溫時(shí)媛,姜苗苗
(天津中醫(yī)藥大學(xué)天津市現(xiàn)代中藥重點(diǎn)實(shí)驗(yàn)室,天津300193)
腫瘤代謝靶點(diǎn)用于癌癥治療的研究進(jìn)展
溫時(shí)媛,姜苗苗
(天津中醫(yī)藥大學(xué)天津市現(xiàn)代中藥重點(diǎn)實(shí)驗(yàn)室,天津300193)
腫瘤細(xì)胞可以改變糖酵解和谷氨酰胺代謝等代謝途徑,產(chǎn)生其快速增殖所需的原料,從而使自身增殖和生存。因此,研究腫瘤代謝途徑的改變,有利于找到治療癌癥疾病的靶點(diǎn)。本文綜述了腫瘤細(xì)胞中有氧糖酵解、谷氨酰胺代謝、三羧酸循環(huán)和合成代謝的代謝特征,并詳細(xì)介紹了這些代謝途徑中用于癌癥治療的代謝靶點(diǎn)和相應(yīng)的治療藥物,探討了可以成為癌癥治療靶點(diǎn)的潛在標(biāo)志物和腫瘤代謝靶向治療所面臨的挑戰(zhàn)。
腫瘤代謝;有氧糖酵解;谷氨酰胺
過(guò)去,癌癥的治療方式主要是采用具有細(xì)胞毒作用的藥物,但其對(duì)正常細(xì)胞組織也有損傷。過(guò)去的幾十年,研究重點(diǎn)主要集中在通過(guò)識(shí)別腫瘤細(xì)胞的獨(dú)特特征更精準(zhǔn)地鎖定腫瘤細(xì)胞,于是產(chǎn)生了更高效的靶向治療且改善了患者的預(yù)后。近年來(lái)的研究致力于利用腫瘤細(xì)胞的代謝特征來(lái)區(qū)別正常細(xì)胞。癌細(xì)胞能快速持久地生長(zhǎng)、增殖并耐缺氧,基于這些特征尋找不同于正常細(xì)胞代謝特征的代謝途徑。研究腫瘤代謝途徑的主要目的是使癌細(xì)胞在治療窗內(nèi)被抑制而正常細(xì)胞不受影響。
癌癥是一種復(fù)雜的疾病,不同類型的癌癥存在較大的差異,同一類型癌癥不同患者間也存在較大的差異,甚至同一個(gè)腫瘤中不同癌細(xì)胞間也有差異性。腫瘤代謝也表現(xiàn)了相當(dāng)大的區(qū)別,腫瘤在不同微環(huán)境中采取不同的代謝途徑。然而,腫瘤某些重要部位的代謝也存在一些共性。腫瘤代謝的共同特征包括葡萄糖、谷氨酰胺和線粒體代謝中的變化,這些共同特征或許可以成為治療癌癥的新的發(fā)展方向。某些代謝途徑的基本性質(zhì)提供了一個(gè)統(tǒng)一的研究方向,以避免和克服腫瘤的遺傳差異性。
葡萄糖首先在不需氧的情況下分解為丙酮酸,然后在線粒體中進(jìn)行三羧酸(tricarboxylic acid,TCA)循環(huán),產(chǎn)生大量的ATP。然而,20世紀(jì)50年代,Warburg[1]報(bào)道了腫瘤細(xì)胞中葡萄糖分解的丙酮酸在有氧的情況下轉(zhuǎn)變?yōu)槿樗?,而不是在線粒體中進(jìn)行氧化。這種代謝不同于普通模式的代謝。一般認(rèn)為只有在進(jìn)行糖酵解時(shí)才產(chǎn)生乳酸,而這種代謝類似于克勒勃屈利效應(yīng)(Crabtree effect)。這種效應(yīng)是如果葡萄糖水平很高,即使有氧氣的存在,呼吸也會(huì)被抑制。所以Warburg認(rèn)為,這是腫瘤細(xì)胞有氧呼吸的代謝特點(diǎn),并猜測(cè)這種情況是由于癌細(xì)胞的線粒體存在缺陷,而導(dǎo)致其自身不能利用氧進(jìn)行代謝。迄今,發(fā)現(xiàn)大部分腫瘤細(xì)胞的線粒體是完整的,大量的致癌基因突變導(dǎo)致腫瘤細(xì)胞代謝由氧化磷酸化轉(zhuǎn)變?yōu)樘墙徒猓?]。這種轉(zhuǎn)變的原因依然不清楚,但一致認(rèn)為葡萄糖的糖酵解使腫瘤細(xì)胞產(chǎn)生了一種利于其生長(zhǎng)和增殖的生物中間體,同時(shí)也避免了氧化磷酸化產(chǎn)生有害的活性氧簇。
Warburg的腫瘤細(xì)胞有氧糖酵解的研究發(fā)現(xiàn)了一些值得深思的問(wèn)題。如腫瘤細(xì)胞對(duì)這種有氧糖酵解代謝的依賴程度,抑制這種有氧糖酵解是否可以減少腫瘤細(xì)胞的增殖。腫瘤細(xì)胞利用葡萄糖及其衍生物的代謝途徑,產(chǎn)生其生物合成所需的原料,維持良好的氧化還原環(huán)境,滿足其所需的能量。重要的核心代謝途徑幾乎存在于所有細(xì)胞中,所以研究腫瘤細(xì)胞代謝的特異性和正常細(xì)胞的毒性顯得至關(guān)重要。
糖酵解過(guò)程會(huì)產(chǎn)生大量相關(guān)的蛋白質(zhì),它們被認(rèn)為是潛在的藥物靶點(diǎn)。糖酵解的早期階段,葡萄糖被攜帶進(jìn)入癌細(xì)胞并在細(xì)胞中被磷酸化;糖酵解的后期階段,葡萄糖轉(zhuǎn)變?yōu)楸岵⒁砸阴]o酶A的形式進(jìn)入TCA循環(huán)或轉(zhuǎn)變?yōu)槿樗嵋瞥黾?xì)胞。糖酵解的前2步是葡萄糖轉(zhuǎn)運(yùn)體將葡萄糖轉(zhuǎn)運(yùn)至細(xì)胞內(nèi),隨后被己糖激酶磷酸化。在許多類型的癌癥中,葡萄糖轉(zhuǎn)運(yùn)體和己糖激酶的各種亞型會(huì)過(guò)度表達(dá)[3],它們可以成為藥物抑制的靶點(diǎn)[4]。在B細(xì)胞急性淋巴細(xì)胞白血病小鼠模型中,葡萄糖轉(zhuǎn)運(yùn)蛋白1(glucose transporter 1,Glut1)基因的缺失大大減緩了細(xì)胞增殖并減輕了疾?。?]。同樣地,在一些癌癥疾病中,將Glut作為抑制對(duì)象進(jìn)行研究。例如,抑制小分子Glut1可以減緩非小細(xì)胞肺癌的增長(zhǎng)[6],對(duì)腎癌也有效[2]。一些抑制逆轉(zhuǎn)錄病毒蛋白酶的藥物,通常用于治療HIV感染,但也發(fā)現(xiàn)其具有抑制Glut1和Glut4的作用[7]。利托那韋就是其中的一種,在多發(fā)性骨髓瘤小鼠模型中,可抑制葡萄糖進(jìn)入細(xì)胞從而具有抗增殖作用[8]。想要將Glut1作為人類癌癥患者的治療靶點(diǎn),就必須了解其毒性作用。例如,Glut1在血腦屏障中大量表達(dá),所以將Glut1基因抑制后可能影響腦部神經(jīng),即Glut1缺陷綜合征[9]。盡管如此,根據(jù)Glut1抑制劑的臨床跟蹤記錄也說(shuō)明存在一些具有療效的葡萄糖攝取抑制劑,如利托那韋。
在腫瘤代謝中,選擇性抑制己糖激酶亞型或許也可成為一個(gè)治療靶點(diǎn)。很多研究表明,己糖激酶Ⅱ在幾種不同類型的腫瘤細(xì)胞中過(guò)度表達(dá),而在大部分正常細(xì)胞中不表達(dá)。己糖激酶Ⅱ基因缺陷是有益的,能減緩癌癥進(jìn)展,減少癌細(xì)胞存活率,如肺癌、乳腺癌[10]和腦癌[11]。有趣的是,己糖激酶Ⅱ基因片段缺失雖然是早期致死因子,但將其全基因敲除的成年小鼠卻能很好地耐受[10-11],說(shuō)明癌細(xì)胞可能選擇性地依賴這種基因片段,所以己糖激酶Ⅱ可以成為一個(gè)很好的治療靶點(diǎn)。已經(jīng)證明己糖激酶的小分子抑制物在體外具有抗癌活性[12],如2-脫氧葡萄糖(2-deoxyglucose,2-DG),不過(guò)2-DG在體內(nèi)作為單劑量使用時(shí)效果一般[5]。然而,對(duì)于一個(gè)獨(dú)特的己糖激酶亞型來(lái)說(shuō),這類化合物不具有特異性,而抑制癌癥中己糖激酶亞型過(guò)度表達(dá)的小分子物質(zhì),可以通過(guò)不斷改變或許具有特異性。
