琚明亮黃濤劉成林潘曉歐賀林陳文忠蔡雷
·論 著·
精神分裂癥和抗結(jié)核藥物所致肝損傷共同致病基因的篩選與驗(yàn)證
琚明亮*黃濤△劉成林※潘曉歐*賀林*陳文忠*蔡雷*
目的 篩選并驗(yàn)證抗結(jié)核藥物所致肝損傷(anti-tuberculosis drug-induced hepatotoxicity,ATDH)與精神分裂癥(schizophrenia,SCZ)之間可能的共同致病基因。 方法 通過查詢基因數(shù)據(jù)庫及文獻(xiàn),分別確定ATDH 和SCZ的致病基因,利用重啟動(dòng)隨機(jī)游走(integrating network random walk with restart,RWR)、基因富集分析(gene set enrichment analysis,GSEA)和超幾何檢驗(yàn)等生物信息學(xué)分析技術(shù)篩選出兩種疾病的可能共同致病基因,建立定期更新的兩種疾病共同致病基因在線數(shù)據(jù)庫(www.bio-x.cn/atdh-sczgenes.html),查閱文獻(xiàn)以進(jìn)一步篩選與ATDH和SCZ都有關(guān)的基因;利用meta分析等方法驗(yàn)證候選基因,以最終確定共同致病基因。 結(jié)果經(jīng)信息學(xué)分析技術(shù)篩選,共獲得500個(gè)候選共同致病基因。進(jìn)一步經(jīng)文獻(xiàn)檢索,得到GSTM1和GSTT1基因?yàn)楹蜻x共同致病基因并納入meta分析。Meta分析顯示,GSTM1基因同ATDH(P=0.01)和SCZ(P<0.01)相關(guān)均有統(tǒng)計(jì)學(xué)意義;而GSTT1基因同ATDH和SCZ的發(fā)病風(fēng)險(xiǎn)關(guān)系均無統(tǒng)計(jì)學(xué)意義(P>0.05)。結(jié)論 GSTM1基因?yàn)锳TDH 和SCZ的共同致病基因。
精神分裂癥 抗結(jié)核藥物所致肝損傷 基因 Meta分析
精神分裂癥(schizophrenia,SCZ)目前病因不明,但家系調(diào)查、雙生子流行病學(xué)研究已經(jīng)證實(shí),SCZ是一種多基因遺傳病[1]。肺結(jié)核是由結(jié)核分枝桿菌引起的通過呼吸道傳播的傳染性疾病。前期研究顯示,SCZ和肺結(jié)核病之間存在分子上的關(guān)聯(lián)[2-3];且SCZ會(huì)增加肺結(jié)核的發(fā)病風(fēng)險(xiǎn)[4-5],精神分裂癥患者中肺結(jié)核的發(fā)病率為2.63%,明顯高于同地區(qū)普通人群。在接受抗結(jié)核治療時(shí),33%的患者會(huì)出現(xiàn)抗結(jié)核藥物所致肝損傷(anti-tuberculosis drug-induced hepatotoxicity,ATDH)[5]。另外,抗結(jié)核藥物也會(huì)引起神經(jīng)精神方面副作用,導(dǎo)致患者出現(xiàn)精神癥狀或SCZ復(fù)發(fā)[6]。這提示ATDH 和SCZ之間可能存在某種聯(lián)系。有研究顯示,精神分裂癥和ATDH之間,存在分子遺傳學(xué)的關(guān)聯(lián)[7]。為進(jìn)一步探索其關(guān)聯(lián),本研究通過從GenBank數(shù)據(jù)庫查閱已知致病基因,應(yīng)用人類蛋白質(zhì)相互作用網(wǎng)絡(luò)分析方法(protein-protein interaction network-based analysis pipeline,PPI),在人類蛋白質(zhì)相互作用網(wǎng)絡(luò)(STRING,http://www.string-db.org/)對(duì)已知的疾病基因進(jìn)行標(biāo)注,并利用重啟動(dòng)隨機(jī)游走(integrating network random walk with restart,RWR)、基因富集分析(gene set enrichment analysis,GSEA)、超幾何檢驗(yàn)等生物信息學(xué)算法,篩選SCZ和ATDH可能共同致病基因,然后利用meta分析等方法對(duì)候選基因進(jìn)行驗(yàn)證。
