陳恩平, 杜麗根, 鄔銀偉, 葉翠媚, 羅權(quán)芳
(深圳市龍崗區(qū)第二人民醫(yī)院, 廣東 深圳 518112)
高糖通過下調(diào)PGC-1α激活NFAT并促進(jìn)足細(xì)胞凋亡*
陳恩平△, 杜麗根, 鄔銀偉, 葉翠媚, 羅權(quán)芳
(深圳市龍崗區(qū)第二人民醫(yī)院, 廣東 深圳 518112)
目的: 足細(xì)胞凋亡在慢性腎病的發(fā)病發(fā)展中起著重要的作用,但目前對足細(xì)胞凋亡機(jī)制的研究還遠(yuǎn)未明確。本文旨在探討過氧化物酶體增殖物激活受體γ共激活因子1α(PGC-1α)下調(diào)對足細(xì)胞凋亡的影響及其機(jī)制。方法:建立高糖誘導(dǎo)足細(xì)胞凋亡的體外模型,運用實時熒光定量PCR、Western blot、流式細(xì)胞術(shù)等方法分析高糖和PGC-1α沉默對足細(xì)胞凋亡以及相關(guān)分子mRNA和蛋白表達(dá)的影響。結(jié)果:在足細(xì)胞凋亡的體外模型中,PGC-1α表達(dá)顯著下調(diào)。用siRNA沉默足細(xì)胞中的PGC-1α后,足細(xì)胞凋亡明顯增加。核內(nèi)活化T細(xì)胞核因子(NFAT)蛋白的表達(dá)在足細(xì)胞凋亡的體外模型也中明顯增加,即NFAT活化;正常足細(xì)胞中沉默PGC-1α后NFAT也明顯活化;在正常培養(yǎng)足細(xì)胞中沉默PGC-1α的同時沉默NFAT后,足細(xì)胞凋亡明顯減輕。結(jié)論:PGC-1α的表達(dá)下調(diào)導(dǎo)致足細(xì)胞凋亡;NFAT可能介導(dǎo)了PGC-1α下調(diào)引起的足細(xì)胞凋亡。
高糖; 足細(xì)胞; 細(xì)胞凋亡; 過氧化物酶體增殖物激活受體γ共激活因子1α; 活化T細(xì)胞核因子
足細(xì)胞是具有復(fù)雜細(xì)胞骨架的高度分化細(xì)胞,是腎小球濾過的最后一道屏障,對維持腎小球濾過屏障的完整和功能起著重要的作用;所以,足細(xì)胞的損傷和凋亡必然會影響到腎小球的功能[1]。目前研究普遍認(rèn)為足細(xì)胞凋亡是導(dǎo)致足細(xì)胞丟失和蛋白尿的主要原因之一[1-3]。足細(xì)胞凋亡在許多慢性腎病(chronic kidney diseases,CKD)如糖尿病腎病(diabe-tic nephropathy,DN)[4-5]、局灶節(jié)段性腎小球硬化(focal segmental glomerular sclerosis,F(xiàn)SGS)[6]的發(fā)病發(fā)展中起著重要的作用,但目前研究對足細(xì)胞凋亡機(jī)制的闡述還遠(yuǎn)未明確。
近年來國內(nèi)外研究表明過氧化物酶體增殖物激活受體γ共激活因子1α(peroxisome proliferator-activated receptor γ coactivator-1α,PGC-1α)的表達(dá)下調(diào)會引起細(xì)胞凋亡,包括臍帶靜脈內(nèi)皮細(xì)胞[7]、心肌細(xì)胞[8]、腹膜間皮細(xì)胞[9]等。然而PGC-1α表達(dá)下調(diào)是否引起足細(xì)胞凋亡目前尚未見報道。因此,本研究中,為探討引起足細(xì)胞凋亡的機(jī)制,我們建立了高糖(high glucose,HG)誘導(dǎo)足細(xì)胞凋亡的體外模型。我們在這模型中檢測PGC-1α的表達(dá)及凋亡相關(guān)指標(biāo)的變化,并且用siRNA沉默正常培養(yǎng)足細(xì)胞中的PGC-1α,以觀察足細(xì)胞凋亡和凋亡相關(guān)指標(biāo)的變化,從而探討PGC-1α表達(dá)下調(diào)是否引起足細(xì)胞凋亡及其機(jī)制。
1 材料
第3代永生化小鼠足細(xì)胞購自北京協(xié)和醫(yī)學(xué)院基礎(chǔ)學(xué)院基礎(chǔ)醫(yī)學(xué)細(xì)胞中心。
