董智琦,文國(guó)容,庹必光
(遵義醫(yī)學(xué)院附屬醫(yī)院消化內(nèi)科,貴州 遵義 563003)
自60年前第一個(gè)趨化因子(血小板因子CXCL4)的誕生至今[1],趨化因子及其受體家族已經(jīng)顯著擴(kuò)大,現(xiàn)在已知約50種趨化因子和20種相關(guān)受體。眾所周知,趨化因子或趨化因子受體的不適當(dāng)調(diào)節(jié)是慢性炎癥和許多自身免疫性疾病中的主要潛在致病因素[2],它們可以直接或間接作用于腫瘤細(xì)胞或其他細(xì)胞,從而影響腫瘤的進(jìn)展。因此,本綜述從趨化因子和趨化因子受體結(jié)構(gòu)的概述開(kāi)始,詳細(xì)地闡述其在腫瘤細(xì)胞及炎性反應(yīng)發(fā)生發(fā)展中的作用。
趨化因子是一類能趨化細(xì)胞移行至感染或其他特殊部位的低分子分泌蛋白(70至100個(gè)氨基酸組成)。趨化因子受體是一類介導(dǎo)趨化因子行使功能的GTP-蛋白偶聯(lián)的跨膜受體(GPCR),通常表達(dá)于免疫細(xì)胞、內(nèi)皮細(xì)胞等細(xì)胞膜上。趨化因子受體可分為四個(gè)亞科:CXC類受體(CXCR)、CC類受體(CCR)、C類受體(XCR)和CX3C類受體(CX3CR)。目前有7種已知的CXCL趨化因子受體,10種CC類受體配體(CCL)、C類受體配體(XCL1 / 2)和CX3C類受體配體(CX3CL1)的單一受體[3]。盡管同亞科趨化因子受體及配體的結(jié)合具有高度選擇性,但大多數(shù)趨化因子受體在與同一亞科的配體相互作用時(shí),仍然表現(xiàn)出巨大的混雜性。
趨化因子受體下游有一些主要的信號(hào)轉(zhuǎn)導(dǎo)通路,例如p38絲裂原活化蛋白激酶(MAPK)和p44/p42細(xì)胞外調(diào)節(jié)激酶(ERK1/2)[4]。這些G蛋白在CXCR4中通過(guò)不依賴β抑制蛋白(β-arrestin)介導(dǎo)的途徑已經(jīng)得到了廣泛且深入的研究[5]。除此之外,激活趨化因子可導(dǎo)致CXCR4、CCR2和CCR5等的快速酪氨酸磷酸化[6-8]。該信號(hào)轉(zhuǎn)導(dǎo)途徑取決于Janus激酶(JAK),它是一種通常被細(xì)胞因子激活的胞質(zhì)激酶家族。JAKs通過(guò)磷酸化信號(hào)轉(zhuǎn)導(dǎo)和轉(zhuǎn)錄激活因子(STAT蛋白)來(lái)控制基因的表達(dá)[9]。大量研究表明,通過(guò)激活JAK / STAT途徑能夠進(jìn)一步觸發(fā)更多信號(hào)通路。激活STAT信號(hào)通路可誘導(dǎo)趨化因子配體5(CCL5)介導(dǎo)的T細(xì)胞中c-Fos(一段存在于人類、豚鼠、鳥(niǎo)類細(xì)胞核中的基因片段)的活化[10]。哺乳動(dòng)物的趨化因子受體介導(dǎo)的STAT4觸發(fā)蛋白的激活也與樹(shù)突狀細(xì)胞(DC)的CD4+T細(xì)胞的輔助能力有關(guān)[11]。通過(guò)抑制JAK/STAT信號(hào)通路可以減少CCR5下游包括粘著斑激酶(FAK)等在內(nèi)的幾種粘附蛋白的磷酸化[8]。這些發(fā)現(xiàn)解釋了趨化因子作為整合素所具有的粘附增強(qiáng)劑的作用,正是由于FAK能夠參與其他信號(hào)轉(zhuǎn)導(dǎo)途徑,所以能夠?qū)②吇蜃邮荏w移行至這些途徑中并發(fā)揮作用。