1.1 重啟動(dòng)隨機(jī)游走(RWR)“隨機(jī)游走”(random walk)是指基于過去的表現(xiàn),無法預(yù)測(cè)將來的發(fā)展步驟和方向。根據(jù)網(wǎng)絡(luò)拓?fù)浣Y(jié)構(gòu)特征及計(jì)算網(wǎng)絡(luò)中節(jié)點(diǎn)間的相似性,RWR從特定疾病已知致病基因開始,按一定概率向鄰居節(jié)點(diǎn)游走,且每步游走有一重啟過程,即從種子節(jié)點(diǎn)開始重啟動(dòng)游走一直進(jìn)行[8]。
本研究分別將文獻(xiàn)報(bào)道的ATDH和SCZ相關(guān)基因作為種子基因映射到人類蛋白質(zhì)相互作用網(wǎng)絡(luò)(STRING)上,其中要求置信度>0.900[9],共包括8823個(gè)基因。然后,這些種子基因在網(wǎng)絡(luò)上按隨機(jī)游走方法擴(kuò)展[10-11]。通過網(wǎng)絡(luò)擴(kuò)展,為網(wǎng)絡(luò)上的所有基因計(jì)算其作為疾病相關(guān)基因的概率[12-13]。1.2基因富集分析(GSEA) GSEA是分析基因表達(dá)信息的一種方法,富集是指將基因按照先驗(yàn)知識(shí),也就是基因組注釋信息,進(jìn)行分類?;虮磉_(dá)譜數(shù)據(jù)通常包括上萬條基因的測(cè)量值?;蚋患治龅哪康氖呛Y選出兩組或多組間表達(dá)水平有差異的基因集[14]。篩選出兩組基因的重合基因進(jìn)行接下來的分析,這些基因反映兩種疾病共有的基因特征[15]。
1.3 超幾何檢驗(yàn) 使用超幾何分布檢驗(yàn)篩選連接兩種疾病的關(guān)鍵因子,這種關(guān)鍵因子本身及其鄰接基因被顯著性富集在擴(kuò)展基因集的重疊基因中[16]。進(jìn)一步通過Benjamini&Hochberg方法校正P值,減少錯(cuò)判率(false discovery rate)[17]。
研究流程圖見圖1。
2.1 分別查詢ATDH和SCZ的致病基因 在GenBank數(shù)據(jù)庫中以疾病名稱查詢ATDH和SCZ的致病基因,共查詢到和ATDH有關(guān)的已知基因有5個(gè),分別為CYP2E1、GSTM1、GSTT1、NAT2、UGT1A6,和SCZ有關(guān)的已知基因有1305個(gè)。
2.2 利用生物信息學(xué)技術(shù)尋找候選共同致病基因根據(jù)PPI方法,在人類基因網(wǎng)絡(luò)數(shù)據(jù)庫中標(biāo)注上一步查閱到的ATDH和SCZ致病基因,最終成功標(biāo)注5個(gè)和ATDH有關(guān)的基因及1079個(gè)和SCZ有關(guān)的基因[18]。
假設(shè)相鄰基因具有相似作用,且共同對(duì)特定疾病的發(fā)病起到特殊作用[19]。首先利用RWR技術(shù),擴(kuò)大ATDH和SCZ的候選相關(guān)基因,獲得ATDH候選相關(guān)基因1458個(gè),SCZ候選相關(guān)基因3045個(gè);經(jīng)GSEA,獲得878個(gè)可能和兩疾病都有關(guān)的重疊基因;再利用超幾何測(cè)試技術(shù),最終篩選得到500個(gè)候選的共同致病基因。
圖1 研究流程圖
2.3 查閱文獻(xiàn)以確定共同致病基因 通過大量查閱文獻(xiàn),根據(jù)候選基因和兩疾病的關(guān)系,對(duì)篩選出的500個(gè)候選共同致病基因進(jìn)行逐一比對(duì)分析。根據(jù)現(xiàn)有文獻(xiàn)報(bào)道,在這500個(gè)候選基因中,只有GSTM1、GSTT1、CYP2E1基因有文獻(xiàn)報(bào)道同時(shí)與ATDH和SCZ都有關(guān),而其他候選基因僅和其中單個(gè)疾病有關(guān)或同兩疾病都不相關(guān)。
2.4 利用meta分析驗(yàn)證共同致病基因 由于只有1項(xiàng)病例對(duì)照研究證實(shí)CYP2E1和SCZ有關(guān),因此不能采用meta分析方法驗(yàn)證CYP2E1與SCZ的關(guān)系。對(duì)于GSTM1、GSTT1基因,采用meta分析方法來探討其與SCZ和ATDH的關(guān)系。
3.1 材料與方法
3.1.1 文獻(xiàn)檢索 在 PubMed、Scopus、ISI Web of Science、EMBASE數(shù)據(jù)庫查閱2000年1月至2016 年3月所有已經(jīng)發(fā)表的有關(guān)精神分裂癥致病基因、抗結(jié)核藥物所致肝損傷致病基因的病例對(duì)照研究英文文獻(xiàn)。檢索詞為“藥物性肝損傷”“抗結(jié)核藥所致肝損傷”“ATDH”“精神分裂癥”,分別結(jié)合基因名稱,如:“谷胱甘肽轉(zhuǎn)移酶”“GST”“GSTM”“GSTM1”“GSTT”“GSTT1”等。