實時熒光定量PCR(ABI);超聲儀(Bioruptor);激光共聚焦顯微鏡(LSM 510 META);顯微鏡(OLYMPUS IX70);低溫離心機(jī)(Hettich Zentrifugen Universal 32R);全自動圖像分析系統(tǒng)(KONTRON IBAS 2.5);生化分析儀(Biosystem BTS-330);熒光掃描儀(Typhoon 9400);低溫冰箱(Thermo);生物分析儀(Agilent 2100);siRNA試劑(廣州銳博公司)。
2 方法
2.1 足細(xì)胞的培養(yǎng)及干預(yù)條件 永生化小鼠足細(xì)胞購自北京協(xié)和醫(yī)學(xué)院基礎(chǔ)學(xué)院基礎(chǔ)醫(yī)學(xué)細(xì)胞中心。細(xì)胞常規(guī)復(fù)蘇后,先在Ⅰ型膠原包被的培養(yǎng)瓶中加入含10% 胎牛血清和(2~10)×105U/L干擾素γ(interferon-γ,IFN-γ)的RPMI-1640培養(yǎng)基中培養(yǎng),在33 ℃、5% CO2培養(yǎng)箱環(huán)境下培養(yǎng)2~3 d后,按一定的細(xì)胞數(shù)可分為6~8皿至37 ℃、5% CO2培養(yǎng)箱,用不含IFN-γ、含5% 胎牛血清的DMEM培養(yǎng)基培養(yǎng)10~14 d分化成熟。細(xì)胞表達(dá)足細(xì)胞特異性蛋白synaptopodin。
足細(xì)胞在37 ℃、5% CO2培養(yǎng)箱中培養(yǎng)至第8天后對其進(jìn)行分組干預(yù)[2]:正常對照(control,Con)組、甘露醇(mannitol,MA)滲透壓對照組(MA組)和高糖干預(yù)組(HG組)。先給予無血清的RPMI-1640培養(yǎng)基饑餓24 h,然后分別給予MA(終濃度24.5 mmol/L)、HG(終濃度30 mmol/L)或者siRNA(終濃度50 nmol/L)干預(yù)48 h[2]。
2.2 siRNA的合成和干預(yù) 小鼠PGC-1αsiRNA、活化T細(xì)胞核因子(nuclear factor of activated T-cells,NFAT) siRNA及陰性對照的siRNA由廣州銳博公司合成。以DEPC水溶解,配制成20 μmol/L的溶液分裝保存于-20 ℃冰箱。嚴(yán)格按照廣州銳博公司的試劑盒說明書進(jìn)行足細(xì)胞siRNA轉(zhuǎn)染48 h。足細(xì)胞分組如下:(1) Con組:不予處理;(2)siRNA對照組(siCon組):給予一段無序的RNA序列干預(yù)48 h,其在培養(yǎng)基中的終濃度為50 nmol/L;(3)PGC-1αsiRNA干預(yù)組(siPGC-1α組):給予PGC-1αsiRNA干預(yù)48 h,培養(yǎng)基中PGC-1αsiRNA終濃度為50 nmol/L;(4)NFATsiRNA干預(yù)組(siNFAT組):給予NFATsiRNA干預(yù)48 h,培養(yǎng)基中NFATsiRNA終濃度為50 nmol/L;(5)PGC-1αsiRNA和NFATsiRNA聯(lián)合干預(yù)組(siPGC-1α+siNFAT組):同時給予針對PGC-1α和NFAT的siRNA聯(lián)合干預(yù)48 h,培養(yǎng)基中針對PGC-1α和NFAT的siRNA終濃度均為50 nmol/L。
2.3 流式細(xì)胞術(shù)Annexin V-FITC/PI雙染法檢測足細(xì)胞的凋亡率 足細(xì)胞干預(yù)結(jié)束后,嚴(yán)格按照南京凱基公司的Annexin V-FITC/PI凋亡檢測試劑盒說明進(jìn)行實驗。常規(guī)離心收集各組細(xì)胞,每份細(xì)胞標(biāo)本總數(shù)達(dá)到5×105以上。用預(yù)冷PBS緩沖液洗滌2次后加入500 mL 1×binding buffer重懸細(xì)胞,加入5 μL FITC標(biāo)記的Annexin V試劑混勻后,再加入5 μL PI,混勻后避光條件下室溫孵育15 min。1 h內(nèi)用流式細(xì)胞儀檢測足細(xì)胞凋亡率。FL1通道檢測FITC標(biāo)記的綠色熒光信號,F(xiàn)L2通道檢測PI標(biāo)記的紅色熒光信號。在雙變量流式細(xì)胞儀的散點圖上,左下象限(FITC-/PI-)代表正常細(xì)胞,右下象限(FITC+/PI-)代表凋亡早期的細(xì)胞,右上象限(FITC+/PI+)代表凋亡晚期的細(xì)胞或壞死的細(xì)胞。本實驗統(tǒng)計的凋亡足細(xì)胞包括右下象限和右上象限的細(xì)胞。
