阮士貴 魏俊杰 肖冬梅
摘要本文簡(jiǎn)要討論Gronwall不等式的研究進(jìn)展,并給出關(guān)于如下的一類非線性Volterra積分不等式的一個(gè)結(jié)果:
w(u(t))≤g(t)+∑ni=1∫αi(t)αi(t0)fi(t,s)∏mj=1Hij(u(s))Gij(maxs-h≤ξ≤su(ξ))ds.
關(guān)鍵詞非線性積分不等式;Gronwall不等式;Gronwall類不等式;Volterra積分微分不等式;Lyapunov第二方法
中圖分類號(hào)O178
文獻(xiàn)標(biāo)志碼A
1美國德克薩斯農(nóng)工大學(xué)康莫斯分校數(shù)學(xué)系,康莫斯,德州,75428
0關(guān)于Gronwall不等式
1919年,在研究一個(gè)帶參變量的微分方程系統(tǒng)時(shí),Gronwall[1]給出如下的著名引理:
定理1(Gronwall原始不等式)對(duì)x0≤x≤x0+h,連續(xù)函數(shù)z=z(x)滿足不等式:
0≤z≤∫xx0[Mz+A]dx,
其中常數(shù)M和A非負(fù),那么
0≤z≤AheMh,x0≤x≤x0+h.
在以后的24年里,Gronwall原始不等式都沒引起關(guān)注.1943年,Bellman[2]推廣了Gronwall原始不等式使得M可以是函數(shù),并且不等式也被陳述得更為簡(jiǎn)單、明了.這個(gè)結(jié)果被稱之為GronwallBellman不等式,在許多文獻(xiàn)中均可查到,如文獻(xiàn)[26].
定理2(GronwallBellman不等式)已知u(t)和f(t)是定義在[a,b]區(qū)間上的非負(fù)連續(xù)函數(shù),c是非負(fù)常數(shù),如果
u(t)≤c+∫taf(s)u(s)ds,a≤t≤b,
那么
u(t)≤ce∫taf(s)ds,a≤t≤b.
1958年,Bellman[7]進(jìn)一步改進(jìn)了上述定理,使得c可以是一個(gè)非負(fù)非增連續(xù)函數(shù).
定理3(Bellman不等式)如果y(t)是正的,且單調(diào)增,x(t),z(t)≥0,那么
x(t)≤y(t)+∫tαx(s)z(s)ds,
蘊(yùn)含著
x(t)≤y(t)e∫tαz(s)ds,α≤t≤β.
今天看,以上的3個(gè)定理都較為粗糙,因?yàn)槎ɡ淼年愂霾粔蛲暾l件還可以改進(jìn).作為對(duì)前面3個(gè)定理的統(tǒng)一推廣,1966年,Halanay在專著[8]中,給出了下面的定理4.這個(gè)定理被廣泛引用,如文獻(xiàn)[9].其條件比以上3個(gè)定理都要弱一些.這里,我們使用HaleLunel[1993,p15]的陳述.
定理4如果u和α是定義在[a,b]區(qū)間上的實(shí)值連續(xù)函數(shù),
學(xué)報(bào)(自然科學(xué)版),2017,9(4):391394 Journal of Nanjing University of Information Science and Technology(Natural Science Edition),2017,9(4):391394
王廷秀.一類非線性Volterra積分不等式.
WANG Tingxiu.
A nonlinear Volterratype integral inequality.
β≥0在[a,b]區(qū)間上可積,且滿足
u(t)≤α(t)+∫taβ(s)u(s)ds,a≤t≤b,
那么
u(t)≤α(t)+∫taβ(s)α(s)e∫tsβ(u)duds,a≤t≤b.
此外,如果α非減,那么
u(t)≤α(t)e∫taβ(s)ds,a≤t≤b.
不像前面3個(gè)定理,定理4只要求β非負(fù).當(dāng)然,如果u是非負(fù)的,α也相應(yīng)必須非負(fù).Gronwall不等式在微分方程有界性、穩(wěn)定性、存在性及其他定性性質(zhì)的研究中有了大量、廣泛的應(yīng)用,對(duì)Gronwall不等式的應(yīng)用、推廣、研究爆發(fā)性增長(zhǎng),并產(chǎn)生了許多新的研究方向.1998年出版的Pachpatte等的專著[6],收集、總結(jié)了在此之前對(duì)Gronwall不等式的研究、推廣、應(yīng)用.在眾多推廣中,本文討論下面的推廣.2000年,Lipovan[10]研究了
u(t)≤k+∫α(t)α(t0)f(s)w(u(s))ds.