3.1.2 文獻(xiàn)納入與排除標(biāo)準(zhǔn) 納入標(biāo)準(zhǔn):①研究設(shè)計(jì)為隨機(jī)對(duì)照研究;②研究組為ATDH或SCZ患者,對(duì)照組為健康對(duì)照,至少涉及一種候選基因;③ATDH病例滿足ATDH診斷標(biāo)準(zhǔn);④SCZ病例符合《美國精神障礙診斷與統(tǒng)計(jì)手冊(cè)第四版》(Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition,DSM-Ⅳ)精神分裂癥的診斷標(biāo)準(zhǔn);⑤所有病例無酒精/藥物依賴、無神經(jīng)系統(tǒng)疾病、無其他精神病、無顱腦外傷、無精神發(fā)育遲滯;⑥提供詳細(xì)的基因型分布數(shù)據(jù);⑦語種為英文;⑧每種疾病與每種候選基因的相關(guān)性研究文獻(xiàn)數(shù)量不少于3篇。
排除標(biāo)準(zhǔn):①個(gè)案研究;②動(dòng)物實(shí)驗(yàn);③相同研究重復(fù)發(fā)表文獻(xiàn)僅取數(shù)據(jù)最齊全的1篇;④研究設(shè)計(jì)不合理,質(zhì)量差;⑤存在數(shù)據(jù)缺失的文獻(xiàn);⑥家系研究;⑦論文摘要。
3.1.3 文獻(xiàn)質(zhì)量評(píng)定 根據(jù)牛津循證醫(yī)學(xué)中心文獻(xiàn)嚴(yán)格評(píng)定項(xiàng)目(Oxford Critical Appraisal Skill Program,Oxford CASP,2004)對(duì)準(zhǔn)備納入研究的文獻(xiàn)質(zhì)量進(jìn)行評(píng)定。評(píng)定內(nèi)容:①樣本量充足;②診斷標(biāo)準(zhǔn)清楚;③有對(duì)照;④研究組和對(duì)照組具有可比性;⑤基因型檢測(cè)方法合理,基因型分布符合哈代—溫伯格平衡定律(Hardy-Weinberg equilibrium);⑥數(shù)據(jù)充分。每項(xiàng)計(jì)1分,總分≥3分則認(rèn)為文獻(xiàn)質(zhì)量可靠,總分<3分認(rèn)為質(zhì)量差。
3.1.4 數(shù)據(jù)采集 由2名研究人員進(jìn)行數(shù)據(jù)提取,內(nèi)容主要包括第一作者、出版年份、研究對(duì)象所在地區(qū)、樣本量及研究疾病、研究基因、基因型頻率等。遇到不一致情況,討論解決。
3.1.5 統(tǒng)計(jì)學(xué)方法 采用Stata 12.0軟件和Excel軟件進(jìn)行統(tǒng)計(jì)分析。用χ2檢驗(yàn)對(duì)納入研究進(jìn)行異質(zhì)性檢驗(yàn)。當(dāng)各研究間滿足統(tǒng)計(jì)學(xué)同質(zhì)性時(shí)(P>0.1且I2<50%),采用固定效應(yīng)模型進(jìn)行meta分析,合并各文獻(xiàn)中患者組和對(duì)照組正?;蛐秃腿笔Щ蛐蛿?shù)據(jù),合并效應(yīng)量為OR及其95%CI;反之,采用隨機(jī)效應(yīng)模型。為評(píng)估單個(gè)研究對(duì)結(jié)果的影響,每次刪除1項(xiàng)研究,然后計(jì)算剩余研究的合并OR值,進(jìn)行敏感性分析。利用Harbord’s檢驗(yàn)分別對(duì)所有納入研究文獻(xiàn)進(jìn)行發(fā)表偏倚分析。檢驗(yàn)水準(zhǔn)α=0.05,雙側(cè)檢驗(yàn)。
3.2 結(jié)果