2.4 實時熒光定量PCR實驗 所有PCR引物由上海Invitrogen公司合成,具體序列如下:Bax的上游引物為5’-CTGGACCATAGGTCGGAGTG-3’,下游引物為 5’-AATTCGCCGGAGACACTCG-3’;Bcl-2的上游引物為5’-GTCGCTACCGTCGTGACTTC-3’,下游引物為5’-CAGACATGCACCTACCCAGC-3’;GAPDH的上游引物為 5’-AGGTCGGTGTGAACGGATTTG-3’,下游引物為 5’-TGTAGACCATGTAGTTGAGGTCA-3’;PGC-1α的 上游引物為5’-TATGGAGTGACATAGAGTGTGCT-3’,下游引物為 5’-GTCGCTACACCACTTCAATCC-3’。用TRIzol提取足細(xì)胞的RNA。嚴(yán)格按照日本TaKaRa逆轉(zhuǎn)錄和實時熒光定量PCR試劑盒(SYBR熒光)說明書進(jìn)行mRNA逆轉(zhuǎn)錄和定量分析。
2.5 Western blot實驗 按照南京凱基試劑盒說明提取各組足細(xì)胞總蛋白和核蛋白,BCA法定量各組蛋白濃度。聚丙烯酰胺凝膠電泳時每孔上樣30 μg蛋白。5%脫脂奶粉常溫封閉1 h后4 ℃搖床孵育如下Ⅰ抗(抗體稀釋液由1% BSA配制,所有Ⅰ抗均為兔源性)過夜:Bax抗體(1∶500;Santa Cruz);PGC-1α抗體(1∶500;Santa Cruz);Bcl-2抗體(1∶1 000; CST);NFAT抗體(1∶500;Abcam);GAPDH抗體(1∶10 000; Sigma);Histone抗體(1∶3 000; CST)。次日,用TBST漂洗PVDF膜5 min、3次后常溫孵育Ⅱ抗(抗體稀釋液用1% BSA配制,均為羊抗兔Ⅱ抗;稀釋比為(1∶3 000; Promega)1 h。用ECL工作液(Millipore)顯影曝光。將曝光后的膠片掃描后,采用ImageJ軟件分析各條帶灰度值。將各目的條帶灰度值除以同一標(biāo)本內(nèi)參照GAPDH(總蛋白)或者Histone(核蛋白)條帶的灰度值得到一比值,再將該比值除以同一膠片上正常對照組的比值即為目的蛋白表達(dá)量的半定量結(jié)果。
3 統(tǒng)計學(xué)處理
采用SPSS 19.0統(tǒng)計軟件進(jìn)行統(tǒng)計學(xué)分析。所有計量資料以均數(shù)±標(biāo)準(zhǔn)差(mean±SD)表示。多組間均數(shù)比較采用單因素方差分析,均數(shù)間兩兩比較使用 Bonferroni校正的t檢驗。以P<0.05為差異有統(tǒng)計學(xué)意義。
1 HG誘導(dǎo)足細(xì)胞凋亡
既往已有研究表明 HG可誘導(dǎo)足細(xì)胞凋亡,所以為進(jìn)一步研究足細(xì)胞凋亡的機(jī)制,本研究建立了足細(xì)胞凋亡的體外HG干預(yù)模型,同時也對其進(jìn)行了驗證。對比正常培養(yǎng)足細(xì)胞,HG干預(yù)后足細(xì)胞的凋亡率明顯升高(P<0.05)。此外,實驗結(jié)果還顯示,對比正常培養(yǎng)足細(xì)胞,HG干預(yù)后足細(xì)胞中促凋亡的Bax的mRNA和蛋白明顯升高,而抗凋亡的Bcl-2的mRNA和蛋白明顯下調(diào)(P<0.05),見圖1。
Figure 1.High glucose (HG) interventioninvitroincreased the apoptosis of podocytes. A: flow cytometry was used to analyze the apoptotic rate of podocytes (Annexin V/PI staining); B: the expression of Bax and Bcl-2 at mRNA and protein levels in the podocytes cultured under HG condition. Mean±SD.n=3.*P<0.05vsCon group.