2.1趨化因子及其受體促進(jìn)腫瘤細(xì)胞的生長(zhǎng)未轉(zhuǎn)化細(xì)胞和轉(zhuǎn)化細(xì)胞之間的主要區(qū)別之一在于它們是否能夠控制促進(jìn)細(xì)胞分裂的生長(zhǎng)信號(hào)的產(chǎn)生和釋放[12]。大量事實(shí)證明,趨化因子可調(diào)控上皮組織和血液中腫瘤細(xì)胞的增殖。大多數(shù)腫瘤細(xì)胞自身能產(chǎn)生趨化因子并通過(guò)自分泌或旁分泌的表達(dá)方式來(lái)維持細(xì)胞的增殖[13]。在許多情況下,趨化因子及其受體可影響原癌基因的突變。這些活化的癌基因可以直接上調(diào)或下調(diào)一組特定的趨化因子及其受體,來(lái)作為啟動(dòng)致癌程序的一部分。例如,甲狀腺乳頭狀癌轉(zhuǎn)化癌基因(RET / PTC1)能夠誘導(dǎo)CXCL12及其受體CXCR4的表達(dá),從而促進(jìn)甲狀腺癌細(xì)胞的增殖[14]。眾所周知,腫瘤細(xì)胞中趨化因子受體的激活可引發(fā)許多導(dǎo)致細(xì)胞增殖的細(xì)胞內(nèi)信號(hào)的產(chǎn)生。舉個(gè)例子,CCR5和CCR7可以通過(guò)活化JAK / STAT信號(hào)轉(zhuǎn)導(dǎo)途徑進(jìn)而增加白血病細(xì)胞中原癌基因c-Fos的表達(dá)[10]。CCL20和CXCL8通過(guò)上調(diào)細(xì)胞周期蛋白E和D從而影響細(xì)胞周期進(jìn)程,這些細(xì)胞周期蛋白可以通過(guò)下調(diào)細(xì)胞周期蛋白D抑制劑(如p27)的表達(dá)從而調(diào)節(jié)DNA合成前期至DNA合成期轉(zhuǎn)換的過(guò)程[15-16]。除了上述提到的趨化因子及其受體直接促進(jìn)細(xì)胞的增殖,還可以通過(guò)表皮生長(zhǎng)因子受體(EGFR)來(lái)間接調(diào)控腫瘤細(xì)胞生長(zhǎng)。乳腺癌和前列腺癌細(xì)胞中非典型趨化因子受體3(ACKR3)最初被認(rèn)定為靶向CXCL12和CXCL11降解的“誘餌”受體[17]。在前列腺癌和乳腺癌細(xì)胞中, ACKR3可以通過(guò)依賴β-arrestin 與EGFR的物理結(jié)合從而上調(diào)EGFR的表達(dá)及磷酸化,而且它們的相互作用并不依賴任何激動(dòng)劑[18-19]。ACKR3的這一活性已經(jīng)證實(shí)與其它癌癥也有關(guān)聯(lián),例如可以影響腎癌和肺癌患者的預(yù)后[20-21]。除此之外, ACKR1、ACKR2和ACKR4的高表達(dá)能夠影響頸部鱗狀細(xì)胞癌和胃癌的預(yù)后,延長(zhǎng)患者的生存時(shí)間[17]。
2.2趨化因子及其受體抑制腫瘤細(xì)胞的生長(zhǎng)并加速細(xì)胞衰老過(guò)程趨化因子及其受體不僅可以促進(jìn)腫瘤細(xì)胞的增殖,還可以抑制腫瘤細(xì)胞的生長(zhǎng)。有證據(jù)表明,在某些情況下,趨化因子能夠誘導(dǎo)腫瘤細(xì)胞的凋亡,這依賴于腫瘤抑制因子或致病基因的特定蛋白質(zhì)的活性。腫瘤抑制因子可以通過(guò)抑制細(xì)胞周期等來(lái)保護(hù)細(xì)胞免于腫瘤的侵襲[12]。人抑癌基因53(TP53)介導(dǎo)的CX3CL1上調(diào)可能是一種非細(xì)胞自主免疫的腫瘤抑制機(jī)制[22],而CXCR4的表達(dá)下調(diào)則可能會(huì)抑制乳腺癌細(xì)胞的增殖和遷移[23]。所以,CXCR4下調(diào)可能是各種腫瘤抑制基因共享的細(xì)胞自主阻遏物的一個(gè)分支。趨化因子及其受體還可以調(diào)節(jié)抑癌基因的活性。最初可在乳腺癌細(xì)胞系中觀察到CCR5中具有未突變的TP53,而用CCL5刺激這些細(xì)胞后,通過(guò)JAK2和p38-MAPK信號(hào)轉(zhuǎn)導(dǎo)途徑可以激活TP53的活性。因此,CCL5刺激可以導(dǎo)致TP53轉(zhuǎn)錄靶向的CCR5依賴性上調(diào)。