3.2.1 檢索結(jié)果 通過文獻(xiàn)檢索,初檢出與ATDH有關(guān)的研究440項(xiàng),與SCZ有關(guān)的研究48項(xiàng)。和ATDH相關(guān)文獻(xiàn)中,422項(xiàng)為非GSTM1/GSTT1相關(guān)研究,余下15項(xiàng)研究中GSTT1數(shù)據(jù)不可靠、不符合ATDH診斷標(biāo)準(zhǔn)各1項(xiàng);和SCZ相關(guān)文研究中,29項(xiàng)研究非GSTM1/GSTT1對(duì)照研究,余下19項(xiàng)有全文的研究中有2項(xiàng)(GSTT1)數(shù)據(jù)重疊、1項(xiàng)數(shù)據(jù)不完整、1項(xiàng)非病例對(duì)照研究、3項(xiàng)個(gè)案研究、5項(xiàng)文獻(xiàn)質(zhì)量差或數(shù)據(jù)不可信、2項(xiàng)基于家族研究。最終獲得有關(guān)GSTM1和ATDH的研究14 項(xiàng)[20-33],累計(jì)679例患者和2289名對(duì)照;有關(guān)GSTT1和ATDH的研究13項(xiàng)[20-24,26-33],累計(jì)715例患者和2178名對(duì)照,見表1。有關(guān)GSTM1和SCZ的研究7項(xiàng)[34-40],累計(jì)1469例患者和1605名對(duì)照;有關(guān)GSTT1和SCZ的研究5項(xiàng)[36,38-41],累計(jì)936例患者和971名對(duì)照,見表2。
3.2.2 ATDH患者GSTM1、GSTT1基因meta分析
對(duì)于GSTM1基因,14項(xiàng)研究間無統(tǒng)計(jì)學(xué)異質(zhì)性(I2=36%,P=0.09),利用隨機(jī)效應(yīng)模型進(jìn)行meta分析,GSTM1基因同ATDH發(fā)病存在相關(guān)(OR= 0.71,95%CI:0.56~0.90,P=0.01),見圖2A。對(duì)于GSTT1基因,13項(xiàng)研究間不存在統(tǒng)計(jì)學(xué)異質(zhì)性(I2=32%,P=0.12),利用固定效應(yīng)模型進(jìn)行meta分析,GSTT1基因和ATDH之間關(guān)聯(lián)無統(tǒng)計(jì)學(xué)意義(OR=0.83,95%CI:0.63~1.09,P=0.18),見圖2B。3.2.3 SCZ患者GSTM1、GSTT1基因meta分析 對(duì)于GSTM1基因,7項(xiàng)研究間不存在統(tǒng)計(jì)學(xué)異質(zhì)性(I2=21%,P=0.27),利用固定效應(yīng)模型進(jìn)行meta分析,GSTM1基因同SCZ發(fā)病關(guān)聯(lián)有統(tǒng)計(jì)學(xué)意義(OR=0.78,95%CI:0.66~0.92,P<0.01),見圖3A。對(duì)于GSTT1基因,5項(xiàng)研究間存在統(tǒng)計(jì)學(xué)異質(zhì)性(I2=74%,P<0.01),利用隨機(jī)效應(yīng)模型進(jìn)行meta分析,結(jié)果顯示GSTT1基因和SCZ之間的關(guān)聯(lián)性沒有統(tǒng)計(jì)學(xué)意義(OR=1.37,95%CI:0.93~2.03,P= 0.11),見圖3B。
3.3 敏感性分析和發(fā)表偏移分析 敏感性分析顯示,刪除任何一項(xiàng)研究前后,結(jié)果均沒有發(fā)生顯著的改變,表明此meta分析結(jié)果具有較強(qiáng)的穩(wěn)定性。發(fā)表偏倚分析顯示,SCZ與GSTM1的研究(P= 0.06)、SCZ與GSTT1的研究(P=0.91)、ATDH與GSTM1的研究(P=0.56)、ATDH與GSTT1的研究(P=0.08)經(jīng)Harbord’s檢驗(yàn)結(jié)果均無統(tǒng)計(jì)學(xué)意義,提示無明顯發(fā)表偏倚。
為尋找共同致病基因,可以將兩疾病基因集進(jìn)行直接進(jìn)行重疊檢驗(yàn),篩選共同致病基因。但是對(duì)于類似SCZ等病因不明的疾病而言,其基因集可能并不完整,直接重疊可能會(huì)因某一關(guān)鍵致病基因的缺乏,而得不到有意義的結(jié)果;另外,直接重疊也無法反映兩種疾病之間復(fù)雜的相互調(diào)節(jié)關(guān)系。本研究首次應(yīng)用人類蛋白質(zhì)相互作用網(wǎng)絡(luò)分析(PPI)方法和RWR、GSEA、超幾何檢驗(yàn)技術(shù)等手段,確定500個(gè)同ATDH和SCZ有關(guān)的候選共同致病基因。由于ATDH病例特殊,難以招募到足夠多符合要求的病例,因此難以通過基因檢測(cè)進(jìn)行驗(yàn)證。通過文獻(xiàn)檢索對(duì)500個(gè)候選基因進(jìn)行進(jìn)一步篩選,只有CYP2E1、GSTM1、GSTT1同時(shí)和ATDH和SCZ有關(guān),其他基因和兩種疾病都沒有關(guān)聯(lián)或者僅僅和一種疾病有關(guān)。進(jìn)一步meta分析提示,GSTM1可能是ATDH和SCZ的共同致病基因。這一研究方法,可以廣泛應(yīng)用于探尋多種疾病之間分子生物學(xué)的關(guān)聯(lián),并將會(huì)促進(jìn)將來分子生物學(xué)研究的發(fā)展[42]。