糖酵解中重要的一步是6-磷酸果糖激酶1(6-phosphofructo-1-kinase,PFK1)將果糖-6-磷酸轉(zhuǎn)變?yōu)楣?1,6-二磷酸。在糖酵解中,這是必需的一步,在多種癌癥類型中,由于PFK1的活性增強(qiáng),使得大量的葡萄糖進(jìn)入糖酵解[13]。腫瘤細(xì)胞中增強(qiáng)PFK1活性的機(jī)制依賴于PFK1變構(gòu)激活因子的生成。致瘤信號(hào)增強(qiáng)了PFK2亞型FB3(6-phospho?fructo-2-kinase/fructose-2,6-bisphosphatase-3,PFKFB3)[14],它在許多惡性腫瘤中高表達(dá),是多種腫瘤細(xì)胞存活的必需因子,受到缺氧誘導(dǎo)因子1α亞型(hypoxia-inducible factor-1α,HIF-1α)、蛋白激酶B(protein kinase B,Akt)和人第10號(hào)染色體缺失的磷酸酶的調(diào)節(jié)[15]。通過(guò)對(duì)HIF-1α的調(diào)節(jié),降低其在腫瘤細(xì)胞中的表達(dá),弱化HIF-1α對(duì)腫瘤細(xì)胞糖酵解的增強(qiáng)作用,從而減少腫瘤細(xì)胞的能量攝入,降低腫瘤細(xì)胞轉(zhuǎn)移能力[16]。PFKFB3表達(dá)的增強(qiáng)導(dǎo)致產(chǎn)生了果糖-2,6-二磷酸,它是一種PFK1變構(gòu)激活因子[17]。研究表明,PFKFB3抑制劑利用遺傳途徑[18]和小分子抑制劑[19]來(lái)減少腫瘤細(xì)胞糖酵解并減緩腫瘤細(xì)胞生長(zhǎng)。PFKFB3小分子抑制劑目前正處于臨床試驗(yàn)的早期階段[20]。
葡萄糖代謝中另一個(gè)關(guān)鍵是糖酵解生成的丙酮酸具有不同代謝途徑,一種是被轉(zhuǎn)運(yùn)至線粒體內(nèi)進(jìn)行TCA循環(huán),一種是在胞液中轉(zhuǎn)變?yōu)槿樗?。丙酮酸脫氫酶(pyruvate dehydrogenase,PDH)是丙酮酸的關(guān)鍵調(diào)節(jié)劑,在線粒體中將丙酮酸轉(zhuǎn)變?yōu)橐阴]o酶A。PDH活性的重要調(diào)節(jié)劑是PDH激酶(pyru?vate dehydrogenase kinase,PDK),通過(guò)促使PDH特定絲氨酸位點(diǎn)的磷酸化促使PDH失活[21],導(dǎo)致丙酮酸進(jìn)入線粒體的量減少,而生成大量的乳酸[22]。一些PDK的亞型在各種腫瘤細(xì)胞中過(guò)度表達(dá)[23],并且對(duì)維持腫瘤有氧糖酵解起到重要作用。大量研究表明,RNA干擾(RNAi)或小分子抑制劑二氯乙酸(dichloroacetate,DCA)通過(guò)抑制PDK抑制劑可使體外腫瘤細(xì)胞死亡,也可改善疾病的體內(nèi)模型[24-25]。DCA可以改變腫瘤細(xì)胞的能量平衡,促進(jìn)葡萄糖氧化并由此產(chǎn)生活性氧[24-25]。臨床上,DCA用于治療乳酸性酸中毒[26],并且一些臨床試驗(yàn)將其作為抗癌劑進(jìn)行研究。在一個(gè)小的臨床試驗(yàn)中,一些患者采用DCA治療,發(fā)現(xiàn)其與多形性成膠質(zhì)細(xì)胞瘤的影像學(xué)回歸有關(guān),減少癌細(xì)胞增殖,增加癌細(xì)胞凋亡[41]。然而,仍不清楚DCA顯著的抗癌活性是否使小鼠腫瘤模型的代謝正?;?4-27]。
乳酸脫氫酶(lactate dehydrogenase,LDH)是丙酮酸的另一重要調(diào)節(jié)劑,在各種類型癌癥中LDH的表達(dá)增多和活性增強(qiáng),在胞液中將丙酮酸轉(zhuǎn)變?yōu)槿樗幔?8-29]。LDH的2種亞型形成了混合組成的四聚體[28],LDHa亞型在癌細(xì)胞中常牽涉有氧糖酵解[28-29],且對(duì)丙酮酸有最佳親和力,對(duì)酶的活性有最高的Vmax。所以,LDHa能夠迅速將丙酮酸轉(zhuǎn)為乳酸而完成有氧糖酵解。LDHa催化煙酰胺腺嘌呤二核苷酸((nicotinamide adenine dinucleotide,NAD+)產(chǎn)生的反應(yīng),NAD+是維持糖酵解途徑中酶活性的關(guān)鍵,如3-磷酸甘油醛脫氫酶。NAD+也是維持腫瘤細(xì)胞中良好氧化還原環(huán)境的關(guān)鍵。小分子抑制劑或遺傳方式抑制LDHa,可以減緩多種腫瘤細(xì)胞生長(zhǎng),增加凋亡,包括肝癌和乳腺癌[30-31]。一些早期臨床試驗(yàn)評(píng)價(jià)了LDH的非特異性抑制劑,觀察結(jié)果不一[32]。對(duì)LDHa具有更高特異性的抑制劑的臨床前開發(fā)目前正在研究中[33]。
腫瘤細(xì)胞除了改變葡萄糖代謝,還增加對(duì)谷氨酰胺的使用和依賴,以利于腫瘤細(xì)胞生長(zhǎng)和生存。谷氨酰胺的急劇增加與腫瘤中致癌基因c-Myc信號(hào)相關(guān)的一種代謝有關(guān)[34],也與其他的致癌基因突變有關(guān),如致癌基因K-ras[35]。谷氨酰胺代謝的第一步是谷氨酰胺通過(guò)轉(zhuǎn)運(yùn)體進(jìn)入細(xì)胞,這種能夠攜帶谷氨酰胺的轉(zhuǎn)運(yùn)體在惡性腫瘤中被普遍上調(diào),如SLC1A5(ASCT2)〔中性氨基酸轉(zhuǎn)運(yùn)蛋白B(0)/ ASC氨基酸轉(zhuǎn)運(yùn)蛋白2〕和LAT1(大分子中性氨基酸轉(zhuǎn)運(yùn)蛋白)。在胞漿內(nèi),谷氨酰胺可以作為蛋白質(zhì)、嘌呤和嘧啶從頭合成的一種底物[36],或者可以被谷氨酰胺酶(glutaminases,GLS)轉(zhuǎn)變?yōu)楣劝彼?。腫瘤細(xì)胞可以利用谷氨酰胺衍生后的谷氨酸進(jìn)行各種活動(dòng)[37]。腫瘤細(xì)胞通過(guò)谷氨酰胺還原代謝增加乙酰輔酶A生成,通過(guò)HIF-1上調(diào)脂肪酸合成酶表達(dá),這都利于脂肪酸的大量合成,脂肪酸一方面合成磷脂利于細(xì)胞膜構(gòu)筑,另一方面合成甘油三酯利于能量的儲(chǔ)存和信號(hào)的傳導(dǎo),這都與腫瘤形成及進(jìn)展密切相關(guān)[39]。