眾所周知,衰老是抑制細(xì)胞再次進(jìn)入細(xì)胞周期的過(guò)程,從而導(dǎo)致不可逆的生長(zhǎng)停滯[12]。衰老細(xì)胞仍然是具有代謝活性的,它能夠產(chǎn)生和分泌某些包括蛋白酶、生長(zhǎng)因子、細(xì)胞因子和趨化因子在內(nèi)的復(fù)雜混合物[24]。這些混合物可以通過(guò)CXCR2依賴機(jī)制來(lái)調(diào)節(jié)TP53的激活,從而加速衰老的過(guò)程[24-25]。除此之外,TP53還可以調(diào)控CXCR2水平的上調(diào)[26],這表明CXCR2配體能夠激活TP53轉(zhuǎn)錄活性,進(jìn)而激活CXCR2啟動(dòng)子以加速細(xì)胞的衰老過(guò)程。
2.3趨化因子及其受體調(diào)控腫瘤細(xì)胞的自噬性死亡細(xì)胞可以通過(guò)凋亡來(lái)避免程序性死亡,這一分子線索是惡性腫瘤進(jìn)展為高耐藥性惡性腫瘤的關(guān)鍵[27]。大量研究表明,盡管腫瘤或基質(zhì)細(xì)胞產(chǎn)生的趨化因子是如何抑制細(xì)胞凋亡的機(jī)制尚未完全明確,但這一作用是得到認(rèn)可的。趨化因子受體能夠介導(dǎo)PI3K/AKT/NF-κB途徑的活化[17],其既可以上調(diào)Bcl-2及其相關(guān)蛋白的表達(dá),同時(shí)也能夠下調(diào)Bax(一種促進(jìn)細(xì)胞凋亡的蛋白,其過(guò)度表達(dá)可拮抗Bcl-2的保護(hù)效應(yīng)來(lái)促使細(xì)胞凋亡)和Bak蛋白(一種促進(jìn)細(xì)胞凋亡的蛋白)的表達(dá),這主要是通過(guò)改變蛋白前體和抑制細(xì)胞凋亡蛋白之間的平衡從而抑制細(xì)胞的凋亡。例如,CCR5介導(dǎo)的NF-κB的激活是幾種小鼠模型中腫瘤發(fā)展的主要因素[28-29]。研究發(fā)現(xiàn)使用特異性CCL2抑制劑可延緩這些小鼠的肺癌進(jìn)展[28],這表明CCR5/ NF-κB/CCL2之間的相互作用在腫瘤進(jìn)展過(guò)程中是至關(guān)重要的。ERK通路激活也可以激活趨化因子受體的前驅(qū)活性。ERK通路的激活可以通過(guò)誘導(dǎo)促凋亡蛋白的磷酸化以及使已活化的生存素蛋白失活來(lái)調(diào)節(jié)CCR3、CCR8和CCR7在淋巴瘤和非小細(xì)胞肺癌細(xì)胞中的前驅(qū)活性[30-32]。除此之外,大量數(shù)據(jù)表明,趨化因子及其受體也可通過(guò)調(diào)節(jié)自噬從而抑制腫瘤細(xì)胞的凋亡。舉個(gè)例子,CXCR4通過(guò)激活PI3K-mTOR途徑來(lái)促進(jìn)胃癌以及腹膜癌的發(fā)展,而阻斷mTOR不僅可以抑制胃癌細(xì)胞的遷移,而且還能夠激活細(xì)胞的自噬反應(yīng)[33],這表明CXCR4能夠通過(guò)PI3K/AKT/mTOR通路調(diào)節(jié)細(xì)胞的自噬從而抑制腫瘤細(xì)胞的自噬性死亡。