谷胱甘肽S-轉(zhuǎn)移酶(glutathione S-transferases,GSTs)是一組與肝臟解毒功能有關(guān)的酶,其谷胱甘肽和自由基結(jié)合,促進(jìn)有毒物質(zhì)從體內(nèi)清除,降低藥物潛在毒性,GSTs功能障礙會(huì)導(dǎo)致ATDH的發(fā)生[43]。GSTM1和GSTT1是GSTs家族中的兩個(gè)類型,其中,GSTM1基因位于1p13.3染色體,GSTT1基因位于22q11.2染色體[44-45]。由于缺失突變導(dǎo)致GSTM1基因和GSTT1基因在人群中存在正?;蛐秃腿笔蛔兓蛐偷姆植疾町悺H笔蛔兒髸?huì)改變GSTs的結(jié)構(gòu)和功能,使GSTs特異性組織功能喪失[46],損傷肝臟的解毒功能,致使患者更易發(fā)生ATDH。
表1 ATDH與GSTM1、GSTT1基因相關(guān)文獻(xiàn)特征
圖2 ATDH患者GSTM1、GSTT1基因m et a分析
表2 SCZ與GSTM1、GSTT1基因相關(guān)文獻(xiàn)特征
圖3 SCZ患者GSTM1、GSTT1基因m et a分析
GSTM1基因主要在肝臟和大腦中表達(dá)[47],這一點(diǎn)支持該基因同ATDH和SCZ存在顯著關(guān)系的結(jié)論。GSTM1在肝臟中可以促進(jìn)肝臟通過CYP2E1酶降解抗結(jié)核藥物引起的毒副作用;另外,在腦中GSTM1促進(jìn)谷胱甘肽與氨基色素和多巴胺氧化的代謝產(chǎn)物結(jié)合[47],影響大腦線粒體細(xì)胞色素氧化酶活性。活性氧在腦中的產(chǎn)生率很高,通過氧化還原機(jī)制參與生長(zhǎng)管理和神經(jīng)調(diào)節(jié),GSTM1控制著破壞神經(jīng)的氧化劑和保護(hù)神經(jīng)的抗氧化劑之間平衡[48]。因此,由于GSTM1基因突變導(dǎo)致GSTM1基因失活,不僅會(huì)導(dǎo)致肝損傷,也會(huì)使有神經(jīng)保護(hù)作用的氧化劑功能失活,并導(dǎo)致后續(xù)SCZ的發(fā)展。
本研究也有一定的局限性。首先,研究中所使用的人類蛋白質(zhì)相互作用網(wǎng)絡(luò)是一個(gè)沒有方向的功能關(guān)聯(lián)網(wǎng)絡(luò)。若用當(dāng)前的研究方法,從定向網(wǎng)絡(luò)中研究特定疾病,可能會(huì)得到更為全面和具體的結(jié)論。其次,對(duì)SCZ相關(guān)基因進(jìn)行meta分析時(shí),所納入文獻(xiàn)數(shù)量相對(duì)較少,可能會(huì)影響分析結(jié)果。另外,到目前為止,由于沒有關(guān)于ATDH的GWAS研究報(bào)道,現(xiàn)有文獻(xiàn)中有關(guān)ATDH致病基因的報(bào)道較少,并且,目前已發(fā)現(xiàn)的SCZ相關(guān)基因變異對(duì)其遺傳度的解釋度很低,可能尚存在許多未知的相關(guān)基因[49],因此只有GSTM1和GSTT1基因得到驗(yàn)證,雖然文獻(xiàn)篩查是發(fā)現(xiàn)CYP2E1可能為SCZ 和ATDH共同致病基因,但是由于缺乏足夠多的文獻(xiàn)報(bào)道,不能進(jìn)行meta分析,對(duì)于該基因需要更多的進(jìn)一步研究加以驗(yàn)證。本研究中,雖然GSTM1和GSTT1基因有足夠的文獻(xiàn)支持可以進(jìn)行meta分析,并得出GSTM1基因?yàn)锳TDH和SCZ的共同致病基因結(jié)論,但該相關(guān)結(jié)果尚有待后續(xù)研究驗(yàn)證。
[1]XU F,YU T,NIU W,et al.Association study of NOS1 gene polymorphisms with the risk of schizophrenia in Chinese Han origin[J].Psychiatry Res,2016,246:844-845.