HIF-1和c-Myc協(xié)同作用可使腫瘤細(xì)胞蛋白合成、細(xì)胞周期進(jìn)程和代謝程序重組,從而精細(xì)地調(diào)控腫瘤細(xì)胞在低氧環(huán)境下的代謝適應(yīng)性反應(yīng)[39]。谷氨酸經(jīng)轉(zhuǎn)氨基作用生成非必需氨基酸,利于腫瘤細(xì)胞的生長(zhǎng)和增殖,并且在腫瘤細(xì)胞TCA中是碳供體,經(jīng)谷氨酸脫氫酶(glutamate dehydrogenase,GDH)轉(zhuǎn)化為α-酮戊二酸而再回流到TCA中,它在TCA循環(huán)中用來(lái)支持氧化磷酸化,脂類生成或補(bǔ)充的關(guān)鍵中間體。谷氨酸在細(xì)胞中還可以被用于生成還原劑,被轉(zhuǎn)化為還原型谷胱甘肽或在蘋果酸酶作用下生成還原型煙酰胺腺嘌呤二核苷酸磷酸(nicotinamide adenine dinucleo?tide phosphate,NADPH)。腫瘤細(xì)胞依賴谷氨酰胺可能是基于癌基因激活及抑癌基因失活[40],如Ras基因通過(guò)轉(zhuǎn)錄調(diào)節(jié)天冬氨酸轉(zhuǎn)氨酶催化谷氨酰胺來(lái)源的底物的轉(zhuǎn)氨基作用,回補(bǔ)三羧酸中間代謝物,提供代謝大分子原料[41]。
一些癌癥對(duì)谷氨酰胺代謝的依賴性提供了其治療方向。研究者們開始尋找谷氨酰胺轉(zhuǎn)運(yùn)體的抑制劑,限制谷氨酰胺進(jìn)入腫瘤細(xì)胞。小分子抑制劑2-氨基-(2,2,1)-庚基-2-羧酸可以抑制LAT1活性,用其對(duì)腫瘤細(xì)胞進(jìn)行治療或者LAT1基因敲除都可以減緩腫瘤細(xì)胞的增殖和腫瘤的生長(zhǎng)[42-43]。RNAi或者小分子L-谷氨?;?4-硝基苯胺抑制ASCT2活性,可以減弱哺乳動(dòng)物西羅莫司(雷帕霉素)靶蛋白〔mammalian target of sirolimus(rapamycin),mTOR〕信號(hào)通路并誘導(dǎo)腫瘤細(xì)胞自我吞噬[44]。另一研究表明,抑制ASCT2可以降低肺癌細(xì)胞某些亞型的生長(zhǎng)和存活率,這主要是由于降低了mTOR信號(hào)通路的活性[45]。在谷氨酰胺代謝中另一個(gè)有效的治療靶點(diǎn)是GLS,GLS有很多小分子抑制劑,其中BPTES在一些癌細(xì)胞系中就能成功抑制GLS活性,從而減緩癌細(xì)胞生長(zhǎng),促進(jìn)癌細(xì)胞凋亡[46]。還可以通過(guò)抑制GDH來(lái)阻止谷氨酰胺進(jìn)入TCA循環(huán),到目前為止仍未發(fā)現(xiàn)抑制GDH的特異性小分子[37]。不過(guò),GDH的非特異性抑制劑對(duì)腫瘤細(xì)胞具有毒性并且可以減緩移植瘤的生長(zhǎng)[47]。
近年來(lái)發(fā)現(xiàn),腫瘤細(xì)胞的增殖和生存除了利用有氧糖酵解和谷氨酰胺代謝外,一些腫瘤細(xì)胞還會(huì)很大程度地改變正常的TCA循環(huán)。TCA循環(huán)通常被認(rèn)為用于支持線粒體氧化反應(yīng),但它還被用于細(xì)胞的增殖。在TCA循環(huán)中,乙酰輔酶A產(chǎn)生的檸檬酸被轉(zhuǎn)運(yùn)出線粒體,然后轉(zhuǎn)變?yōu)楹铣芍舅崴璧脑?,脂肪酸是?xì)胞增殖不可或缺的。TCA循環(huán)在還原羧基化反應(yīng)中被逆轉(zhuǎn),使α-酮戊二酸轉(zhuǎn)變?yōu)楫悪幟仕?,然后再轉(zhuǎn)變?yōu)橹|(zhì)合成所需的檸檬酸。TCA循環(huán)中的某些酶導(dǎo)致腫瘤的突變和發(fā)展。迄今,某些突變發(fā)生在TCA循環(huán)酶上,包括琥珀酸脫氫酶(succinate dehydrogenase,SDH)、延胡索酸水合酶(fumarate hydratase,F(xiàn)H)和異檸檬酸脫氫酶(isocitrate dehydrogenase,IDH)。SDH和FH被認(rèn)為是腫瘤抑制劑,這2種酶的突變會(huì)導(dǎo)致肉瘤、腎癌或者其他類型的癌癥[48-50]。研究表明,在膠質(zhì)瘤[51]和急性粒細(xì)胞白血?。?2]及其他癌癥[53-54]中存在
IDH突變。這些突變導(dǎo)致IDH生成一種名叫(R)-2-羥基戊二酸的新代謝物,其在體外可以改變細(xì)胞的生存[55],不過(guò)機(jī)制仍不清楚。許多研究表明,2-羥基戊二酸在細(xì)胞中可以庇護(hù)IDH突變,并且可以抑制甲基化酶,導(dǎo)致甲基化DNA和干細(xì)胞的保留[55-56]。
TCA循環(huán)中特異性小分子是迄今為止治療腫瘤最偉大的發(fā)現(xiàn)之一。小分子抑制劑成功鎖定突變的SDH和FH的能力是有限的,因?yàn)檫@是一種失去了功能的突變。然而,已經(jīng)表明,在臨床前和臨床中一些新化合物可以成功地抑制突變IDH的功能活性。在臨床前研究中,突變IDH的小分子抑制劑會(huì)嚴(yán)重減少2-羥基戊二酸的產(chǎn)生并使腫瘤細(xì)胞向一個(gè)更正常的表型分化[57-58]。
無(wú)論是良性腫瘤還是惡性腫瘤,都必須不斷增殖,不斷產(chǎn)生新的物質(zhì)和能量,這就促使腫瘤中脂質(zhì)、蛋白質(zhì)和核酸的合成途徑不斷加快。磷酸戊糖途徑可以產(chǎn)生5-磷酸核糖和NADPH。NADPH是脂質(zhì)和核酸合成所必需的,也是重要的抗氧化劑。6-磷酸葡萄糖脫氫酶(glucose-6-phosphate dehy?drogenase,G6PD)是磷酸戊糖途徑的限速酶,它的異常過(guò)表達(dá)會(huì)改變小鼠NIH-3T3成纖維細(xì)胞[59]。磷酸甘油酸酯變位酶1(phosphoglycerate mutase 1,PGAM1)活性或基因的抑制劑可以減緩腫瘤生長(zhǎng),是由于G6PD抑制3-磷酸甘油酸酯的作用[60]。即便如此,在某些地方,對(duì)G6PD活性有影響的基因的缺失很普遍[61]。然而,這些遺傳基因缺陷似乎并沒(méi)有增加這些人群的各種腫瘤發(fā)展的風(fēng)險(xiǎn)[62]。丙酮酸激酶M2亞型(pyruvate kinase M2 isoform,PKM2)在磷酸戊糖途徑中促進(jìn)糖分解,激活后可以抑制腫瘤生長(zhǎng)[63]。3-磷酸甘油酸酯經(jīng)多步反應(yīng)轉(zhuǎn)變?yōu)榻z氨酸,磷酸甘油酸脫氫酶(phosphoglycerate dehydrogenase,PHGDH)是第一步反應(yīng)的催化劑,它在人類乳腺癌和黑色素瘤中的量增加,這些腫瘤細(xì)胞對(duì)PHGDH的消耗特別敏感,說(shuō)明PHGDH有助于某些腫瘤的發(fā)展[64]。PHGDH是新型抗癌藥物開發(fā)的潛在靶點(diǎn)。
