国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

移植途徑對人臍帶間充質(zhì)干細胞治療小鼠糖尿病效果的影響*

2017-04-24 06:09蔣豆蔻楊曉菲李富榮
中國病理生理雜志 2017年4期
關鍵詞:螢光包膜胰島

蔣豆蔻, 李 青, 楊曉菲, 李 陽, 李富榮△

(1暨南大學第二臨床醫(yī)學院,深圳市人民醫(yī)院,干細胞與細胞治療重點實驗室,廣東 深圳 518020; 2暨南大學醫(yī)學院病理生理學系,廣東 廣州 510632)

移植途徑對人臍帶間充質(zhì)干細胞治療小鼠糖尿病效果的影響*

蔣豆蔻1,2, 李 青1, 楊曉菲1,2, 李 陽1, 李富榮1△

(1暨南大學第二臨床醫(yī)學院,深圳市人民醫(yī)院,干細胞與細胞治療重點實驗室,廣東 深圳 518020;2暨南大學醫(yī)學院病理生理學系,廣東 廣州 510632)

目的: 觀察不同途徑移植人臍帶間充質(zhì)干細胞(hUCMSCs)對小鼠糖尿病的治療效果。方法: 利用增強綠色熒光蛋白和螢光素酶報告系統(tǒng)(EGFP/Luc)標記hUCMSCs,通過胰腺包膜下途徑或尾靜脈途徑將攜帶螢光標記的hUCMSCs移植到鏈脲霉素誘導的糖尿病模型小鼠體內(nèi)。移植后利用螢光素酶報告基因追蹤hUCMSCs在活體內(nèi)的遷移和定位;組織學檢測小鼠胰島形態(tài)變化;功能學實驗動態(tài)檢測小鼠血糖、血清胰島素水平和糖耐量。結果: 活體生物發(fā)光成像顯示胰腺包膜下途徑移植的hUCMSCs主要定位于胰腺,尾靜脈途徑移植的hUCMSCs主要定位于肺,僅少量細胞向胰腺部位遷移。組織學檢測發(fā)現(xiàn),胰腺包膜下途徑移植的小鼠胰島邊界清晰,無炎癥細胞浸潤;而尾靜脈途徑移植的小鼠胰腺組織有少量炎癥細胞浸潤和纖維化形成。功能學檢測發(fā)現(xiàn)胰腺包膜下移植較尾靜脈移植降低小鼠血糖作用顯著,血糖可降至接近正常水平,且血清胰島素水平明顯升高,葡萄糖的調(diào)節(jié)能力顯著增強。結論: 移植途徑對 hUCMSCs治療糖尿病的效果有影響。胰腺包膜下移植在降低小鼠血糖、升高胰島素水平及改善胰島功能方面均優(yōu)于尾靜脈移植。

人臍帶間充質(zhì)干細胞; 移植; 1型糖尿病

1型糖尿病是一種以胰島細胞損傷為特征的自身免疫性疾病。胰島細胞移植是目前臨床上治療該疾病最有效的方案[1-2],然而供體的不足和免疫排斥反應等限制了該方案的實施[3-4]。近年來,干細胞治療為糖尿病患者帶來了新的曙光[5-7],大量研究發(fā)現(xiàn),間充質(zhì)干細胞(mesenchymal stem cells, MSCs)治療可有效地緩解糖尿病小鼠的癥狀[8-11]。間充質(zhì)干細胞是一種具有分化為成體細胞能力的干性細胞,可通過免疫抑制、旁分泌等作用修復損傷細胞[12-15]。研究表明,MSCs通過尾靜脈移植糖尿病小鼠后血糖顯著下降,糖尿病癥狀得到有效緩解[16-19]。但直接移植到糖尿病小鼠的胰腺組織是否較尾靜脈移植治療作用更好尚不知曉,且缺乏對移植的MSCs 在體內(nèi)遷移和定位的動態(tài)監(jiān)測。

為此,本研究觀察了螢光素酶報告系統(tǒng)標記的人臍帶間充質(zhì)干細胞(human umbilical cord mesenchymal stem cells, hUCMSCs)通過胰腺包膜下移植和尾靜脈移植2種移植途徑治療小鼠糖尿病的效果。發(fā)現(xiàn)2種移植途徑均能降低糖尿病小鼠血糖,但尾靜脈移植的hUCMSCs主要定位在肺部,而胰腺包膜下移植的hUCMSCs主要定位在胰腺,發(fā)揮抑制炎癥反應、促進損傷胰島細胞修復及再生等治療糖尿病的作用。