[2]CAI L,YANG YH,HE L,et al.Modulation of Cytokine Network in the Comorbidity of Schizophrenia and Tuberculosis[J]. Curr Top Med Chem,2016,16(6):655-665.
[3]HUANG T,LIU CL,LI LL,et al.A new method for identifying causal genes of schizophrenia and anti-tuberculosis drug-induced hepatotoxicity[J].Sci Rep,2016,6:32571.
[4]KUO SC,CHEN YT,LI SY,et al.Incidence and outcome of newly-diagnosed tuberculosis in schizophrenics:a 12-year,nationwide,retrospective longitudinal study [J].BMC Infect Dis, 2013,13(1):351.
[5]許光輝,陳志宇,黃廣軍.抗結(jié)核藥物誘導(dǎo)肝損傷的臨床分析[J].臨床肺科雜志,2009,14(6):742-743.
[6]劉淑勇,李玉枝,楊曉光,等.異煙肼所致精神障礙的臨床分析[J].中華精神科雜志,1997,30(4):254-254.
[7]CAI L,CAI MH,WANG MY,et al.Meta-Analysis-Based Preliminary Exploration of the Connection between ATDILI and Schizophrenia by GSTM1/T1 Gene Polymorphisms[J].Plos One, 2015,10(6):e0128643.
[8]張紹武,邵冬冬,張松瑤.基于致病基因網(wǎng)絡(luò)模塊性預(yù)測(cè)風(fēng)險(xiǎn)致病基因[J].生物物理學(xué)報(bào),2014,30(3):227-237.
[9]WACHOLDER S,CHANOCK S,GARCIACLOSAS M,et al. Assessing the Probability That a Positive Report is False:An Approach for Molecular Epidemiology Studies[J].J Natl Cancer Inst,2004,96(22):434-442.
[10]IOANNIDIS JP,NTZANI EE,TRIKALINOS TA.'Racial'differences in genetic effects for complex diseases[J].Nature Genet, 2004,36(12):1312-1318.
[11]LI Y,PATRA JC.Genome-wide inferring gene-phenotype relationship by walking on the heterogeneous network [J].Bioinformatics,2010,26(9):1219-1224.
[12]CHEN X,LIU MX,YAN GY.Drug-target interaction prediction by random walk on the heterogeneous network [J].Molecular Biosystems,2012,8(7):1970-1978.
[13]RUI J,GAN M,PENG H.Constructing a gene semantic similarity network for the inference of disease genes[J].BMC Syst Biol,2011,5 Suppl:S2.
[14]MA’AYAN NRCA.Introduction to Statistical Methods for Analyzing Large Data Sets:Gene-Set Enrichment Analysis[J].Sci Signal,2011,4(190):tr4.
[15]HERT MD,CORRELL CU,BOBES J,et al.Physical illness in patients with severe mental disorders.I.Prevalence,impact of medications and disparities in health care[J].World Psychiatry, 2011,10(1):52-77.
[16]CHEN L,CHU C,KONG X,et al.A Hybrid Computational Method for the Discovery of Novel Reproduction-Related Genes [J].Plos One,2015,10(3):e0117090.
[17]BENJAMINI Y,HOCHBERG Y.Controlling the False Discovery Rate:A Practical and Powerful Approach to Multiple Testing [J].J R Stat Soc Series B Stat Methodol,1995,57(1):289-300. [18]FANG S,ZHANG Y,XU M,et al.Identification of Damaging nsSNVs in HumanERCC2 Gene[J].Chem Biol Drug Des,2016, 88(3):441-450.
[19]JIANG SY,LI LL,YUE J,et al.The effects of SP110's associated genes on fresh cavitary pulmonary tuberculosis in Han Chinese population[J].Clin Exp Med,2016,16(2):219-225.
[20]ROY B,CHOWDHURY A,KUNDU S,et al.Increased risk of antituberculosis drug-induced hepatotoxicity in individuals with glutathione S-transferase M1'null'mutation[J].J Gastroenterol Hepatol,2001,16(9):1033-1037.
[21]HUANG YS.Genetic polymorphisms of drug-metabolizing enzymes and the susceptibility to antituberculosis drug-induced liver injury[J].Expert Opin Drug Metab Toxicol,2007,3(1):1-8. [22]LEIRO V,VALVERDE D,CONSTENLA L,et al.Influence of glutathione S-transferase M1 and T1 homozygous null mutations on the risk of antituberculosis drug-induced hepatotoxicity in a Caucasian population[J].Liver Int,2008,28(6):835-839.