2012年,Bohner等[11] 研究了下面的不等式:
ψ(u(t))≤k+∑ni=1∫αi(t)αi(t0)fi(s)up(s)ωi(u(s))ds+∑mj=1∫βj(t)βj(t0)gj(s)up(s)j(maxξ∈[s-h,s] u(ξ))ds. (1)
2015年,Wang[12]推廣了不等式(1),用更一般的復(fù)合函數(shù)Hij(u(s))取代up(s),用
fi(s)up(s)ωi(u(s))j(maxξ∈[s-h,s] u(ξ))
合并了兩個(gè)級(jí)數(shù),研究了下面的不等式:
w(u(t))≤K+
∑ni=1∫αi(t)αi(t0)fi(s)∏mj=1Hij(u(s))Gij(maxs-h≤ξ≤su(ξ))ds. (2)
本文對(duì)不等式(2)進(jìn)一步加以推廣,使得K可以是函數(shù),fi(s)可以是fi(t,s).從而,我們研究Volterra不等式:
w(u(t))≤g(t)+∑ni=1∫αi(t)αi(t0)fi(t,s)∏mj=1Hij(u(s))Gij(maxs-h≤ξ≤su(ξ))ds. (3)
1一類非線性Volterra積分不等式
我們研究不等式(3),并得到一個(gè)結(jié)果.由于不等式(3)涉及7類函數(shù),為此,我們需要如下6個(gè)條件和記號(hào):已知h>0,t0,T為常數(shù),0≤t0
(A1) g(t):[t0,T)→[0,∞)為連續(xù)非減函數(shù);
(A2) αi∈C1([t0,T),R+)非減,并且αi(t)≤t,t∈[t0,T),i=1,2,…,n;
(A3) fi(t,s)∈C([t0,T)×[t0,T),R)對(duì)t為連續(xù)非減函數(shù),i=1,2,…,n;
(A4) Hij,Gij∈C(R+,R+)非減,且當(dāng)x>0,Hij(x)>0,Gij(x)>0;
(A5) w∈C(R+,R+)為嚴(yán)格遞增函數(shù),w(0)=0,limt→∞w(t)=∞;
(A6) u∈C([-h,T),R+).
定理5如果u(t)滿足不等式(3)以及以上6個(gè)條件,從(A1)—(A6).那么不等式(3)的解是:
u(t)≤w-1W-1W(g(t))+∑ni=1∫αi(t)αi(t0)fi(t,s)ds,t∈[t0,T).
其中
W(r)=∫rr01Hm(w-1(s))Gm(w-1(s))ds,0≤r<∞,
r0是一個(gè)合適的非負(fù)常數(shù),使得W(r)有定義.
H(r)=max1≤i≤n,1≤j≤m{Hij(r)},
G(r)=max1≤i≤n,1≤j≤m{Gij(r)}.
證明取η為一任意常數(shù)滿足t0≤t≤ηw(u(t))≤g(η)+
∑ni=1∫αi(t)αi(t0)fi(η,s)∏mj=1Hij(u(s))Gijmaxs-h≤ξ≤su(ξ)ds.
對(duì)t0≤t≤η,定義上面的不等式的右邊為Z(t),即
Z(t)=g(η)+
∑ni=1∫αi(t)αi(t0)fi(η,s)∏mj=1Hij(u(s))Gij(maxs-h≤ξ≤su(ξ))ds.
不難看出,Z(t)非減,且0≤w(u(t))≤Z(t),t∈[t0,η].
由(A5),w-1存在且具有和w相同的性質(zhì).因此,
u(t)≤w-1(Z(t)),t0≤t≤η.
此外,
maxs-h≤ξ≤su(ξ)≤maxs-h≤ξ≤sw-1(Z(ξ))=w-1(Z(s)),t0≤s≤η.
因此,對(duì)t∈[t0,η],
Z(t)≤g(η)+∑ni=1∫αi(t)αi(t0)fi(η,s)∏mj=1
Hij(w-1(Z(s)))Gij(w-1(Z(s)))ds≤
g(η)+∑ni=1∫αi(t)αi(t0)fi(η,s)∏mj=1
H(w-1(Z(s)))G(w-1(Z(s)))ds≤
g(η)+∑ni=1∫αi(t)αi(t0)fi(η,s)
Hm(w-1(Z(s)))Gm(w-1(Z(s)))ds.
再定義上面的不等式的右邊為R(t),即:
R(t)=g(η)+
∑ni=1∫αi(t)αi(t0)fi(η,s)Hm(w-1(Z(s)))Gm(w-1(Z(s)))ds,t0≤t≤η
證畢.
2應(yīng)用
我們的結(jié)果可以很容易地應(yīng)用到微分方程的穩(wěn)定性理論中.例如,我們考慮滯后型泛函微分方程
dudt=F(t,ut), (4)
在用Lyapunov第二方法研究微分方程穩(wěn)定性時(shí),如下條件經(jīng)??梢姡?/p>
1) W1(|(0)|)≤V(t,)2) W1(|(0)|)≤V(t,)
[14]Wang T X.Stability in abstract functional differential equations.Part II:Applications[J].Journal of Mathematical Analysis and Applications,1994,186(3):835861
[15]Wang T X.Lower and upper bounds of solutions of functional differential equations[J].Dynamics of Continuous,Discrete and Impulsive Systems,Series A:Mathematical Analysis,2013,20(1):131141
[16]Wang T X.Inequalities of Solutions of Volterra integral and differential equations[J].Electronic Journal of Qualitative Theory of Differential Equations,2009(28):538543
[17]Wang T X.Exponential stability and inequalities of abstract functional differential equations[J].Journal of Mathematical Analysis and Applications,2006,342(2):982991
[18]Wang T X.Inequalities and stability in a linear scalar functional differential equation[J].Journal of Mathematical Analysis and Applications,2004,298(1):3344
[19]Wang T X.Wazewskis inequality in a linear Volterra integrodifferential equations[M]//Corduneanu C,Sandberg I W.Volterra equations and applications.Amsterdam:Gordon and Breach Science Publishers,2000:483492
[20]廖曉昕.動(dòng)力系統(tǒng)的穩(wěn)定性理論和應(yīng)用[M].北京:國防工業(yè)出版社,2000
LIAO Xiaoxin.Theory and application of stability for dynamic systems[M].Beijing:National Defense Industry Press,2000
[21]Burton T A.Lyapunov functional for integral equations[M].Bloomington,Indiana:Trafford Publishing,2008
[22]Wang T X.Bounded solutions and periodic solutions in integral equations[J].Dynamics of Continuous,Discrete,and Impulsive Systems,2000,7(1):1931