国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

依達(dá)拉奉對1-溴丙烷誘導(dǎo)大鼠中樞神經(jīng)系統(tǒng)損傷的保護(hù)作用

2017-04-28 07:48陳婧祎王增金索金寧姜路路邱曉菲許琳趙秀蘭
關(guān)鍵詞:膠質(zhì)毒性神經(jīng)元

陳婧祎,王增金,索金寧,姜路路,邱曉菲,許琳,趙秀蘭

(山東大學(xué)公共衛(wèi)生學(xué)院毒理系,山東濟(jì)南250012)

依達(dá)拉奉對1-溴丙烷誘導(dǎo)大鼠中樞神經(jīng)系統(tǒng)損傷的保護(hù)作用

陳婧祎,王增金,索金寧,姜路路,邱曉菲,許琳,趙秀蘭

(山東大學(xué)公共衛(wèi)生學(xué)院毒理系,山東濟(jì)南250012)

目的觀察1-溴丙烷(BP)的中樞神經(jīng)毒性,從神經(jīng)炎癥角度探索依達(dá)拉奉(Edv)的保護(hù)機(jī)制。方法成年雄性Wistar大鼠每天ig給予BP 800 mg·kg-1制備模型,4 h后分別ip給予Edv 1,3和5 mg·kg-1,連續(xù)12 d。自給藥第7天采用Morris水迷宮首先進(jìn)行連續(xù)5 d的定位航行實(shí)驗(yàn),檢測大鼠的逃避潛伏期和游泳總距離;第6天進(jìn)行空間探索實(shí)驗(yàn),測定大鼠穿越原平臺位置的次數(shù),評價空間記憶能力。行為學(xué)實(shí)驗(yàn)結(jié)束后,每組隨機(jī)取4只大鼠制作全腦冰凍切片,進(jìn)行尼氏染色和免疫組化染色,另8只大鼠分別采用ELISA和硝酸還原酶法檢測大鼠大腦前額葉皮質(zhì)腫瘤壞死因子α(TNF-α)和一氧化氮(NO)含量。結(jié)果Morris水迷宮實(shí)驗(yàn)結(jié)果顯示,定位航行實(shí)驗(yàn)第2~5天BP 800 mg·kg-1組大鼠的逃避潛伏期分別比正常對照組增加了60.8%,81.9%,124.0%和323.3%,游泳總距離增加47.0%,66.4%,106.0%和277.6%(P<0.05,P<0.01);空間探索實(shí)驗(yàn)中,BP組大鼠穿越平臺次數(shù)也較正常對照組明顯減少(P<0.01);病理形態(tài)學(xué)觀察發(fā)現(xiàn),BP組大鼠大腦前額葉皮質(zhì)小膠質(zhì)細(xì)胞激活明顯,神經(jīng)元丟失;大腦組織中NO和TNF-α含量分別比正常對照組增加147.6%(P<0.05)和18.7%(P<0.01)。給予BP同時給予不同劑量的Edv,其中Edv 5 mg·kg-1組大鼠第4天和第5天的逃避潛伏期分別比BP組減少38.4%和44.3%(P<0.01),游泳總距離減少34.5%和43.3%(P<0.05,P<0.01);同時給予Edv組大鼠大腦前額葉皮質(zhì)小膠質(zhì)細(xì)胞活化和神經(jīng)元丟失明顯減輕,NO及TNF-α含量也明顯降低,Edv 1,3和5 mg·kg-1組NO分別降低53.8%,55.4%和59.8%,TNF-α分別降低12.2%,15.8%和22.2%(P<0.05,P<0.01)。結(jié)論Edv可能通過抑制腦內(nèi)炎癥減輕BP的中樞神經(jīng)毒性。