趨化因子及其受體可調(diào)控包括炎性反應(yīng)在內(nèi)的多種生物學(xué)功能。趨化因子及其受體能夠?qū)⒀仔约?xì)胞轉(zhuǎn)運(yùn)至組織和器官中,這使得其在腫瘤免疫浸潤(rùn)的過(guò)程中發(fā)揮了關(guān)鍵作用[34-35]。特異性趨化因子的表達(dá)與癌基因和抑癌基因的轉(zhuǎn)化相關(guān)。眾所周知,TP53是NF-κB的負(fù)調(diào)節(jié)因子,而NF-κB是促進(jìn)形成免疫抑制環(huán)境的關(guān)鍵轉(zhuǎn)錄因子。有研究發(fā)現(xiàn),在卵巢癌[36]和乳腺癌細(xì)胞[37]中,TP53誘導(dǎo)了小鼠雙分子2同系物( E3泛素連接酶Mdm2)表達(dá)的上調(diào),這增加了NF-κB抑制劑IκB的穩(wěn)定性[38]。除此之外,CXCL12結(jié)合胰腺癌細(xì)胞CXCR4后,可以活化MAPK信號(hào)通路和促進(jìn)腫瘤細(xì)胞纖維激動(dòng)蛋白以及跨膜蛋白(Smoothened)的表達(dá),激活Hh信號(hào)通路誘導(dǎo)上皮-間質(zhì)轉(zhuǎn)化(EMT)過(guò)程,進(jìn)而增強(qiáng)胰腺癌的轉(zhuǎn)移和侵襲[39]。這些數(shù)據(jù)意味著癌基因和抑癌基因的突變會(huì)影響趨化因子的表達(dá)方式,并將腫瘤環(huán)境從有效的免疫監(jiān)視轉(zhuǎn)變?yōu)橛兄诎┘?xì)胞生長(zhǎng)的炎癥環(huán)境。越來(lái)越多的研究表明,免疫浸潤(rùn)不僅在致癌發(fā)生的初期階段很重要,而且還決定了惡性腫瘤的進(jìn)展。特異性細(xì)胞亞型在腫瘤細(xì)胞中的浸潤(rùn)程度決定了預(yù)后的好壞。除此之外,骨髓源性細(xì)胞(巨噬細(xì)胞)以及調(diào)節(jié)性T細(xì)胞Treg的大量浸潤(rùn)在多種惡性腫瘤的晚期階段發(fā)揮作用[40-41]。所以,進(jìn)一步了解在腫瘤微環(huán)境中占主導(dǎo)地位的趨化因子是十分關(guān)鍵的。在效應(yīng)細(xì)胞和免疫抑制細(xì)胞上表達(dá)的趨化因子受體之間仍存在相當(dāng)大的交叉作用[42],這可以解釋大多數(shù)趨化因子在調(diào)節(jié)腫瘤免疫過(guò)程具有的雙重活性,CCR7及其配體CCL19和CCL21就是這種情況。
本篇綜述闡明了趨化因子及其受體在致腫瘤過(guò)程中所具有的不同作用。趨化因子不僅可以參與腫瘤的免疫浸潤(rùn),而且還可以直接或間接的調(diào)解腫瘤細(xì)胞的增殖和遷移,影響腫瘤的發(fā)生和發(fā)展。鑒于此,我們可以預(yù)測(cè),將會(huì)有大量的研究投入到趨化因子與腫瘤細(xì)胞的相關(guān)實(shí)驗(yàn)和臨床工作中。除此之外,我們還提到了不同的趨化因子受體與信號(hào)通路之間的關(guān)系,但是,趨化因子及其受體是如何能夠激活某些信號(hào)轉(zhuǎn)導(dǎo)途徑的機(jī)制是尚未研究清楚的,所以在接下來(lái)的研究中,詳細(xì)了解趨化因子及其受體在信號(hào)轉(zhuǎn)導(dǎo)途徑中所扮演的具體角色是十分必要的。
[1] DEUTSCH E,JOHNSON SA,SEEGERS WH.Differentiation of certain platelet factors related to blood coagulation[J].Circ Res,1955,3 (1):110-115.
[2] COMERFORD I,KARA EE,MCKENZIE DR,et al.Advances in understanding the pathogenesis of autoimmune disorders:focus on chemokines and lymphocyte trafficking[J].Br J Haematol,2014,164 (3):329-341.
[3] BACHELERIE F,GRAHAM GJ,LOCATI M,et al.An atypical addition to the chemokine receptor nomenclature:Iuphar review 15[J].Br J Haematol,2015,172 (16):3945-3949.