mTOR可以感知氨基酸的缺失,進(jìn)而抑制蛋白質(zhì)的翻譯,激活細(xì)胞自噬作用,從而抑制腫瘤細(xì)胞增殖[65]。除了谷氨酰胺非必需氨基酸對(duì)腫瘤細(xì)胞而言是營(yíng)養(yǎng)缺失的[66-67]。抑制mTOR是抑制腫瘤細(xì)胞增殖的一種方式[68]。核苷酸合成的代謝通路在很早以前就被鎖定為抗腫瘤藥物研發(fā)的靶點(diǎn)。因此,抑制葉酸代謝、胸腺嘧啶核苷的合成、脫氧核苷酸的合成和核酸伸長(zhǎng)等是人類腫瘤的標(biāo)準(zhǔn)化療方案的一部分[69]。
針對(duì)腫瘤代謝中腫瘤治療的代謝靶點(diǎn)研發(fā)了很多藥物或方法,整理如表1。
表1 用于癌癥治療的有前景的代謝靶點(diǎn)
一些不同的致癌因素引起的信號(hào)通路與相關(guān)的腫瘤代謝變化有一定的聯(lián)系。致癌基因Ras和BRAF突變與GLUT1增加有關(guān),這使得腫瘤細(xì)胞能夠在微環(huán)境中生存[90]。GLUT1增加不僅與致癌基因的表型相關(guān),而且可能成為特定治療干預(yù)中的對(duì)惡性腫瘤耐藥的早期標(biāo)志物[91]。當(dāng)腫瘤細(xì)胞的葡萄糖攝取下降時(shí),它對(duì)磷脂酰肌醇3激酶(phos?phoinositide 3-kinase,PI3K)和mTOR產(chǎn)生雙重抑制作用。PI3K在惡性腫瘤中被過(guò)度激活,它的表達(dá)可以激活受體酪氨酸激酶(receptor tyrosine kinases,RTK),反之也可激活A(yù)kt1和mTOR復(fù)合物1[93]。Akt1按以下方式促進(jìn)有氧糖酵解:①通過(guò)促進(jìn)GLUT1在質(zhì)膜內(nèi)合成[92];②通過(guò)穩(wěn)定己糖激酶2與線粒體酶間的關(guān)系,從而增加酶的活性[93];③通過(guò)激活PFKFB3[94]。另外,一些RTK例如ERBB2,在大量的乳腺癌中過(guò)度表達(dá),并通過(guò)Akt1的依賴性和非依賴性途徑刺激糖酵解,ERBB2尤其促進(jìn)Akt1非依賴性途徑和熱休克因子1介導(dǎo)的LDHa基因的激活[95]。研究發(fā)現(xiàn),突變的SDH和FH與家族性癌癥和散發(fā)性癌癥有關(guān),是琥珀酸和延胡索酸的積累所致,說(shuō)明代謝產(chǎn)物可能直接導(dǎo)致腫瘤的發(fā)生[96]。最近的研究證明了這一點(diǎn),在FH缺陷的小鼠中腎囊腫的形成不需要HIF-1,但卻涉及半胱氨酸殘基的酶改性,它破壞了Kelch樣ECH相關(guān)蛋白1(Keap1)抑制NF-E2相關(guān)因子2(Nrf2)調(diào)控的抗氧化反應(yīng)的能力[97]。
腫瘤代謝中有許多潛在的治療靶點(diǎn),但將抑制代謝途徑作為臨床治療腫瘤的一種手段仍然存在重大的挑戰(zhàn)。首先是只針對(duì)腫瘤細(xì)胞有效治療,而對(duì)正常細(xì)胞沒(méi)有抑制作用,尤其是免疫系統(tǒng)中快速增殖的細(xì)胞,因?yàn)樗拇x途徑類似于腫瘤細(xì)胞。如T細(xì)胞和B細(xì)胞依賴于有氧糖酵解[98-99]和谷氨酰胺代謝[100-101]來(lái)維持免疫作用。免疫細(xì)胞代謝被抑制會(huì)減弱它們抵抗癌細(xì)胞的能力,且使患者更易感染。其次是許多腫瘤細(xì)胞的代謝具有靈活性。這種代謝的靈活性限制了單一靶向治療的有效性。
細(xì)胞代謝是一切生命體的基礎(chǔ),腫瘤細(xì)胞為適應(yīng)細(xì)胞生長(zhǎng)和轉(zhuǎn)移進(jìn)行自身代謝改變。腫瘤細(xì)胞代謝會(huì)進(jìn)行自我調(diào)整,但是腫瘤細(xì)胞代謝會(huì)形成哪些新的途徑?例如,降低與糖酵解有關(guān)酶的活性,或者控制食物中能量的供給,使腫瘤細(xì)胞長(zhǎng)期處于一個(gè)能量匱乏的微環(huán)境中。有氧糖酵解的描述已經(jīng)證實(shí)了腫瘤細(xì)胞代謝改變的靶向治療潛力。在過(guò)去10年里,已經(jīng)明確了通過(guò)改變細(xì)胞能量代謝途徑及如何運(yùn)用這些改變?cè)O(shè)計(jì)新的治療方案來(lái)抵抗疾病。最近研究表明,許多潛在的途徑和靶點(diǎn)會(huì)成為腫瘤治療的有價(jià)值的目標(biāo)。每一種腫瘤都有自己特有的代謝途徑,大多數(shù)腫瘤的代謝特點(diǎn)表現(xiàn)為Warburg效應(yīng)。大部分研究都是側(cè)重在糖酵解和谷氨酰胺代謝過(guò)程中關(guān)鍵酶和限速酶的靶向治療。TCA循環(huán)中關(guān)鍵酶的研究相對(duì)比較少。相信今后將發(fā)現(xiàn)更加有潛力的治療靶點(diǎn)。現(xiàn)仍然存在許多關(guān)于靶向腫瘤代謝的問(wèn)題,包括代謝抑制劑的非靶向性和免疫細(xì)胞的抑制,但或許將代謝抑制劑聯(lián)合應(yīng)用于臨床更有效。
[1]Warburg O.On the origin of cancer cells[J]. Science,1956,123(3191):309-314.
[2]Jones RG,Thompson CB.Tumor suppressors and cell metabolism:a recipe for cancer growth[J].Genes Dev,2009,23(5):537-548.
[3]Flavahan WA,Wu Q,Hitomi M,Rahim N,Kim Y,Sloan AE,et al.Brain tumor initiating cells adapt to restricted nutrition through preferential glucose uptake[J].Nat Neurosci,2013,16(10):1373-1382.
[4]Smith TA.Mammalian hexokinases and their abnormal expression in cancer[J].Br J Biomed Sci,2000,57(2):170-178.
[5]Liu T,Kishton RJ,Macintyre AN,Gerriets VA,Xiang H,Liu X,et al.Glucose transporter 1-mediated glucose uptake is limiting for B-cell acute lymphoblastic leukemia anabolic metabo?lism and resistance to apoptosis[J].Cell Death Dis,2014,5:e1470.