1-溴丙烷;依達(dá)拉奉;認(rèn)知功能;小膠質(zhì)細(xì)胞;腫瘤壞死因子α

1-溴丙烷(1-bromopropane,BP)是一種揮發(fā)性有機(jī)溶劑,半衰期短,對臭氧層幾乎無破壞,是氟氯烴類臭氧層破壞物質(zhì)的替代劑,廣泛用于精密儀器清洗,目前也常用于干洗行業(yè),作為有潛在致癌危險的干洗劑的替代品[1]。隨著BP的使用量和生產(chǎn)量日益增多,暴露人群逐漸擴(kuò)大,近年來國內(nèi)外不斷有BP神經(jīng)中毒的病例報道。中毒者一般首先表現(xiàn)出中樞神經(jīng)系統(tǒng)(central nervous system,CNS)受損癥狀,如頭痛、頭暈、記憶障礙和焦慮或抑郁等,并逐漸出現(xiàn)外周神經(jīng)系統(tǒng)損傷癥狀,如四肢麻木、下肢振動覺減弱,嚴(yán)重者表現(xiàn)為共濟(jì)失調(diào),甚至癱瘓[2]。由于BP神經(jīng)毒性的確切機(jī)制尚不明確,臨床上缺乏特異有效的治療措施。與其他有機(jī)溶劑神經(jīng)中毒不同,人體和實(shí)驗(yàn)室研究資料均顯示,BP中毒CNS損傷表現(xiàn)明顯;中毒者的體征及腓腸神經(jīng)活檢也提示,BP的初始毒作用靶點(diǎn)可能位于CNS[1,3]。認(rèn)知功能是反映中毒性CNS損傷敏感且較客觀的指標(biāo)[4]。研究顯示,大腦前額葉皮質(zhì)(prefrontal cortex,PFC)是學(xué)習(xí)和記憶通路中的關(guān)鍵部位,由PFC、內(nèi)側(cè)顳葉皮質(zhì)、后頂葉皮質(zhì)和其他結(jié)構(gòu)構(gòu)成的神經(jīng)網(wǎng)絡(luò)是空間工作記憶的基礎(chǔ)[5]。

近年來,小膠質(zhì)細(xì)胞在人類神經(jīng)退行性疾病發(fā)生發(fā)展中的關(guān)鍵作用逐漸受到重視[6]。小膠質(zhì)細(xì)胞是腦內(nèi)常駐免疫細(xì)胞,從形態(tài)及生理學(xué)功能上歸類為CNS的巨噬細(xì)胞,對腦組織發(fā)揮免疫監(jiān)視及神經(jīng)營養(yǎng)作用。小膠質(zhì)細(xì)胞是CNS的第一道防線,能對CNS紊亂做出迅速反應(yīng),腦內(nèi)任何病理刺激均易使其異常激活,過度活化的小膠質(zhì)細(xì)胞呈現(xiàn)阿米巴樣變形,特異蛋白質(zhì)如抗離子化鈣接頭分子蛋白1(ionized calcium binding adapter molecule 1,Iba1)表達(dá)明顯升高,同時釋放大量神經(jīng)炎癥介質(zhì);炎癥介質(zhì)又進(jìn)一步激活和擴(kuò)大腦內(nèi)炎癥變化,導(dǎo)致神經(jīng)元死亡和病理狀態(tài)的進(jìn)一步發(fā)展[6-7]。活化的小膠質(zhì)細(xì)胞也是升高腦內(nèi)一氧化氮(nitric oxide,NO)含量的關(guān)鍵因素[8]。NO本身活性不高,但NO過多可與超氧陰離子反應(yīng)轉(zhuǎn)化為毒性極高的過氧亞硝酸陰離子(ONOO-),導(dǎo)致蛋白質(zhì)的酪氨酸殘基發(fā)生硝基化,使神經(jīng)元產(chǎn)生不可逆損傷[9-10]。

依達(dá)拉奉(edaravone,Edv)為3-甲基-1-苯基-2-吡唑啉-5-酮,自2001年起因其具有較強(qiáng)的抗炎作用和清除自由基作用,廣泛用于臨床上缺血性腦血管病再灌注引起的氧化損傷治療[11]。本研究采用Edv作為干預(yù)劑,通過Morris水迷宮實(shí)驗(yàn)檢測大鼠認(rèn)知功能的變化,觀察BP的CNS毒性和Edv的保護(hù)作用,從神經(jīng)炎癥角度探討B(tài)P的神經(jīng)毒性機(jī)制并尋找有效干預(yù)靶點(diǎn)。

1 材料與方法

1.1 藥品、試劑和儀器

BP(純度為99.99%)(中國上海國藥集團(tuán)化學(xué)試劑有限公司);Edv和硫堇(美國Sigma-Aldrich公司);腫瘤壞死因子α(tumor necrosis factor-α,TNF-α)ELISA試劑盒(美國R&D Systems公司);NO檢測試劑盒(硝酸還原酶法)(中國南京建成生物工程研究所);Pierce?BCA蛋白定量分析試劑盒(美國Thermo Fisher公司);Iba1多克隆抗體(日本W(wǎng)ako公司);生物素標(biāo)記山羊抗兔IgG抗體(美國Santa Cruz公司);其余試劑均為進(jìn)口或國產(chǎn)分析純。

1.2 實(shí)驗(yàn)動物及處理

72只體質(zhì)量為220~240 g的SPF級雄性Wistar大鼠(北京維通利華動物技術(shù)有限公司),動物合格證號為SCXK(京)2012-0036,環(huán)境溫度22~24℃,相對濕度40%~60%,保持12/12 h晝夜節(jié)律。參照前期研究給予BP染毒[12]。大鼠適應(yīng)性飼養(yǎng)3 d后,隨機(jī)分為正常對照組、Edv 5 mg·kg-1對照組、BP 800 mg·kg-1(ig)模型組、BP+Edv1,3和5 mg·kg-1(ip)組(BP染毒4 h后給予Edv),每組12只。BP用玉米油稀釋,Edv先用微量乙醇溶解,再用生理鹽水稀釋。BP和Edv每日給予1次,連續(xù)12 d。實(shí)驗(yàn)期間大鼠自由攝食及飲水。