[4] VROON A,HEIJNEN CJ,KAVELAARS A.Grks and arrestins:regulators of migration and inflammation[J].J Leukoc Biol,2006,80 (6):1214-1221.
[5] SUN Y,CHENG Z,MA L,et al.Beta-Arrestin2 is critically involved in CXCR4-mediated chemotaxis,and this is mediated by its enhancement of P38 Mapk activation[J].J Biol Chem,2002,277 (51):49212-49219.
[6] VILACORO AJ,RODRFGUEZFRADE,MARTIN DE ANA A,et al.The chemokine SDF-1alpha triggers CXCR4 receptor dimerization and activates the JAK/STAT pathway[J].FASEB J,1999,13 (13):1699-1710.
[7] WONG M,UDDIN S,MAJCHRZAK B,et al.Activates Jak2 and Jak3 to regulate engagement of multiple signaling pathways in T cells[J].J Biol Chem,2001,276 (14):11427-11431.
[8] ZHANG XF,WANG JF,MATCZAK E,et al.Janus kinase 2 is involved in stromal cell-derived factor-1alpha-induced tyrosine phosphorylation of focal adhesion proteins and migration of hematopoietic progenitor cells[J].Blood,2001,97 (11):3342-3348.
[9] GADINA M,HILTON D,JOHNSTON JA,et al.Signaling by type I and Ⅱ cytokine receptors:ten years after[J].Curr Opin Immunol,2001,13 (3):363-373.
[10] WONG M,FISH EN.Rantes and MIP-1alpha activate stats in T cells[J].J Biol Chem,1998,273 (1):309-314.
[11] ZOU W,BORVAK J,MARCHES F,et al.Macrophage-derived dendritic cells have strong Th1-polarizing potential mediated by beta-chemokines rather than IL-12[J].J Immunol,2000,165 (8):4388-4396.
[12] HANAHAN D,WEINBERG R.A.Hallmarks of cancer:the next generation[J].Cell,2011,144 (5):646-674.
[13] TANAKA T,BAI Z,SRINOULPRASERT Y,et al.Chemokines in tumor progression and metastasis[J].Cancer Sci,2005,96(6):317-322.