圖1 HG干預(yù)增加體內(nèi)外模型中足細(xì)胞的凋亡
2 HG干預(yù)后足細(xì)胞中PGC-1α下調(diào),NFAT活化
對比正常培養(yǎng)足細(xì)胞,PGC-1α的 mRNA表達(dá)在 HG損傷的培養(yǎng)足細(xì)胞中明顯下調(diào)(P<0.05);類似地,相比正常培養(yǎng)足細(xì)胞,PGC-1α總蛋白的表達(dá)在HG損傷的培養(yǎng)足細(xì)胞中也明顯下調(diào)(P<0.05)。此外,與正常培養(yǎng)足細(xì)胞相比,核內(nèi)NFAT的蛋白表達(dá)在HG損傷的培養(yǎng)足細(xì)胞中明顯升高(P<0.05),見圖2。
3 PGC-1α下調(diào)引起足細(xì)胞凋亡
為了探討PGC-1α表達(dá)下調(diào)對損傷足細(xì)胞的作用,我們在體外實驗中進(jìn)一步觀察了足細(xì)胞的凋亡情況。與Con組相比,用siRNA沉默培養(yǎng)足細(xì)胞中的PGC-1α后,其細(xì)胞凋亡率明顯增加(P<0.05),而Con組與siCon組相比差異無統(tǒng)計學(xué)顯著性。與正常培養(yǎng)足細(xì)胞相比,在PGC-1α沉默的足細(xì)胞中,促凋亡指標(biāo)Bax的mRNA和蛋白表達(dá)明顯升高,而抗凋亡指標(biāo)Bcl-2的mRNA和蛋白表達(dá)則明顯下調(diào)(P<0.05),見圖3。
Figure 2.The expression of PGC-1α was reduced, while the expression of nuclear NFAT was increased under high glucose (HG) condition. A: compared with normal cells, the mRNA expression of PGC-1α was significantly decreased in HG-injured podocytes; B: the total protein of PGC-1α was decreased significantly, while the protein expression of nuclear NFAT was significantly increased in HG-injured podocytes. Mean±SD.n=3.*P<0.05vsCon group.
圖2 HG使足細(xì)胞PGC-1α表達(dá)下調(diào)而核NFAT表達(dá)升高
Figure 3.Down-regulation of PGC-1α induced podocyte apoptosis. A: the total protein of PGC-1α was significantly decreased after silencing ofPGC-1αby siRNA in the podocytes; B: flow cytometry was used to analyze the apoptotic rate of podocytes (Annexin V/PI staining); C: compared with Con group, the expression of Bax was significantly increased, while the expression of Bcl-2 was significantly decreased at mRNA level in thePGC-1αsilencing group; D: compared with Con group, the expression of Bax was significantly increased, while the expression of Bcl-2 was significantly decreased at protein level in thePGC-1αsilencing group. Mean±SD.n=3.*P<0.05vsCon or siCon group.