1.3 Morris水迷宮實(shí)驗(yàn)檢測大鼠逃避潛伏期、游泳總距離及穿越平臺次數(shù)

自給藥第7天采用Morris水迷宮進(jìn)行連續(xù)5 d的定位航行實(shí)驗(yàn)和1 d的空間探索實(shí)驗(yàn),分別評價大鼠的學(xué)習(xí)能力和空間記憶能力。水迷宮水池直徑1.8 m,高0.6 m,用不同形狀的白色標(biāo)記將水池等分為4個象限,將直徑為12 cm的黑色圓形平臺放置第Ⅲ象限內(nèi)。水池注水高度漫過平臺1~2 cm,水溫20~24℃。圖像自動采集分析裝置記錄大鼠運(yùn)動軌跡并進(jìn)行數(shù)據(jù)處理。定位航行實(shí)驗(yàn)連續(xù)5 d,每天訓(xùn)練4次,每次從不同象限將大鼠面向池壁輕輕投入水中,記錄其在120 s內(nèi)尋找并爬上平臺時所需時間(逃避潛伏期)(爬上平臺以在平臺上持續(xù)停留5 s為準(zhǔn)),如在120 s內(nèi)未找到平臺,則將其引上平臺并停留25 s,計(jì)逃避潛伏期為120 s,期間游泳距離為游泳總距離(m)。以逃避潛伏期和游泳總距離反映大鼠的學(xué)習(xí)能力。測試第6天進(jìn)行空間探索實(shí)驗(yàn),撤除水下平臺,記錄大鼠在90 s內(nèi)穿越原平臺位置的次數(shù),以穿越平臺次數(shù)評價大鼠的空間記憶能力。

1.4 大腦冷凍切片制備及組織學(xué)檢測

水迷宮實(shí)驗(yàn)結(jié)束后次日,每組隨機(jī)選取4只大鼠采用20%烏拉坦腹腔麻醉,4%多聚甲醛經(jīng)心臟進(jìn)行體內(nèi)灌流固定,取出大腦放入多聚甲醛后固定48 h,轉(zhuǎn)移至30%蔗糖溶液至沉底后,采用冷凍切片機(jī)以冠狀方向切成40 μm厚的連續(xù)全腦組織切片。

1.4.1 尼氏染色

根據(jù)大鼠大腦立體定位圖譜,每組選取位置相同的大腦前額葉區(qū)域,采用硫堇染液染色,經(jīng)水洗、梯度乙醇脫水、脫色,二甲苯透明后,樹脂封片,置于顯微鏡下觀察神經(jīng)元內(nèi)尼氏體的變化情況。

1.4.2 免疫組化染色

根據(jù)大鼠大腦立體定位圖譜,每組選取位置相同的大腦前額葉區(qū)域,采用1%H2O2消除內(nèi)源性過氧化物酶,并經(jīng)4%動物血清封閉后,加入抗Iba1抗體4°C過夜,與生物素標(biāo)記的二抗反應(yīng)后,加入卵白素-生物素-酶復(fù)合物(ABC復(fù)合物),采用二氨基聯(lián)苯胺法(DAB)顯色,經(jīng)乙醇梯度脫水、二甲苯透明后封片,光鏡下觀察小膠質(zhì)細(xì)胞的活化情況。每只大鼠取一張大腦切片,在200×下選取相同位置拍照,采用Image J軟件進(jìn)行圖像分析,以Iba1表達(dá)總面積代表小膠質(zhì)細(xì)胞活化情況。

1.5 ELISA和硝酸還原酶法分別檢測大腦皮質(zhì)中TNF-α和NO含量

每組剩余8只大鼠處死,迅速剝離大腦,并分離PFC,液氮速凍后置于-80℃冰箱內(nèi)存放。根據(jù)試劑盒說明書,將大腦PFC按照1∶9(m/V)比例加入生理鹽水用電動勻漿儀制備勻漿,4℃,15 000×g離心15 min后取上清液,采用硝酸還原酶法測定組織中NO含量。另取部分組織采用RIPA裂解液制備1∶5的組織勻漿,冰浴中靜置30 min,4℃,15 000×g離心30 min后取上清液,按ELISA試劑盒說明書測定TNF-α含量;檢測用組織勻漿蛋白質(zhì)濃度均采用BCA試劑盒測定。