[14] BORRELLO M.G,ALBERTI L,FISCHER A,et al.Induction of a proinflammatory program in normal human thyrocytes by the RET/PTC1 oncogene[J].Proc Natl Acad Sci U S A,2005,102 (41):14825-14830.
[15] MARSIGLIANTE S,VETRUGNO C,MUSCELLA A.CCL20 Induces migration and proliferation on breast epithelial cells[J].J Cell Physiol,2013,228 (9):1873-1883.
[16] SHAO N,CHEN L.H,YE R.Y,et al.The depletion of interleukin-8 causes cell cycle arrest and increases the efficacy of docetaxel in breast cancer cells[J].Biochem Biophys Res Commun,2013,431 (3):535-541.
[17] MASSARA M,BONAVITA O,MANTOVANI A,et al.Atypical Chemokine Receptors in Cancer:Friends or Foes? [J].J Leukoc Biol,2016,99 (6):927.
[18] SINGH RK,LOKESHWAR BL.The Il-8-Regulated Chemokine Receptor CXCR7 stimulates egfr signaling to promote prostate cancer growth[J].Cancer Res,2011,71 (9):3268-3277.
[19] SALANGA CL,DYER DP,KISELAR JG,et al.Multiple Glycosaminoglycan-Binding Epitopes of Monocyte Chemoattractant Protein-3/Ccl7 Enable It to Function as a Non-Oligomerizing Chemokine[J].J Biol Chem,2014,289 (21):14896-14912.
[20] IERANC,SANTAGATA S,NAPOLITANO M,et al.CXCR4 and CXCR7 Transduce through MTOR in Human Renal Cancer Cells[J].Cell Death Dis, 2014,5 (7):e1310.DOI:10.1038/cddis.2014.269.
[21] WU YC,TANG SJ,SUN GH,et al.Cxcr7 Mediates Tgf|[Beta]|1-Promoted Emt and Tumor-Initiating Features in Lung Cancer[J].Oncogene,2016,35 (16):2123-2132.
[22] XIN.H,KANEHIRA M,MIZUGUCHI H,et al.Targeted Delivery of Cx3cl1 to Multiple Lung Tumors by Mesenchymal Stem Cells[J].Stem Cells,2007,25 (7):1618-1626.
[23] MEHTA SA,CHRISTOPHERSON KW,BHATNAKSHATRI P,et al.Negative Regulation of Chemokine Receptor Cxcr4 by Tumor Suppressor P53 in Breast Cancer Cells:Implications of P53 Mutation or Isoform Expression on Breast Cancer Cell Invasion[J].Oncogene,2007,26 (23):3329-3337.
[24] ACOSTA JC,GIL JA.Role for Cxcr2 in Senescence,but What About in Cancer? [J].Cancer Res,2009,69 (6):2167-2170.
[25] RUAN JW,LIAO YC,LUA I,et al.Human Pituitary Tumour-Transforming Gene 1 Overexpression Reinforces Oncogene[J].Breast Cancer Res,2012,14(4):R106.
[26] GUO H,LIU Z,XU B,et al.Chemokine Receptor Cxcr2 Is Transactivated by P53 and Induces P38‐Mediated Cellular Senescence in Response to DNA Damage[J].Aging Cell,2013,12 (6):1110-1121.
[27] KELLY GL,STRASSER A.The Essential Role of Evasion from Cell Death in Cancer[J].Adv Cancer Res,2011,111:39-96.
[28] LEE NJ,CHOI DY,SONG JK,et al.Deficiency of C-C Chemokine Receptor 5 Suppresses Tumor Development Via Inactivation of NF-κB and Inhibition of Monocyte Chemoattractant Protein-1 in Urethane-Induced Lung Tumor Model[J].Carcinogenesis,2012,33 (12):2520-2528.