圖3 PGC-1α表達(dá)下調(diào)導(dǎo)致足細(xì)胞凋亡
4 PGC-1α表達(dá)下調(diào)促使NFAT活化
為了進(jìn)一步探索PGC-1α下調(diào)促進(jìn)足細(xì)胞凋亡的機(jī)制,我們觀察了在PGC-1α表達(dá)下調(diào)的足細(xì)胞中NFAT的蛋白表達(dá)。與正常組培養(yǎng)的足細(xì)胞相比,在PGC-1αsiRNA沉默的培養(yǎng)足細(xì)胞中,NFAT的蛋白表達(dá)明顯升高(P<0.05),即PGC-1α的表達(dá)下調(diào)引起了NFAT的明顯活化,見圖4。
5 抑制NFAT表達(dá)可減輕由PGC-1α表達(dá)下調(diào)引起的足細(xì)胞凋亡
為進(jìn)一步研究PGC-1α表達(dá)下調(diào)引起足細(xì)胞凋亡的機(jī)制,我們在PGC-1α表達(dá)下調(diào)的足細(xì)胞中給予NFAT siRNA干預(yù),觀察抑制NFAT表達(dá)對足細(xì)胞凋亡的影響。如圖4所示,對比正常培養(yǎng)足細(xì)胞,PGC-1αsiRNA 沉默的足細(xì)胞的凋亡率明顯增加(P<0.05);然而,在PGC-1α沉默的足細(xì)胞中給予同時沉默NFAT后,細(xì)胞凋亡明顯減輕(P<0.05)。以上的這些結(jié)果提示抑制NFAT表達(dá)可減輕由PGC-1α表達(dá)下調(diào)引起的足細(xì)胞凋亡。
Figure 4.NFAT mediated podocyte apoptosis induced by PGC-1α down-regulation. A: the protein expression of nuclear NFAT was significantly increased afterPGC-1 silencing in normal cultured cells; B: the protein expression of nuclear NFAT was significantly decreased afterNFATsilencing in normal cultured cells; C: flow cytometry was used to analyze the apoptotic rate of podocytes (Annexin V/PI staining). Mean±SD.n=3.*P<0.05vsCon or siCon group;#P<0.05vssiPGC-1α group.
圖4 NFAT介導(dǎo)PGC-1α表達(dá)下調(diào)引起的足細(xì)胞凋亡
足細(xì)胞是具有復(fù)雜細(xì)胞骨架的高度分化細(xì)胞,是腎小球濾過的最后一道屏障,對維持腎小球濾過屏障的完整和功能起著重要的作用;所以,足細(xì)胞的損傷和凋亡必然會影響到腎小球的功能[1]。
本研究中,為探討引起足細(xì)胞凋亡的機(jī)制,我們首先建立了HG誘導(dǎo)足細(xì)胞凋亡的體外模型。我們發(fā)現(xiàn)在該體外模型中PGC-1α表達(dá)顯著下調(diào)。隨后,我們在正常培養(yǎng)的足細(xì)胞中用siRNA沉默PGC-1α后,發(fā)現(xiàn)足細(xì)胞凋亡明顯增加,說明PGC-1α的下調(diào)會導(dǎo)致足細(xì)胞凋亡。同時我們發(fā)現(xiàn)NFAT蛋白的表達(dá)在高糖誘導(dǎo)足細(xì)胞凋亡的體外模型中明顯升高,即NFAT活化;正常培養(yǎng)足細(xì)胞中沉默PGC-1α后NFAT也明顯活化,說明足細(xì)胞中PGC-1α的下調(diào)會引起NFAT的活化。最后為進(jìn)一步確認(rèn)足細(xì)胞中PGC-1α和NFAT的關(guān)系,我們在沉默PGC-1α的足細(xì)胞中同時沉默NFAT后發(fā)現(xiàn),由PGC-1α表達(dá)下調(diào)誘導(dǎo)的足細(xì)胞凋亡明顯減輕。這些結(jié)果表明NFAT可能介導(dǎo)了PGC-1α表達(dá)下調(diào)引起的足細(xì)胞凋亡。
PGC-1α是過氧化物酶體增殖物激活受體γ和其它核受體的轉(zhuǎn)錄共激活因子。與其它已知的轉(zhuǎn)錄共激活因子作用機(jī)制相似,PGC-1α可通過與許多不同轉(zhuǎn)錄因子結(jié)合,促進(jìn)靶基因的轉(zhuǎn)錄,從而在不同組織和生物反應(yīng)過程中發(fā)揮特異性和多樣性功能[11]。PGC-1α在線粒體的生物合成、能量代謝、適應(yīng)性產(chǎn)熱、細(xì)胞增殖與凋亡[10-13]等起重要的調(diào)節(jié)作用。國內(nèi)外研究表明PGC-1α表達(dá)下調(diào)會引起細(xì)胞凋亡,包括臍帶靜脈內(nèi)皮細(xì)胞[7]、心肌細(xì)胞[8]、腹膜間皮細(xì)胞[9]等。并且研究還表明:葡萄籽提取物原花青素B2可通過激活A(yù)MPK-SIRT1-PGC-1α信號通路從而抑制HG引起的足細(xì)胞凋亡[10]。在本研究中,我們發(fā)現(xiàn)在HG誘導(dǎo)的足細(xì)胞凋亡的體外模型中,高糖誘導(dǎo)PGC-1α下調(diào)導(dǎo)致NFAT激活引起足細(xì)胞凋亡,但PGC-1α下調(diào)是否直接導(dǎo)致NFAT激活引起足細(xì)胞凋亡有待后續(xù)實驗進(jìn)一步加以驗證。