1.6 統(tǒng)計(jì)學(xué)分析

2 結(jié)果

2.1 依達(dá)拉奉對1-溴丙烷誘導(dǎo)的大鼠學(xué)習(xí)記憶障礙的影響

Morris水迷宮定位航行實(shí)驗(yàn)結(jié)果(圖1A和圖1B)顯示,第1天實(shí)驗(yàn)各組間大鼠逃避潛伏期和游泳總距離差異無統(tǒng)計(jì)學(xué)意義;自第2天BP模型組大鼠逃避潛伏期和游泳總距離明顯增加;第2~5天逃避潛伏期分別比正常對照組增加60.8%,81.9%,124.0%和323.3%(P<0.01);游泳總距離分別增加47.0%,66.4%,106.0%和277.6%(P<0.05,P<0.01)。與BP模型組相比,給予Edv1和3 mg·kg-1組逃避潛伏期和游泳總距離均無顯著性差異;給予Edv 5 mg·kg-1組第4天和第5天逃避潛伏期分別減少38.4%和44.3%(P<0.01),游泳總距離分別減少34.5%和43.3%(P<0.05,P<0.01)??臻g探索實(shí)驗(yàn)(表1)結(jié)果顯示,與正常對照組比,BP模型組大鼠穿越平臺次數(shù)明顯減少(P<0.01),與BP模型組比較,給予Edv 1,3和5 mg·kg-1組大鼠穿越平臺次數(shù)均無明顯差異。實(shí)驗(yàn)期間,各組大鼠平均游泳速度無明顯差異(數(shù)據(jù)略)。

Fig.1 Effect of edaravone(Edv)on distance travelled and escape latency of rats treated with 1-bromopropane(BP).Wistar rats were ig given BP 800 mg·kg-1and followed by Edv 1,3 and 5 mg·kg-1ip treatment,respectively,4 h later for continuous 12 d.From the 7thday,all rats were subjected to the consecutive 5 d place navigation in Morris water maze.x±s,n= 10.*P<0.05,**P<0.01,compared with normal control group;#P<0.05,##P<0.01,compared with BP group.

Tab.1 Effect of edaravon on crossing times of rats treated with BP

2.2 依達(dá)拉奉對1-溴丙烷誘導(dǎo)的大鼠大腦皮質(zhì)小膠質(zhì)細(xì)胞活化的影響

圖2A示出,正常對照組大鼠大腦小膠質(zhì)細(xì)胞基本處于靜息狀態(tài);BP組大鼠大腦小膠質(zhì)細(xì)胞激活明顯,表現(xiàn)為胞體明顯增大,分枝增粗,呈阿米巴樣變形;Edv能明顯減輕小膠質(zhì)細(xì)胞的活化。圖像分析表明(圖2B),BP組大鼠大腦Iba1蛋白表達(dá)比對照組明顯增高(P<0.05);與BP組相比,Edv各劑量組Iba1蛋白表達(dá)均顯著降低(P<0.05,P<0.01)。

2.3 依達(dá)拉奉對1-溴丙烷誘導(dǎo)的大鼠大腦前額葉皮質(zhì)神經(jīng)元丟失的影響

正常對照組和Edv對照組大鼠大腦皮質(zhì)神經(jīng)元排列密集,神經(jīng)元的細(xì)胞體較大,胞質(zhì)著色均勻。BP染毒組大鼠皮質(zhì)排列紊亂,有的胞體收縮呈多邊形或呈不規(guī)則改變,有的神經(jīng)元空泡化,部分區(qū)域出現(xiàn)神經(jīng)元丟失;給予Edv各組大鼠大腦皮質(zhì)神經(jīng)元形態(tài)、以及神經(jīng)元丟失現(xiàn)象明顯得到改善(圖3)。

2.4 依達(dá)拉奉對1-溴丙烷誘導(dǎo)的大鼠大腦組織NO及TNF-α 含量增加的影響

BP染毒能增加大鼠大腦組織中NO含量,BP染毒組比正常對照組增加147.6%(P<0.05)。與BP模型組相比,給予Edv 1,3和5 mg·kg-1組NO分別降低53.8%,55.8%和59.6%(P<0.05,P<0.01)。

與正常對照組相比,BP模型組TNF-α含量增加18.7%(P<0.01)。與BP模型組相比,給予Edv 1,3和5 mg·kg-1組TNF-α分別降低12.1%,15.8%和16.5%(P<0.01)(表2)。

Fig.2 Effect of edaravone on activation of microglia in rat brains treated with BP(200×,scale bar 20μm).See Fig.1 for the rat treatment.A:morphology of microglia;B:the total area of microglia.White arrows show the resting microglia,while black ones the activated microglia.x±s,n=4.*P<0.05,compared with normal control group;#P<0.05,##P<0.01,com?pared with BP group.