[6]Liu Y,Cao Y,Zhang W,Bergmeier S,Qian Y,Akbar H,et al.A small-molecule inhibitor of glucose transporter 1 downregulates glycolysis,induces cell-cycle arrest,and inhibits cancer cell growth in vitro and in vivo[J].Mol Cancer Ther,2012,11(8):1672-1682.
[7]Murata H,Hruz PW,Mueckler M.The mecha?nism of insulin resistance caused by HIV proteaseinhibitor therapy[J].J Biol Chem,2000,275(27):20251-20254.
[8]McBrayer SK,Cheng JC,Singhal S,Krett NL,Rosen ST,Shanmugam M.Multiple myeloma exhibits novel dependence on GLUT4,GLUT8,and GLUT11:implications for glucose transport?er-directed therapy[J].Blood,2012,119(20):4686-4697.
[9]Klepper J,Voit T.Facilitated glucose transporter protein type 1(GLUT1)deficiency syndrome:impaired glucose transport into brain-a review[J].Eur J Pediatr,2002,161(6):295-304.
[10]Patra KC,Wang Q,Bhaskar PT,Miller L,Wang Z,Wheaton W,et al.Hexokinase 2 is required for tumor initiation and maintenance and its systemic deletion is therapeutic in mouse models of cancer[J].Cancer Cell,2013,24(2):213-228.
[11]Gershon TR,Crowther AJ,Tikunov A,Garcia I,Annis R,Yuan H,et al.Hexokinase-2-mediated aerobic glycolysis is integral to cerebellar neuro?genesis and pathogenesis of medulloblastoma[J].Cancer Metab,2013,1(1):2.
[12]Ciavardelli D,Rossi C,Barcaroli D,Volpe S,Consalvo A,Zucchelli M,et al.Breast cancer stem cells rely on fermentative glycolysis and are sensitive to 2-deoxyglucose treatment[J].Cell Death Dis,2014,5:e1336.
[13]Kole HK,Resnick RJ,Van Doren M,Racker E. Regulation of 6-phosphofructo-1-kinase activity in ras-transformed rat-1 fibroblasts[J].Arch Bio?chem Biophys,1991,286(2):586-590.
[14]Bobarykina AY,Minchenko DO,Opentanova IL,Moenner M,Caro J,Esumi H,et al.Hypoxic regulation of PFKFB-3 and PFKFB-4 gene expres?sion in gastric and pancreatic cancer cell lines and expression of PFKFB genes in gastric cancers[J].Acta Biochim Pol,2006,53(4):789-799.
[15]Lin BY,Li X,Zhang HT.Potential therapeutic target of energy metabolism for cancer[J].Chem Life(生命的化學(xué)),2015,35(1):45-50.
[16]Zhang YL,F(xiàn)ang NZ,YOU JC,Zhou QH. Advances in the relationship between tumor cell metabolism and tumor metastasis[J].Chin J Lung Cancer(中國(guó)肺癌雜志),2014,17(11):812-818.
[17]Van Schaftingen E,Hue L,Hers HG.Fructose 2,6-bisphosphate,the probably structure of the glucose-and glucagon-sensitive stimulator of phos?phofructokinase[J].Biochem J,1980,192(3):897-901.
[18]Telang S,Yalcin A,Clem AL,Bucala R,Lane AN,Eaton JW,et al.Ras transformation requires meta?bolic control by 6-phosphofructo-2-kinase[J].Onco?gene,2006,25(55):7225-7234.
[19]Clem B,Telang S,Clem A,Yalcin A,Meier J,Simmons A,et al.Small-molecule inhibition of 6-phosphofructo-2-kinase activity suppresses glyco?lytic flux and tumor growth[J].Mol Cancer Ther,2008,7(1):110-120.
[20]Clem BF,O′Neal J,Tapolsky G,Clem AL,Imbert-Fernandez Y,Kerr DA 2nd,et al.Targeting 6-phosphofructo-2-kinase(PFKFB3)as a therapeu?tic strategy against cancer[J].Mol Cancer Ther,2013,12(8):1461-1470.
[21]Jha MK,Suk K.Pyruvate dehydrogenase kinase as a potential therapeutic target for malignant gliomas[J].Brain Tumor Res Treat,2013,1(2):57-63.