[23]CHATTERJEE S,LYLE N,MANDAL A,et al.GSTT1,and GSTM1,gene deletions are not associated with hepatotoxicity caused by antitubercular drugs[J].J Clin Pharm Ther,2010,35 (4):465-470.
[24]KIM SH,KIM SH,BAHN JW,et al.Genetic polymorphisms of drug-metabolizing enzymes and anti-TB drug-induced hepatitis [J].Pharmacogenomics,2009,10(11):1767-1779.
[25]WANG T,YU HW,PAN YY,et al.Genetic polymorphisms of cytochrome P450 and glutathione S-transferase associated with antituberculosis drug-induced hepatotoxicity in Chinese tuberculosis patients[J].J Int Med Res,2010,38(3):977-986.
[26]SOTSUKA T,SASAKI Y,HIRAI S,et al.Association of isoniazid-metabolizing enzyme genotypes and isoniazid-induced hepatotoxicity in tuberculosis patients [J].In Vivo,2011,25 (25):803-812.
[27]TEIXEIRA RL,MORATO RG,CABELLO PH,et al.Genetic polymorphisms of NAT2,CYP2E1 and GST enzymes and the occurrence of antituberculosis drug-induced hepatitis in Brazilian TB patients [J].Mem Inst Oswaldo Cruz,2011,106(6): 716-724.
[28]MONTEIRO TP,DVM EJ,JEOVANIO-SILVA AL,et al.The roles of GSTM1,and GSTT1,null genotypes and other predictors in anti-tuberculosis drug-induced liver injury [J].J Clin Pharm Ther,2012,37(6):712-718.
[29]TANG SW,LV XZ,ZHANG Y,et al.CYP2E1,GSTM1 and GSTT1 genetic polymorphisms and susceptibility to antituberculosis drug-induced hepatotoxicity:a nested case-control study [J].J Clin Pharm Ther,2012,37(5):588-593.
[30]GUPTA VH,SINGH M,AMARAPURKAR DN,et al.Association of GST null genotypes with anti-tuberculosis drug induced hepatotoxicity in Western Indian population [J].Ann Hepatol, 2013,12(6):959-965.
[31]NEHA SINGLA,DHEERAJ GUPTA,NITI BIRBIAN,et al.Association of NAT2,GST,and CYP2E1,polymorphisms and antituberculosis drug-induced hepatotoxicity[J].Tuberculosis(Edinb),2014,94(3):293-298.
[32]LIU F,JIAO AX,WU XR,et al.Impact of glutathione S-transferase M1 and T1 on anti-tuberculosis drug-induced hepatotoxicity in Chinese pediatric patients [J].Plos One,2014,9(12): e115410-e115410.
[33]RANA SV,SHARMA SK,OLA RP,et al.N-acetyltransferase 2,cytochrome P4502E1 and glutathione S-transferase genotypes in antitubercular treatment-induced hepatotoxicity in North Indians[J].J Clin Pharm Ther,2014,39(1):91.
[34]HARADA S,TACHIKAWA H,KAWANISHI Y.Glutathione S -transferase M1 Gene Deletion May Be Associated with Susceptibility to Certain Forms of Schizophrenia [J].Biochem Biophys Res Commun,2001,281(2):267-271.
[35]PAE C U,YU H S,KIM J J,et al.Glutathione S-transferase M1 polymorphism may contribute to schizophrenia in the Korean population[J].Psychiatric Genetics,2004,14(14):147-150.
[36]MATSUZAWA D,HASHIMOTO K,HASHIMOTO T,et al.Association study between the genetic polymorphisms of glutathione-related enzymes and schizophrenia in a Japanese population [J].Am J Med Genet B Neuropsychiatr Genet,2009, 150B(1):86-94.
[37]WATANABE Y,NUNOKAWA A,KANEKO N,et al.A case–control study and meta-analysis of association between a common copy number variation of the glutathione S-transferase mu 1,(GSTM1)gene and schizophrenia[J].Schizophr Res,2010, 124(1-3):236-237.
[38]GRAVINA P,SPOLETINI I,MASINI S,et al.Genetic polymorphisms of glutathione S-transferases GSTM1,GSTT1,GSTP1 and GSTA1 as risk factors for schizophrenia[J].Psychiatry Res, 2011,187(3):454-456.
[39]RAFFA M,LAKHDAR R,GHACHEM M,et al.Relationship between GSTM1,and GSTT1,polymorphisms and schizophrenia: A case–control study in a Tunisian population[J].Gene,2013, 512(2):282-285.