Fig.3 Effect of edaravone on morphology of neuron in rat brains treated with BP(200×,scale bar 20μm).See Fig.1 for the rat treatment.Black arrows show the vacuoliza?tion of neuronal cytoplasm,while white ones the neuronal loss.

Tab.2 Effects of edaravone on levels of nitrite oxide(NO)and tumor necrosis factor-α (TNF-α )in rat brains treated with BP

3 討論

本研究觀察到BP導(dǎo)致大鼠認(rèn)知功能損傷,并伴隨著腦內(nèi)小膠質(zhì)細(xì)胞的過度活化和大腦組織中NO和TNF-α含量的明顯升高。小膠質(zhì)細(xì)胞是CNS受到損傷或毒性刺激后最早發(fā)生反應(yīng)的細(xì)胞類型,可在1 h內(nèi)開始動員并不斷聚積長達(dá)月余[13-14]。小膠質(zhì)細(xì)胞的激活存在M1型和M2型2種極化形式。M2狀態(tài)下的小膠質(zhì)細(xì)胞可通過釋放抗炎因子和吞噬作用促進(jìn)組織修復(fù),是維持內(nèi)環(huán)境動態(tài)平衡的一種重要自我保護(hù)機(jī)制,過度刺激下會轉(zhuǎn)向M1狀態(tài),導(dǎo)致大量促炎癥因子的生成和釋放,同時細(xì)胞內(nèi)誘導(dǎo)型一氧化氮合酶(inducible nitric ox?ide synthase,iNOS)合成及活性升高,iNOS的大量表達(dá)也是小膠質(zhì)細(xì)胞M1極化狀態(tài)的特征性標(biāo)志[15]。iNOS分解精氨酸生成瓜氨酸和NO。M1極化狀態(tài)的小膠質(zhì)細(xì)胞可通過增高iNOS使腦內(nèi)NO大量產(chǎn)生,由此導(dǎo)致大腦氧化/氮化應(yīng)激,損傷神經(jīng)元[16-17]。升高的NO也可引起線粒體功能障礙,并可通過N-甲基-D-天冬氨酸受體介導(dǎo)谷氨酸鹽的興奮性毒性,導(dǎo)致神經(jīng)元損傷[18]。活化的小膠質(zhì)細(xì)胞內(nèi)NADPH氧化酶也被廣泛激活,導(dǎo)致ROS大量產(chǎn)生。腦內(nèi)增高的NO和ROS共存時,可形成毒性高的ONOO-導(dǎo)致神經(jīng)元損傷[9-10]。

TNF-α也是M1極化小膠質(zhì)細(xì)胞釋放的主要前炎癥因子,是導(dǎo)致組織炎癥反應(yīng)的重要介質(zhì),釋放的TNF-α反過來又能刺激小膠質(zhì)細(xì)胞的激活[19],并可誘導(dǎo)小膠質(zhì)細(xì)胞谷氨酰胺酶釋放谷氨酸鹽,導(dǎo)致興奮性毒性,使神經(jīng)元死亡[20]。本研究觀察到大鼠給予BP處理后,大腦組織NO及TNF-α明顯升高,提示BP導(dǎo)致小膠質(zhì)細(xì)胞M1極化。

研究顯示,小膠質(zhì)細(xì)胞M1/M2狀態(tài)的相對平衡受氧化還原狀態(tài)調(diào)節(jié)[15]。BP是一種脂溶性神經(jīng)毒物,極易通過血腦屏障進(jìn)入腦內(nèi)。進(jìn)入腦內(nèi)的BP可導(dǎo)致腦組織氧化應(yīng)激,并與其神經(jīng)毒性密切相關(guān)[12]。因此,推測BP可使腦內(nèi)小膠質(zhì)細(xì)胞向促炎態(tài)M1型極化,破壞M1/M2的相對平衡,產(chǎn)生大量的NO,ROS和TNF-α等神經(jīng)毒物,形成持續(xù)不斷、自我促進(jìn)的慢性炎癥反應(yīng),逐漸引起神經(jīng)元的不斷喪失。神經(jīng)元為有絲分裂后細(xì)胞,再生能力極差,故當(dāng)大腦功能區(qū)域的神經(jīng)元數(shù)量減少后,可產(chǎn)生神經(jīng)功能障礙。