NFAT是鈣調(diào)磷酸酶(calcineurin,CaN)的下游效應(yīng)蛋白,是依賴Ca2+的一類轉(zhuǎn)錄因子,在調(diào)控細(xì)胞炎癥反應(yīng)、細(xì)胞增殖和生存等方面都起著重要的作用[14-15]。它有NFAT1、NFAT2、NFAT3、NFAT4和NFAT5五個亞型[16-17]。既往研究表明在HG刺激培養(yǎng)的足細(xì)胞中Ca2+內(nèi)流,CaN及NFAT2活化,分別用CaN抑制劑環(huán)孢素A和NFAT2抑制劑11R-VIVIT可有效阻止HG誘導(dǎo)的NFAT2活化,11R-VIVIT還可顯著降低HG誘導(dǎo)的足細(xì)胞凋亡[4]。同樣地,我們的研究數(shù)據(jù)也顯示HG刺激培養(yǎng)的足細(xì)胞中NFAT明顯活化。
為進(jìn)一步研究高糖誘導(dǎo)PGC-1α下調(diào)導(dǎo)致NFAT激活引起足細(xì)胞凋亡的機(jī)制,我們在沉默PGC-1α的培養(yǎng)足細(xì)胞中發(fā)現(xiàn)NFAT明顯活化,足細(xì)胞凋亡加重;在沉默PGC-1α的培養(yǎng)足細(xì)胞中同時沉默NFAT后,由PGC-1α表達(dá)下調(diào)引起的足細(xì)胞凋亡明顯減輕。這說明NFAT介導(dǎo)了PGC-1α表達(dá)下調(diào)引起的足細(xì)胞凋亡。這在國內(nèi)外尚無報道,其具體的機(jī)制有待進(jìn)一步的研究。
綜上所述,HG誘導(dǎo)PGC-1α表達(dá)下調(diào),導(dǎo)致NFAT活化促進(jìn)足細(xì)胞凋亡。抑制NFAT活化能減輕PGC-1α表達(dá)下調(diào)所引起的足細(xì)胞凋亡,這些結(jié)果表明NFAT可能介導(dǎo)了PGC-1α表達(dá)下調(diào)引起的足細(xì)胞凋亡。
[1] Jefferson JA, Alpers CE, Shankland SJ. Podocyte biology for the bedside[J]. Am J Kidney Dis, 2011, 58(5):835-845.
[2] 呂倩影, 周建華, 楊鳳杰, 等. 亞溶量C5b-9可誘導(dǎo)足細(xì)胞的保護(hù)性自噬應(yīng)答[J]. 中國病理生理雜志, 2015, 31(1):59-63.
[3] Huang Z, Zhang L, Chen Y, et al. Cdc42 deficiency induces podocyte apoptosis by inhibiting the Nwasp/stress fibers/YAP pathway[J]. Cell Death Dis, 2016, 7:e2142.
[4] Canaud G, Bienaime F, Viau A, et al. AKT2 is essential to maintain podocyte viability and function during chronic kidney disease[J]. Nat Med, 2013, 19(10):1288-1296.
[5] Li R, Zhang L, Shi W, et al. NFAT2 mediates high glucose-induced glomerular podocyte apoptosis through increased Bax expression[J]. Exp Cell Res, 2013, 319(7):992-1000.
[6] Susztak K, Raff AC, Schiffer M, et al. Glucose-induced reactive oxygen species cause apoptosis of podocytes and podocyte depletion at the onset of diabetic nephropathy[J]. Diabetes, 2006, 55(1):225-233.
[7] Marshall CB, Krofft RD, Pippin JW, et al. CDK inhibitor p21 is prosurvival in adriamycin-induced podocyte injury,invitroandinvivo[J]. Am J Physiol Renal Physiol, 2010, 298(5):F1140-F1151.
[8] Peng H, Zhong W, Zhao H, et al. Lack of PGC-1α exacerbates high glucose-induced apoptosis in human umbilical vein endothelial cells through activation of VADC1[J]. Int J Clin Exp Pathol, 2015, 8(5):4639-4650.