[22]Fan J,Kang HB,Shan C,Elf S,Lin R,Xie J,et al.Tyr-301 phosphorylation inhibits pyruvate dehydrogenase by blocking substrate binding and promotes the Warburg effect[J].J Biol Chem,2014,289(38):26533-26541.
[23]Hur H,Xuan Y,Kim YB,Lee G,Shim W,Yun J,et al.Expression of pyruvate dehydrogenase kinase-1 in gastric cancer as a potential therapeu?tic target[J].Int J Oncol,2013,42(1):44-54.
[24]Bonnet S,Archer SL,Allalunis-Turner J,Haromy A,Beaulieu C,Thompson R,et al.A mitochondria-K+channel axis is suppressed in cancer and its normal?ization promotes apoptosis and inhibits cancer growth[J].Cancer Cell,2007,11(1):37-51.
[25]Sutendra G,Dromparis P,Kinnaird A,Stenson TH,Haromy A,Parker JM,et al.Mitochondrial activation by inhibition of PDKⅡsuppresses HIF1a signaling and angiogenesis in cancer[J]. Oncogene,2013,32(13):1638-1650.
[26]Stacpoole PW,Nagaraja NV,Hutson AD.Efficacy of dichloroacetate as a lactate-lowering drug[J].J Clin Pharmacol,2003,43(7):683-691.
[27]Shen YC,Ou DL,Hsu C,Lin KL,Chang CY,Lin CY,et al.Activating oxidative phosphorylation by a pyruvate dehydrogenase kinase inhibitor overcomes sorafenib resistance of hepatocellular carcinoma[J].Br J Cancer,2013,108(1):72-81.
[28]Koukourakis MI,Giatromanolaki A,Winter S,Leek R,Sivridis E,Harris AL.Lactate dehydroge?nase 5 expression in squamous cell head and neck cancer relates to prognosis following radicalor postoperative radiotherapy[J].Oncology,2009;77(5):285-292.
[29]Koukourakis MI,Giatromanolaki A,Simopoulos C,Polychronidis A,Sivridis E.Lactate dehydro?genase 5(LDH5)relates to up-regulated hypoxia inducible factor pathway and metastasis in colorectal cancer[J].Clin Exp Metastasis,2005,22(1):25-30.
[30]Le A,Cooper CR,Gouw AM,Dinavahi R,Maitra A,Deck LM,et al.Inhibition of lactate dehydroge?nase A induces oxidative stress and inhibits tumor progression[J].Proc Natl Acad Sci USA,2010,107(5):2037-2042.
[31]Fantin VR,St-Pierre J,Leder P.Attenuation of LDH-A expression uncovers a link between glycolysis,mitochondrial physiology,and tumor?maintenance[J].Cancer Cell,2006,9(6):425-434.
[32]Baggstrom MQ,Qi Y,Koczywas M,Argiris A,Johnson EA,Millward MJ,et al.A phaseⅡstudy of AT-101(gossypol)in chemotherapy-sensi?tive recurrent extensive-stage small cell lung cancer[J].J Thorac Oncol,2011,6(10):1757-1760.
[33]Manerba M,Vettraino M,F(xiàn)iume L,Di Stefano G,Sartini A,Giacomini E,et al.Galloflavin(CAS 568-80-9):a novel inhibitor of lactate dehydroge?nase[J].Chem Med Chem,2012,7(2):311-317.
[34]Gao P,Tchernyshyov I,Chang TC,Lee YS,Kita K,Ochi T,et al.c-Myc Suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism[J].Nature,2009,458(7239):762-765.
[35]Son J,Lyssiotis CA,Ying H,Wang X,Hua S,Ligorio M,et al.Glutamine supports pancreatic cancer growth through a KRAS-regulated metabolic pathway[J].Nature,2013,496(7443):101-105.
[36]Cory JG,Cory AH.Critical roles of glutamine as nitrogen donors in purine and pyrimidine nucleo?tide synthesis:asparaginase treatment in child?hood acute lymphoblastic leukemia[J].In Vivo,2006,20(5):587-589.
[37]Hensley CT,Wasti AT,DeBerardinis RJ.Gluta?mine and cancer:cell biology,physiology,and clinical opportunities[J].J Clin Invest,2013,123(9):3678-3684.
[38]Jung SY,Jeon HK,Choi JS,Kim YJ.Reduced expression of FASN through SREBP-1 down-regu?lation is responsible for hypoxic cell death in HepG2 cells[J].J Cell Biochem,2012, 113(12):3730-3739.
[39]Liao Y.Akt signaling pathway in the regulation of glucose metabolism in cancer cells[J].Electron J Metab Nutr Cancer(腫瘤代謝與營(yíng)養(yǎng)電子雜志),2014,1(3):61-69.
[40]Liu QL,Huang QY.Characteristics of energy me?tabolism of tumor cells and its significance[J]. Chem Life(生命的化學(xué)),2015,35(3):387-391.
[41]Son J,Lyssiotis CA,Ying H,Wang X,Hua S,Ligorio M,et al.Glutamine supports pancreatic cancer growth through a KRAS-regulated meta?bolic pathway[J].Nature,2013,496(7443):101-105.
[42]Kaira K,Sunose Y,Ohshima Y,Ishioka NS,Arakawa K,Ogawa T,et al.Clinical significance of L-type amino acid transporter 1 expression as a prognostic marker and potential of new targeting therapy in biliary tract cancer[J].BMC Cancer,2013,13:482.
[43]Wang Q,Tiffen J,Bailey CG,Lehman ML,Ritchie W,F(xiàn)azli L,et al.Targeting amino acid transport in metastatic castration-resistant pros?tate cancer:effects on cell cycle,cell growth,and tumor development[J].J Natl Cancer Inst,2013,105(19):1463-1473.
[44]Nicklin P,Bergman P,Zhang B,Triantafellow E,Wang H,Nyfeler B,et al.Bidirectional transport of amino acids regulates mTOR and autophagy[J].Cell,2009,136(3):521-534.
[45]Hassanein M,Hoeksema MD,Shiota M,Qian J,Harris BK,Chen H,et al.SLC1A5 mediates glu?tamine transport required for lung cancer cell growth and survival[J].Clin Cancer Res,2013,19(3):560-570.
[46]Emadi A,Jun SA,Tsukamoto T,F(xiàn)athi AT,Minden MD,Dang CV.Inhibition of glutaminase selectively suppresses the growth of primary acute myeloid leukemia cells with IDH mutations[J].Exp Hematol,2014,42(4):247-251.
[47]Qing G,Li B,Vu A,Skuli N,Walton ZE,Liu X,et al.ATF4 regulates MYC-mediated neuroblasto?ma cell death upon glutamine deprivation[J]. Cancer Cell,2012,22(5):631-644.
[48]Pollard PJ,Wortham NC,Tomlinson IP.The TCA cycle and tumorigenesis:the examples of fu?marate hydratase and succinate dehydrogenase[J].Ann Med,2003,35(8):632-639.
[49]Gottlieb E,Tomlinson IP.Mitochondrial tumour suppressors:a genetic and biochemical update[J].Nat Rev Cancer,2005,5(11):857-866.