NF-κB是介導(dǎo)細(xì)胞內(nèi)多種效應(yīng)信號通路的關(guān)鍵起始分子,也被認(rèn)為是環(huán)境神經(jīng)毒物刺激和細(xì)胞損傷啟動腦內(nèi)小膠質(zhì)細(xì)胞M1極化的中心調(diào)節(jié)因子,NF-κB的活化介導(dǎo)了iNOS的誘導(dǎo)和前炎癥因子的釋放[21]。已知NF-κB是細(xì)胞內(nèi)氧化應(yīng)激感受器,對組織中的氧化還原狀態(tài)敏感。我們前期研究顯示,BP可導(dǎo)致CNS氧化應(yīng)激,并激活動物腦內(nèi)NF-κB,導(dǎo)致腦內(nèi)炎癥反應(yīng)[22]。因此,通過抗氧化作用鈍化促炎態(tài)M1型小膠質(zhì)細(xì)胞,減少NO和ROS等神經(jīng)毒物釋放及促炎因子生成,從而減輕神經(jīng)毒物的神經(jīng)毒性。Edv是一種兼具水溶和脂溶性的小分子藥物,血腦屏障通透率高,分子中攜帶3個抗氧化基團(tuán)能特異清除細(xì)胞毒性高的羥自由基[23]。有研究顯示,Edv能有效抑制NF-κB的激活,降低下游炎癥因子的含量[24]。本研究觀察到給予Edv后,大鼠大腦組織中NO和TNF-α含量均明顯降低,小膠質(zhì)細(xì)胞活化減輕、神經(jīng)元損傷和丟失情況明顯改善。同時,Edv組大鼠的逃避潛伏期和游泳總路程呈現(xiàn)降低趨勢,穿越平臺次數(shù)也呈增多趨勢,提示Edv能明顯拮抗BP誘導(dǎo)的神經(jīng)炎癥反應(yīng)和神經(jīng)毒性。但本研究結(jié)果顯示,給予Edv 1和3 mg·kg-1保護(hù)效果不明顯,僅Edv 5 mg·kg-1組與BP模型組差異顯著,提示Edv的保護(hù)作用與劑量相關(guān)。

此外,BP是一種揮發(fā)性有機(jī)溶劑,呼吸道吸入是職業(yè)環(huán)境中人體主要的暴露途徑。但在研究BP神經(jīng)毒性的動物實(shí)驗(yàn)中,吸入染毒的結(jié)果不完全一致,如Sohn等[25]采用BP 6864 mg·m-3經(jīng)吸入途徑給予SD大鼠,6 h·d-1,每周5 d,連續(xù)13周,染毒組大鼠神經(jīng)行為學(xué)表現(xiàn)正常,大腦、脊髓和外周神經(jīng)中未觀察到任何病理學(xué)改變。而在另外的實(shí)驗(yàn)中,Yu等[26]采用BP 5491 mg·m-3給大鼠吸入染毒,8 h·d-1,第5周可觀察到明顯的外周神經(jīng)毒性癥狀,但此劑量下大鼠體質(zhì)量明顯下降,大鼠因衰竭無法持續(xù)實(shí)驗(yàn)。本研究采用經(jīng)胃途徑染毒,盡管與人的主要暴露方式不同,但BP染毒大鼠可出現(xiàn)與人中毒類似的毒性表現(xiàn),是比較理想的BP中毒模型。

[1]Ichihara G,Kitoh J,Li WH,Ding XC,Ichihara S,Takeuchi Y.Neurotoxicity of 1-bromopropane:evidence from animal experiments and human studies[J].J Adv Res,2012,3(2):91-98.

[2]Samukawa M,Ichihara G,Oka N,Kusunoki S.A case of severe neurotoxicity associated with expo?sure to 1-bromopropane,an alternative to ozonedepleting or global-warming solvents[J].Arch Intern Med,2012,172(16):1257-1260.

[3]Meyer-Baron M,Kim EA,Nuwayhid I,Ichihara G,Kang SK.Occupational exposure to neurotoxic substances in Asian countries-challenges and approaches[J].Neurotoxicology,2012,33(4):853-861.

[4]White RF,Proctor SP.Solvents and neurotoxicity[J].Lancet,1997,349(9060):1239-1243.

[5]Wang GW,Cai JX.Disconnection of the hippo?campal-prefrontal cortical circuits impairs spatial working memory performance in rats[J].Behav Brain Res,2006,175(2):329-336.

[6]Lim HW,Park JI,More SV,Park JY,Kim BW,Jeon SB,et al.Anti-neuroinflammatory effects of DPTP,a novel synthetic clovamide derivative in invitro and in vivo model of neuroinflammation[J]. Brain Res Bull,2015,112:25-34.

[7]Imai K,Kotani T,Tsuda H,Mano Y,Nakano T,Ushida T,et al.Neuroprotective potential of molecular hydrogen against perinatal brain injury via suppres?sion of activated microglia[J].Free Radic Biol Med,2016,91:154-163.

[8]Zhao W,Xie W,Le W,Beers DR,He Y,Henkel JS,et al.Activated microglia initiate motor neuron injury by a nitric oxide and glutamatemediated mechanism[J].J Neuropathol Exp Neurol,2004,63(9):964-977.

