia
LIUHuayan*,WANGJun.
*DepartmentofNeurology,TheFirstHospitalofChinaMedicalUniversity,ShenyangLiaoning110001,China
Email:Liuhy@cmu1h.com
Objective To investigate the effect of paeoniflorin (PF) on the beta-amyloid (Aβ)1-42-induced inflammation and chemotaxis of microglia. Methods Primary cultures of rat microglia were pretreated with 0, 5, 25, 50 μmol/L PF respectively. To determine the cytotoxic effect of PF on microglia, CCK-8 assay was performed, and the activity of LDH in culture supernatant was detected. Microglia were divided into three groups: a blank control group (normal culture medium), a positive control group (Aβ1-42-treated cells) and an experimental group (PF-pretreated and then Aβ1-42-treated cells). Levels of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, chemokine (C-X-C motif) ligand 1 (CXCL1) and chemokine (C-C motif) ligand 2 (CCL2) in the culture supernatant were determined by ELISA kits. Transwell inserts were used to determine the chemotactic migration of microgliainvitro. Results The purity of cultured microglia was more than 90%. PF exerted no significant cytotoxic effect on microglia viability according to CCK-8 assay and LDH assay, no statistical difference between groups (P>0.05) was found. PF suppressed Aβ1-42-induced secretion of proinflammatory mediators (TNF-α, IL-1β and IL-6) and chemokines (CXCL1 and CCL2) from microglia between the experimental group and the positive control group(P<0.01) . And PF inhibited microglial chemotaxis towards Aβ1-42(P<0.05) between the experimental group and the positive control group in the number of migrated cells. Conclusions The above findings suggest that PF reduce Aβ1-42-stimulated production of proinflammatory mediators and chemotactic factors from rodent microglia, as well as inhibit microglial chemotaxis towards Aβ1-42. This suggests that PF might provide a potential new therapeutic strategy for Alzheimer’s disease.
Alzheimer’s disease; beta-amyloid; microglia; inflammation;chemotaxis
10.3969/j.issn.1006-2963.2017.04.009
國(guó)家自然科學(xué)基金資助項(xiàng)目(81300939);遼寧省科學(xué)技術(shù)計(jì)劃項(xiàng)目(2009225027);遼寧省自然科學(xué)基金項(xiàng)目(20170541036)
110001中國(guó)醫(yī)科大學(xué)附屬第一醫(yī)院神經(jīng)內(nèi)科
劉華巖,Email:liuhy@cmu1h.com
R743.9
A
1006-2963(2017)04-0276-06
2016-12-12)