[50]Raimundo N,Baysal BE,Shadel GS.Revisiting the TCA cycle:signaling to tumor formation[J]. Trends Mol Med,2011,17(11):641-649.
[51]Balss J,Meyer J,Mueller W,Korshunov A,Hartmann C,von Deimling A.Analysis of the IDH1 codon 132 mutation in brain tumors[J].Acta Neuropathol,2008,116(6):597-602.
[52]Rakheja D,Konoplev S,Medeiros LJ,Chen W. IDH mutations in acute myeloid leukemia[J]. Hum Pathol,2012,43(10):1541-1551.
[53]Terunuma A,Putluri N,Mishra P,Mathé EA,Dorsey TH,Yi M,et al.MYC-driven accumulation of 2-hydroxyglutarate is associated with breast cancer prognosis[J].J Clin Invest,2014,124(1):398-412.
[54]Borger DR,Tanabe KK,F(xiàn)an KC,Lopez HU,F(xiàn)antin VR,Straley KS,et al.Frequent mutation of isocitrate dehydrogenase(IDH)1 and IDH2 in cholangiocarcinoma identified through broad-based tumor genotyping[J].Oncologist,2012,17(1):72-79.
[55]Lu C,Ward PS,Kapoor GS,Rohle D,Turcan S,Abdel-Wahab O,et al.IDH Mutation impairs histone demethylation and results in a block to cell differentiation[J].Nature,2012,483(7390):474-478.
[56]Chowdhury R,Yeoh KK,Tian YM,Hillringhaus L,Bagg EA,Rose NR,et al.The oncometabolite 2-hydroxyglutarate inhibits histone lysine demeth?ylases[J].EMBO Rep,2011,12(5):463-469.
[57]Rohle D,Popovici-Muller J,Palaskas N,Turcan S,Grommes C,Campos C,et al.An inhibitor of mutant IDH1 delays growth and promotes differentiation of glioma cells[J].Science,2013,340(6132):626-630.
[58]Wang F,Travins J,DeLaBarre B,Penard-Lacro?nique V,Schalm S,Hansen E,et al.Targeted inhibition of mutant IDH2 in leukemia cells induces cellular differentiation[J].Science,2013,340(6132):622-626.
[59]Kuo W,Lin J,Tang TK.Human glucose-6-phos?phate dehydrogenase(G6PD)gene transforms NIH 3T3 cells and induces tumors in nude mice[J].Int J Cancer,2000,85(6):857-864.
[60]Hitosugi T,Zhou L,Elf S,F(xiàn)an J,Kang HB,Seo JH,et al.Phosphoglycerate mutase 1 coordinates glycolysis and biosynthesis to promote tumor growth[J].Cancer Cell,2012,22(5):585-600.
[61]Howes RE,Battle KE,Satyagraha AW,Baird JK,Hay SI.G6PD deficiency:global distribution,genetic variants and primaquine therapy[J].Adv Parasitol,2013,81:133-201.
[62]Pisano M,Cocco P,Cherchi R,Onnis R,Cherchi P.Glucose-6-phosphate dehydrogenase deficiency and lung cancer:a hospital based case-control study[J].Tumori,1991,77(1):12-15.
[63]Anastasiou D,Yu Y,Israelsen WJ,Jiang JK,Boxer MB,Hong BS,et al.Pyruvate kinase M2 activators promote tetramer formation and suppress tumorigenesis[J].Nat Chem Biol,2012,8(10):839-847.
[64]Possemato R,Marks KM,Shaul YD,Pacold ME,Kim D,Birsoy K,et al.Functional genomics reveal that the serine synthesis pathway is essential in breast cancer[J].Nature,2011,476(7360):346-350.
[65]Ye J,Mancuso A,Tong X,Ward PS,F(xiàn)an J,Rabinowitz JD,et al.Pyruvate kinase M2 promotes de novo serine synthesis to sustain mTORC1 activity and cell proliferation[J].Proc Natl Acad Sci USA,2012,109(18):6904-6909.
[66]Bach SJ,Swaine D.The effect of arginase on the retardation of tumour growth[J].Br J Cancer,1965,19:379-386.
[67]Jain M,Nilsson R,Sharma S,Madhusudhan N,Kitami T,Souza AL,et al.Metabolite profiling identifies a key role for glycine in rapid cancer cell proliferation[J].Science,2012,336(6084):1040-1044.
[68]Sabatini DM.mTOR and cancer:insights into a complex relationship[J].Nat Rev Cancer,2006,6(9):729-734.
[69]Chabner BA,Roberts TG Jr.Timeline:Chemotherapy and the war on cancer[J].Nat Rev Cancer,2005,5(1):65-72.
[70]Gautier EL,Westerterp M,Bhagwat N,Cremers S,Shih A,Abdel-Wahab O,et al.HDL and Glut1 inhibition reverse a hypermetabolic state in mouse models of myeloproliferative disorders[J]. J Exp Med,2013,210(2):339-353.
[71]Wang JB,Erickson JW,F(xiàn)uji R,Ramachandran S,Gao P,Dinavahi R,et al.Targeting mitochondrial glutaminase activity inhibits oncogenic transfor?mation[J].Cancer Cell,2010,18(3):207-219.
[72]Seltzer MJ,Bennett BD,Joshi AD,Gao P,Thomas AG,F(xiàn)erraris DV,e t al.Inhibition of gluta?minase preferentially slows growth of glioma cells with mutant IDH1[J].Cancer Res,2010,70(22):8981-8987.
[73]Dwarakanath BS,Singh D,Banerji AK,Sarin R,Venkataramana NK,Jalali R,et al.Clinical studies for improving radiotherapy with 2-deoxy-D-glucose:present status and future prospects[J].J Cancer Res Ther,2009,5(Suppl 1):S21-S26.
[74]Wolf A,Agnihotri S,Micallef J,Mukherjee J,Sabha N,Cairns R,et al.Hexokinase 2 is a key mediator of aerobic glycolysis and promotes tumor growth in human glioblastoma multiforme[J].J Exp Med,2011,208(2):313-326.
[75]Goldin N,Arzoine L,Heyfets A,Israelson A,Zaslavsky Z,Bravman T,et al.Methyl jasmonate binds to and detaches mitochondria-bound hexo?kinase[J].Oncogene,2008,27(34):4636-4643.
[76]Jae HJ,Chung JW,Park HS,Lee MJ,Lee KC,Kim HC,et al.The antitumor effect and hepato?toxicity of a hexokinaseⅡinhibitor 3-bromopyru?vate:in vivo investigation of intraarterial adminis?tration in a rabbit VX2 hepatoma model[J].Kore?an J Radiol,2009,10(6):596-603.
[77]Hamanaka RB,Chandel NS.Targeting glucose metabolism for cancer therapy[J].J Exp Med,2012,209(2):211-215.
[78]Vander Heiden MG.Targeting cancer metabo?lism:a therapeutic window opens[J].Nat Rev Drug Discov,2011,10(9):671-684.
[79]Clem BF,Clem AL,Yalcin A,Goswami U,Arumugam S,Telang S,et al.A novel small mole?cule antagonist of choline kinase-α that simultane?ously suppresses MAPK and PI3K/AKT signaling[J].Oncogene,2011,30(30):3370-3380.