[29] SONG JK,PARK MH,CHOI DY,et al.Deficiency of C-C Chemokine Receptor 5 Suppresses Tumor Developmentviainactivation of Nf-Κb and Upregulation of Il-1ra in Melanoma Model[J].PLoS One,2012,7 (5):e33747.DOI:10.1371/journal.pone.0033747.
[30] MIYAGAKI T,SUGAYA M,MURAKAMI T,et al.CCL11-CCR3 Interactions Promote Survival of Anaplastic Large Cell Lymphoma Cells Via ERK1/2 Activation[J].Cancer Res,2011,71 (6):2056-2065.
[31] MO M,ZHOU M,WANG L,et al.Ccl21/Ccr7 Enhances the Proliferation,Migration,and Invasion of Human Bladder Cancer T24 Cells[J].PLoS One,2015,10 (3):e0119506.DOI:10.1371/journal.pone.0119506.
[32] SPINETTI G,BERNARDINI G,CAMARDA G,et al.The Chemokine Receptor Ccr8 Mediates Rescue from Dexamethasone-Induced Apoptosis Via an Erk-Dependent Pathway[J].J Leukoc Biol,2003,73 (1):201-207.
[33] HASHIMOTO I,KOIZUMIK K,TATEMATSU M,et al.Blocking on the CXCR4/mTOR Signalling Pathway Induces the Anti-Metastatic Properties and Autophagic Cell Death in Peritoneal Disseminated Gastric Cancer Cells[J].Eur J Cancer,2008,44 (7):1022-1029.
[34] BINDEA G,MLECNIK B,ANGELL HK,et al.The Immune Landscape of Human Tumors:Implications for Cancer Immunotherapy[J].Oncoimmunology,2014,3 (2):e27456.DOI:10.4161/onci.27456.
[35] MA Y,ADJEMIAN S,GALLUZZI L,et al.Chemokines and Chemokine Receptors Required for Optimal Responses to Anticancer Chemotherapy[J].Oncoimmunology,2014,3(2):e27663.DOI:10.4161/onci.27663.
[36] SON DS,KABIR SM,DONG YL,et al.Inhibitory Effect of Tumor Suppressor P53 on Proinflammatory Chemokine Expression in Ovarian Cancer Cells by Reducing Proteasomal Degradation of Iκb[J].PLoS One,2012,7 (12):e51116.DOI:10.1371/journal.pone.0051116.
[37] MITKIN NA,HOOK CD,SCHWARTZ AM,et al.P53-Dependent Expression of Cxcr5 Chemokine Receptor in Mcf-7 Breast Cancer Cells[J].Sci Rep,2015,5:9330.
[38] YEUDALL WA,VAUGHAN CA,MIYAZAKI H,et al.Gain-of-Function Mutant P53 Upregulates Cxc Chemokines and Enhances Cell Migration[J].Carcinogenesis,2012,33(2):442-451.
[39] LI X,MA Q,XU Q,et al.SDF-1/CXCR4 signaling induces pancreatic cancer cell invasion and epithelial-mesenchymal transition in vitro through non-canonical activation of Hedgehogpathway[J].Cancer Lett,2012,322(2):169-176.
[40] DRAGHICIU O,LUBBERS J,NIJMAN HW,et al.Myeloid Derived Suppressor Cells-an Overview of Combat Strategies to Increase Immunotherapy Efficacy[J].Oncoimmunology,2015,4(1):e954829.DOI: 10.4161/21624011.2014.954829.
[41] LIU JY,LI F,WANG LP,et al.Ctl- Vs Treg Lymphocyte-Attracting Chemokines,Ccl4 and Ccl20,Are Strong Reciprocal Predictive Markers for Survival of Patients with Oesophageal Squamous Cell Carcinoma[J].Br J Cancer,2015,113 (5):747-755.
[42] ZHOU J,XIANG Y,YOSHIMURA T,et al.The Role of Chemoattractant Receptors in Shaping the Tumor Microenvironment[J].Biomed Res Int,2015,2014 (10):751392.