[40]SARUWATARI J,YASUI-FURUKORI N,KAMIHASHI R,et al.Possible associations between antioxidant enzyme polymorphisms and metabolic abnormalities in patients with schizophrenia[J].Neuropsychiatr Dis Treat,2013,9(9):1683-1698.
[41]SAADAT M,MOBAYEN F,FARRASHBANDI H.Genetic polymorphism of glutathione S-transferase T1:a candidate genetic modifier of individual susceptibility to schizophrenia[J].Psychiatry Res,2007,153(1):87-91.
[42]ZHU Y,CONG Q W,LIU Y,et al.Antithrombin,an Important Inhibitor in Blood Clots[J].Curr Top Med Chem,2016,16(6): 666.
[43]ROY P D,MAJUMDER M,ROY B.Pharmacogenomics of anti-TB drugs-related hepatotoxicity[J].Pharmacogenomics,2008,9 (3):311-321.
[44]WEBB G,VASKA V,COGGAN M,et al.Chromosomal Localization of the Gene for the Human Theta Class Glutathione Transferase(GSTT1)[J].Genomics,1996,33(1):121-123.
[45]PEARSON W R,VORACHEK W R,XU S J,et al.Identification of class-mu glutathione transferase genes GSTM1-GSTM5 on human chromosome 1p13[J].Am J Hum Genet,1993,53(1): 220-233.
[46]ALLEN NC,BAGADE S,MCQUEEN MB,et al.Systematic meta-analyses and field synopsis of genetic association studies in schizophrenia:the SzGene database[J].Nat Genet,2008,40 (7):827-834.
[47]ROWE JD,NIEVES E,LISTOWSKY I.Subunit diversity and tissue distribution of human glutathione S-transferases:interpretations based on electrospray ionization-MS and peptide sequence-specific antisera [J].Biochem J,1997,325(Pt 2)(1): 117-123.
[48]SMYTHIES J.Redox mechanisms at the glutamate synapse and their significance:a review [J].Eur J Pharmacol,1999,370(1): 1-7.
[49]李康,許瑞環(huán),張洪德,等.定量計(jì)算已知易感變異對(duì)精神分裂癥遺傳度的解釋度 [J].中國神經(jīng)精神疾病雜志,2014, 40(8):449-453.
Identification and validation of common susceptible genes for ATDH and schizophrenia.
JU Mingliang, HUANG Tao,LIU Chenlin,PAN Xiaoou,CHEN Wenzhong,CAI Lei.Bio-X Institutes,Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders(Ministry of Education),Shanghai Key Laboratory of Psychotic Disorders (No.13dz2260500),Division of Mood Disorders,Shanghai Mental Health Center affiliated to School of Medicine,Shanghai Jiao Tong University,Shanghai 200030,China.Tel:021-62932151.
Objective To identify and validate the common susceptible genes for schizophrenia(SCZ)and anti-tuberculosis drug-induced hepatotoxicity (ATDH).Methods ATDH-related genes and SCZ-related genes were identified through seeking GenBank and were confirmed through literature review.A new network-based pipeline was proposed to identify potential common key causal genes that influence the development of these two diseases by integrating network random walk with restart(RWR)algorithm,gene set enrichment analysis(GSEA)and hypergeometric test.Then,a field synopsis or systemic meta-analysis of published studies was conducted to assess these candidate causal genes.Results Five hundred candidate genes were identified as potential common causal genes for both ATDH and SCZ after screening by our proposed method.During validation of these 500 candidate genes,only GSTM1 and GSTT1 were found to be widely studied with a plenty of multi-center study data.Meta-analysis results indicated that the GSTM1 present genotypewas significantly associated with a decreased risk of ATDH (P=0.01)and SCZ (P<0.01).Conclusion GSTM1 may be a causal gene for both ATDH and SCZ.
Schizophrenia Anti-tuberculosis drug-induced hepatotoxicity(ATDH) Genes Meta-analysis
R749.3
A
2016-10-30)
(責(zé)任編輯:肖雅妮)
10.3969/j.issn.1002-0152.2017.02.004
* 上海交通大學(xué)Bio-X研究院,上海交通大學(xué)醫(yī)學(xué)院附屬精神衛(wèi)生中心,“遺傳發(fā)育與精神神經(jīng)疾病”教育部重點(diǎn)實(shí)驗(yàn)室,上海精神疾病重點(diǎn)實(shí)驗(yàn)室(編號(hào):13dz2260500)(上海200030)
△中國科學(xué)院上海生命科學(xué)研究院,健康科學(xué)研究所
※上海交通大學(xué)生命科學(xué)技術(shù)學(xué)院