[80]Yalcin A,Clem B,Makoni S,Clem A,Nelson K,Thornburg J,et al.Selective inhibition of choline kinase simultaneously attenuates MAPK and PI3K/AKT signaling[J].Oncogene,2010,29(1):139-249.
[81]Hitosugi T,Zhou L,Elf S,F(xiàn)an J,Kang HB,Seo JH,et al.Phosphoglycerate mutase 1 coordi?nates glycolysis and biosynthesis to promote tumor growth[J].Cancer Cell,2012,22(5):585-600.
[82]Chaneton B,Hillmann P,Zheng L,Martin AC,Maddocks OD,Chokkathukalam A,et al.Serine is a natural ligand and allosteric activator of pyru?vate kinase M2[J].Nature,2012,491(7424):458-462.
[83]Keller KE,Tan IS,Lee YS.SAICAR stimulates pyruvate kinase isoform M2 and promotes cancer cell survival in glucose-limited conditions[J].Science,2012,338(6110):1069-1072.
[84]Wilson WR,Hay MP.Targeting hypoxia in cancer therapy[J].Nat Rev Cancer,2011,11(6):393-410.
[85]Benjamin D,Colombi M,Moroni C,Hall MN. Rapamycin passes the torch:a new generation of mTOR inhibitors[J].Nat Rev Drug Discov,2011,10(11):868-880.
[86]Dang L,White DW,Gross S,Bennett BD,Bittinger MA,Driggers EM,et al.Cancer-associ?ated IDH1 mutations produce 2-hydroxyglutarate[J].Nature,2009,462(7274):739-744.
[87]Ward PS,Patel J,Wise DR,Abdel-Wahab O,Bennett BD,Coller HA,et al.The common feature of leukemia-associated IDH1 and IDH2 mutations is a neomorphic enzyme activity converting alphaketoglutarate to 2-hydroxyglutarate[J].Cancer Cell,2010,17(3):225-234.
[88]Wang F,Travins J,DeLaBarre B,Penard-Lacro?nique V,Schalm S,Hansen E,et al.Targeted inhibition of mutant IDH2 in leukemia cells induc?es cellular differentiation[J].Science,2013,340(6132):622-626.
[89]Rohle D,Popovici-Muller J,Palaskas N,Turcan S,Grommes C,Campos C,et al.An inhibitor of mutant IDH1 delays growth and promotes differ?entiation of glioma cells[J].Science,2013,340(6132):626-630.
[90]Ying H,Kimmelman AC,Lyssiotis CA,Hua S,Chu GC,F(xiàn)letcher-Sananikone E,et al.Oncogen?ic Kras maintains pancreatic tumors through regu?lation of anabolic glucose metabolism[J].Cell,2012,149(3):656-670.
[91]Engelman JA.Targeting PI3K signalling in cancer:opportunities,challenges and limitations[J].Nat Rev Cancer,2009,9(8):550-562.
[92]Barthel A,Okino ST,Liao J,Nakatani K,Li J,Whitlock JP Jr,et al.Regulation of GLUT1 gene transcription by the serine/threonine kinase Akt1[J].J Biol Chem,1999,274(29):20281-20286.
[93]Majewski N,Nogueira V,Bhaskar P,Coy PE,Skeen JE,Gottlob K,et al.Hexokinase-mito?chondria interaction mediated by Akt is required to inhibit apoptosis in the presence or absence of Bax and Bak[J].Mol Cell,2004,16(5):819-830.
[94]Deprez J,Vertommen D,Alessi DR,Hue L,Rider MH.Phosphorylation and activation of heart 6-phosphofructo-2-kinase by protein kinase B and other protein kinases of the insulin signaling cascades[J].J Biol Chem,1997,272(28):17269-17275.
[95]Zhao YH,Zhou M,Liu H,Ding Y,Khong HT,Yu D,et al.Upregulation of lactate dehydroge?nase A by ERBB2 through heat shock factor 1 promotes breast cancer cell glycolysis and growth[J].Oncogene,2009,28(42):3689-3701.
[96]Gottlieb E,Tomlinson IP.Mitochondrial tumour suppressors:a genetic and biochemical update[J].Nat Rev Cancer,2005,5(11):857-866.
[97]Adam J,Hatipoglu E,O′Flaherty L,Ternette N,Sahgal N,Lockstone H,et al.Renal cyst forma?tion in FH1-deficient mice is independent of the HIF/Phd pathway:roles for fumarate in KEAP1 succination and Nrf2 signaling[J].Cancer Cell,2011,20(4):524-537.
[98]Macintyre AN,Gerriets VA,Nichols AG,Michalek RD,Rudolph MC,Deoliveira D,et al. The glucose transporter Glut1 is selectively essen?tial for CD4 T cell activation and effector function[J].Cell Metab,2014,20(1):61-72.
[99]Caro-Maldonado A,Wang R,Nichols AG,Kuraoka M,Milasta S,Sun LD,et al.Metabolic reprogramming is required for antibody produc?tion that is suppressed in anergic but exaggerat?ed in chronically BAFF-exposed B cells[J].J Immu?nol,2014,192(8):3626-3636.
[100]Le A,Lane AN,Hamaker M,Bose S,Gouw A,Barbi J,et al.Glucose-independent glutamine metabolism via TCA cycling for proliferation and survival in B cells[J].Cell Metab,2012,15(1):110-121.
[101]Nakaya M,Xiao Y,Zhou X,Chang JH,Chang M,Cheng X,et al.Inflammatory T cell responses rely on amino acid transporter ASCT2 facilitation of glutamine uptake and mTOR C1 kinase activation[J].Immunity,2014,40(5):692-705.
Research progress in metabolic targets for cancer therapy
WEN Shi-yuan,JIANG Miao-miao
(Tianjin State Key Laboratory of Modern Chinese Medicine,Tianjin University of Traditional Chinese Medicine,Tianjin 300193,China)
Cancer cells can change metabolic pathways,including glycolysis and glutamine metabolism,and produce the raw materials needed for rapid proliferation and survival.Therefore,research on metabolic pathways of cancer cells might help find the targets of cancer therapy.In this review,we outlined the metabolic features of aerobic glycolysis,glutamine metabolism and(tricarboxylic acid) TCA cycle in cancer.We also described metabolic targets for cancer therapy and therapeutic agents for the corresponding targets in these metabolic pathways,and finally discussed some of the challenges related to tumor metabolism as a therapeutic target in cancer therapy.
tumor metabolism;aerobic glycolysis;glutamine
JIANG Miao-miao,E-mail:miaomiaojiang@126.com,Tel:15822829059
2016-07-05接受日期:2017-03-17)
(本文編輯:齊春會(huì))
國(guó)家自然科學(xué)基金(81573547)
溫時(shí)媛,碩士研究生,主要從事中藥化學(xué)研究,E-mail:13072001326@163.com
姜苗苗,E-mail:miaomiaojiang@126.com,Tel:15822829059
R730.5
:A
:1000-3002-(2017)03-0269-10
10.3867/j.issn.1000-3002.2017.03.011
Foundation item:The project supported by National Natural Science Foundation of China(81573547)