[9] 于勝男, 曹瓊丹, 魯美麗, 等. 黃芪多糖對糖尿病大鼠心肌細(xì)胞凋亡的影響[J].中藥藥理與臨床, 2015, 31(4):102-105.
[10]朱雪婧, 文 楓, 楊淡昳, 等. 高糖腹膜透析液對腹膜間皮細(xì)胞PGC-1α蛋白表達(dá)以及線粒體相關(guān)氧化凋亡的影響[J].中南大學(xué)學(xué)報:醫(yī)學(xué)版, 2013, 38(11): 1085-1091.
[11]Cai X, Bao L, Ren J, et al. Grape seed procyanidin B2 protects podocytes from high glucose-induced mitochondrial dysfunction and apoptosis via the AMPK-SIRT1-PGC-1α axisinvitro[J]. Food Funct, 2016, 7(2):805-815.
[12]Chung HW, Lim JH, Kim MY, et al. High-fat diet-induced renal cell apoptosis and oxidative stress in spontaneously hypertensive rat are ameliorated by fenofibrate through the PPARα-FoxO3a-PGC-1α pathway[J]. Nephrol Dial Transplant, 2012, 27(6):2213-2225.
[13]Onishi Y, Ueha T, Kawamoto T, et al. Regulation of mitochondrial proliferation by PGC-1α induces cellular apoptosis in musculoskeletal malignancies[J]. Sci Rep, 2014, 4:3916.
[14]Huang B, Cheng X, Wang D, et al. Adiponectin promotes pancreatic cancer progression by inhibiting apoptosis via the activation of AMPK/Sirt1/PGC-1α signaling[J]. Oncotarget, 2014, 5(13):4732-4745.
[15]Wang L, Chang JH, Paik SY, et al. Calcineurin (CN) activation promotes apoptosis of glomerular podocytes bothinvitroandinvivo[J]. Mol Endocrinol, 2011, 25(8): 1376-1386.
[16]Larrieu D, Thiebaud P, Duplaa C, et al. Activation of the Ca2+/calcineurin/NFAT2 pathway controls smooth muscle cell differentiation[J].Exp Cell Res, 2005, 310(1): 166-175.
[17]Rao A, Luo C,Hogan PG. Transcription factors of the NFAT family: regulation and function[J]. Annu Rev Immunol, 1997, 15:707-747.
(責(zé)任編輯: 林白霜, 羅 森)
High glucose-activated NFAT promotes podocyte apoptosis by down-regulation of PGC-1
CHEN En-ping, DU Li-gen, WU Yin-wei, YE Cui-mei, LUO Quan-fang
(TheSecondPeople’sHospitalofLonggangDistrict,Shenzhen518112,China.E-mail: 1033557448@qq.com)
AIM: To explore whether down-regulation of peroxisome proliferator-activated receptor γ coactivator (PGC)-1α induces podocyte apoptosis and its mechanism. METHODS: The podocytes were cultured under high glucose (HG) condition and the cell apoptosis was analyzed by flow cytometry. The methods of real-time PCR and Western blot were used to analyze the mRNA and protein expression of related molecules in the control, HG-treated or siRNA-treated podocytes. RESULTS: The expression PGC-1α at mRNA and protein levels was significantly decreased in HG-injured podocytes. Down-regulation ofPGC-1αexpressioninvitroby siRNA resulted in podocyte apoptosis. The nuclear protein expression of nuclear factor of activated T-cells (NFAT) was significantly increased in HG injured podocytes, indicating the NFAT activation. Down-regulation ofPGC-1αexpression also decreased the nuclear protein expression of NFAT. Moreover, silencing ofNFATexpression by siRNA significantly abolishedPGC-1αdeficiency-induced podocyte apoptosis. CONCLUSION: Down-regulation of PGC-1α induces podocyte apoptosis. NFAT mediatesPGC-1αdeficiency-induced podocyte apoptosis.
High glucose; Podocytes; Apoptosis; Peroxisome proliferator-activated receptor γ coactivator-1α; Nuclear factors of activated T-cells
1000- 4718(2017)04- 0620- 07
2016- 07- 01
2017- 03- 02
深圳市科技創(chuàng)新委員會基金資助項目(No. JCYJ20160429173108762)
R363; R587.2
A
10.3969/j.issn.1000- 4718.2017.04.008
△通訊作者 Tel: 0755-28870993; E-mail: 1033557448@qq.com