[9]Bradley SA,Steinert JR.Nitric oxide-m ediated posttranslational modifications:impacts at the synapse[J].Oxid Med Cell Longev,2016,2016:5681036.

[10]Nakamura T,Prikhodko OA,Pirie E,Nagar S,Akhtar MW,Oh CK,et al.Aberrant protein S-nitro?sylation contributes to the pathophysiology of neuro?degenerative diseases[J].Neurobiol Dis,2015,84:99-108.

[11]Zhang N,Komine-Kobayashi M,Tanaka R,Liu M,Mizuno Y,Urabe T.Edaravone reduces early accumulation of oxidative products and sequential inflammatory responses after transient focal ischemia in mice brain[J].Stroke,2005,36(10):2220-2225.

[12]Guo Y,Yuan H,Jiang L,Yang J,Zeng T,Xie K,et al.Involvement of decreased neuroglobin protein level in cognitive dysfunction induced by 1-bromo?propane in rats[J].Brain Res,2015,1600:1-16.

[13]Davalos D,Grutzendler J,Yang G,Kim JV,Zuo Y,Jung S,et al.ATP mediates rapid microglial response to local brain injury in vivo[J].Nat Neurosci,2005,8(6):752-758.

[14]Thiel A,Heiss WD.Imaging of microglia activation in stroke[J].Stroke,2011,42(2):507-512.

[15]Rojo AI,McBean G,Cindric M,Egea J,López MG,Rada P,et al.Redox control of microglial function:molecular mechanisms and functional significance[J].Antioxid Redox Signal,2014,21(12):1766-1801.

[16]Chang CC,Wang YH,Chern CM,Liou KT,Hou YC,Peng YT,et al.Prodigiosin inhibits gp91(phox)and iNOS expression to protect mice against the oxidative/nitrosative brain injury induced by hypoxia-ischemia[J].Toxicol Appl Pharmacol,2011,257(1):137-147.

[17]Sawicka E,D?ugosz A,Rembacz KP,Guzik A. The effects of coenzyme Q10 and baicalin in cisplatininduced lipid peroxidation and nitrosative stress[J].Acta Pol Pharm,2013,70(6):977-985.

[18]Stewart VC,Heslegrave AJ,Brown GC,Clark JB,Heales SJ.Nitric oxide-dependent damage to neuronal mitochondria involves the NMDA receptor[J].Eur J Neurosci,2002,15(3):458-464.

[19]Kim YS,Joh TH.Microglia,major player in the brain inflammation:their roles in the pathogenesis of Parkinson′s disease[J].Exp Mol Med,2006,38(4):333-347.

[20]Takeuchi H,Jin S,Wang J,Zhang G,Kawanokuchi J,Kuno R,et al.Tumor necrosis factor-alpha induc?es neurotoxicity via glutamate release from hemi?channels of activated microglia in an autocrine manner[J].J Biol Chem,2006,281(30):21362-21368.

[21]Von Bernhardi R,Eugenín J.Alzheimer′s disease:redox dysregulation as a common denominator for diverse pathogenic mechanisms[J].Antioxid Redox Signal,2012,16(9):974-1031.

[22]Wang ZJ,Yuan H,Yang JL,Xie KQ,Zhao XL. DHA Attenuated central neurotoxicity of 1-bromo?propane by activating NF-κB and Nrf2[J].J Shandong Univ(Health Sci)山東大學(xué)學(xué)報(醫(yī)學(xué)版),2016,54(4):84-88,93.

[23]Yoshida H,Yanai H,Namiki Y,F(xiàn)ukatsu-Sasaki K,F(xiàn)urutani N,Tada N.Neuroprotective effects of edaravone:a novel free radical scavenger in cere?brovascular injury[J].CNS Drug Rev,2006,12(1):9-20.

[24]Jangra A,Kwatra M,Singh T,Pant R,Kushwah P,Ahmed S,et al.Edaravone alleviates cisplatininduced neurobehavioral deficits via modulation of oxidative stress and inflammatory mediators in the rat hippocampus[J].Eur J Pharmacol,2016,791:51-61.

[25]Sohn YK,Suh JS,Kim JW,Seo HH,Kim JY,Kim HY,et al.A histopathologic study of the nervous system after inhalation exposure of 1-bromo?propane in rat[J].Toxicol Lett,2002,131(3):195-201.

[26]Yu X,Ichihara G,Kitoh J,Xie Z,Shibata E,Kamijima M,et al.Neurotoxicity of 2-bromopro?pane and 1-bromopropane,alternative solvents for chlorofluorocarbons[J].Environ Res,2001,85(1):48-52.

Protective effect of edaravone on central nervous system damage induced by 1-bromopropane in rats

CHEN Jing-yi,WANG Zeng-jin,SUO Jin-ning,JIANG Lu-lu,QIU Xiao-fei,XU Lin,ZHAO Xiu-lan
(Institute of Toxicology,School of Public Health,Shandong University,Jinan 250012,China)

OBJECTIVETo observe the neurotoxicity of 1-bromopropane(BP)and investigate the protective effects of edaravone(Edv)against BP-induced deficits of spatial learning and memory ability in rats by its anti-inflammatory mechanism.METHODSAdult male Wistar rats were ig given BP 800 mg·kg-1to develop the model,followed by Edv 1,3 and 5 mg·kg-1ip treatment respectively 4 h later for consecutive 12 d.From the 7thday(d 7),all rats were subjected to the five-day place navigation in Morris water maze(MWM)to measure the escape latency and the total swimming distance.On d 6 of MWM,spatial probe test was performed and the crossing times of rats were recorded to evaluate the spatial memory ability.At the end of the behavioral experiment,four rats in each group were randomly selected and the frozen section of the whole brain was sliced for thionin staining and immunohisto?chemistry.The other eight sacrifced rat brains from each group were harvested for the determination of the tumor necrosis factor-α(TNF-α)and nitric oxide(NO)by ELISA and nitrate reductase method, respectively.RESULTSThe results of MWM test showed that compared with control rats the escape latencies of rats in BP group were increased by 60.8%,81.9%,124.0%and 323.3%,respectively,during the d 2-d 5 of MWM,and the total swimming distance increased by 47.0%,66.4%,106.0%and 277.6%,respectirely.All the differences between BP group and control group were significant(P<0.05, P<0.01).In the spatial probe trial,the crossing times of rats in BP group were significantly decreased, compared with the control rats(P<0.01).Morphologically,thionin staining and immunohistochemistry revealed significant microglia activation and neuron loss in the rat forebrains,accompanied by a 147.6%and 18.7%increase in NO and TNF-α levels in rats treated with BP respectively compared with control values(P<0.05,P<0.01).After co-treatment at different dosages of Edv with BP,the escape latencies of rats in BP+Edv 5 mg·kg-1group were decreased by 38.4%and 44.3%(P<0.01),and the total swimming distance decreased 34.5%and 43.3%(P<0.05,P<0.01),respectively,compared with the BP treated rats on the d 4 and d 5 of MWM test.The microglia activation and neuron damage in the brain of rats induced by BP treatment were significantly alleviated in BP+Edv groups.In addition,the contents of NO and TNF-α were decreased in BP+Edv 1,3 and 5 mg·kg-1groups,with a decrease of 53.8%, 55.4%and 59.8%in NO,and 12.2%,15.8%and 22.2%in TNF-α(P<0.05,P<0.01),respectively.CONCLUSIONEdv could effectively protect against central neurotoxicity induced by BP via anti-neuro?inflammation.

1-bromopropane;edaravone;cognitive function;microglia;tumor necrosis factor-α

ZHAO Xiu-lan,E-mail:zhao.xl@sdu.edu.cn,Tel:(0531)88382132

R964

:A

:1000-3002-(2017)02-0237-07

10.3867/j.issn.1000-3002.2017.03.006

Foundation item:The project supported by National Natural Science Foundation of China(81172708);and Interdisci?plinary Breeding Project of Shandong University(2016JC020)

2016-10-08接受日期:2017-01-17)

(本文編輯:喬虹)

國家自然科學(xué)基金(81172708);2016山東大學(xué)交叉學(xué)科培育項(xiàng)目(2016JC020)

陳婧祎,女,碩士研究生,從事神經(jīng)毒理學(xué)研究。E-mail:528258683@qq.com,Tel:13153182317

趙秀蘭,E-mail:zhao.xl@sdu.edu.cn,Tel:(0531)88382132

猜你喜歡
膠質(zhì)毒性神經(jīng)元
除草劑敵草快對克氏原螯蝦(Procambarus Clarkii)的毒性研究
應(yīng)激寧小鼠急性毒性試驗(yàn)及亞慢性毒性試驗(yàn)
星形膠質(zhì)細(xì)胞-神經(jīng)元轉(zhuǎn)化體內(nèi)誘導(dǎo)研究進(jìn)展
甲基苯丙胺神經(jīng)毒性作用及機(jī)制的研究進(jìn)展
AI講座:神經(jīng)網(wǎng)絡(luò)的空間對應(yīng)
研究神經(jīng)膠質(zhì)細(xì)胞的新興技術(shù)
人類星形膠質(zhì)細(xì)胞和NG2膠質(zhì)細(xì)胞的特性
動物之最——毒性誰最強(qiáng)
激活皮層生長抑素中間神經(jīng)元抑制神經(jīng)病理性疼痛的發(fā)展
研究人員精確定位控制飲酒的神經(jīng)元