材 料 和 方 法

1 實驗動物

6周齡雄性BALB/c小鼠,體質(zhì)量 15~20 g,購于廣東省醫(yī)學實驗動物中心。

2 主要試劑與儀器

DMEM-F12培養(yǎng)基和胎牛血清(Gibco);α-MEM培養(yǎng)基和HG-DMEM培養(yǎng)基(HyClone);胰蛋白酶、抗壞血酸、β-磷酸甘油、地塞米松、胰島素、吲哚美辛、3-異丁基-1-甲基黃嘌呤和油紅染料(Sigma);茜素紅S染色液(森貝伽生物科技有限公司);Alexa488-CD44、APC-CD90、APC-CD29、FITC-CD105、Alexa488-CD34、APC-CD45和FITC-HLA-DR抗體(BD);pLEX-GFP-Luc2病毒液(北京中科匯文遺傳公司);螢光素酶底物D-luciferin (Cellcyto); 鏈脲霉素(Sigma);小鼠胰島素ELISA試劑盒(Millipore);流式細胞分選儀 (Beckman Coulter);血糖儀 (Accu-Chek);熒光顯微鏡(Nikon);活體生物發(fā)光成像系統(tǒng)(Caliper Life Science)。

3 實驗方法

3.1 hUCMSCs的分離、培養(yǎng)和鑒定 人臍帶來自暨南大學第二臨床醫(yī)學院產(chǎn)科,均獲得產(chǎn)婦的知情同意和醫(yī)院倫理委員會的審核批準。臍帶采集后需在12 h內(nèi)進行處理,用含雙抗的磷酸鹽緩沖液(phosphate-buffered saline, PBS)沖洗凈臍帶表面的血液,無菌手術刀橫向?qū)⑵淝谐?~5 cm的小塊,再縱向切開,暴露并移除臍帶內(nèi)的血管后放入消化液中(消化液成分如下:3×105U/L的膠原酶Ⅰ,1 g/L透明質(zhì)酸酶,含3 mmol/L 氯化鈣的 PBS溶液),37 ℃消化1 h。PBS緩沖液沖洗后加入0.1%胰酶,37 ℃孵育30 min,終止消化后1 000 r/min離心5min,用含體積分數(shù)10%胎牛血清的DMEM/F12完全培養(yǎng)基重懸細胞,按1×106/cm2密度接種于T25培養(yǎng)瓶中,放置于37 ℃、5%CO2、飽和濕度培養(yǎng)箱內(nèi)培養(yǎng)[20]。胰蛋白酶消化第3代hUCMSCs后收集至EP管內(nèi),加入Alexa488-CD44、APC-CD90、APC-CD29、FITC-CD105、Alexa488-CD34、APC-CD45和FITC-HLA-DR,單克隆抗體染色,工作濃度1∶100,室溫下避光孵育30 min,PBS洗滌3次后使用流式細胞儀分析表面標志物。成脂試驗和成骨試驗方法如文獻所述[21]。

3.2 螢光素酶和增強綠色螢光蛋白(enhanced green fluorescent protein, EGFP)標記hUCMSCs 將分離純化的hUCMSCs 按 2×108/L 的密度接種于75 cm2培養(yǎng)瓶,48 h后使用pLEX-GFP-Luc2慢病毒進行感染[22],感染復數(shù)(multiplicity of infection, MOI)為25,感染48 h后通過熒光顯微鏡觀察感染效率,使用0.8 mg/L嘌呤霉素連續(xù)進行藥物篩選7~10 d后,PBS洗滌細胞3次,0.25%胰蛋白酶消化細胞,400×g離心5 min,PBS重懸細胞,流式細胞術檢測穩(wěn)定表達EGFP 細胞(hUCMSCs-EGFP/Luc)的比例。

3.3 糖尿病小鼠模型的建立 6周齡雄性BALB/c 小鼠,體重約15~20 g,禁食12 h后予75 mg/kg 鏈脲霉素(使用前溶于0.1 mol/L 檸 檬 酸 緩 沖 液,pH 4.5)腹腔注射,連續(xù)3 d[23]。連續(xù)2次測得隨機血糖>300 mg/dL,且伴有多飲、 多食、多尿癥狀即為建模成功[24]。

3.4 hUCMSCs-EGFP/Luc細胞移植 用生理鹽水將第5代hUCMSCs-EGFP/Luc細胞制備成密度為5×109/L的細胞懸液。將30只6周齡雄性BALB/c糖尿病小鼠隨機分為胰腺包膜下移植組、尾靜脈移植組、糖尿病組,每組10只,另取10只未造模小鼠作為正常對照組。以0.004 mL/g劑量腹腔注射水合氯醛對胰腺包膜下移植組小鼠進行麻醉,剔除小鼠左側(cè)腰部毛發(fā),消毒備皮。無菌眼科手術剪剪開小鼠腎臟附近的表皮、腹膜,開口方向與脊柱呈60°的角,切口長約1 cm。手指輕輕按壓切口兩側(cè)擠出腎臟,吸取0.2 mL細胞懸液腎包膜下多點注射,電熱灼合包膜小口,縫合腹膜、表皮。尾靜脈移植組取0.2 mL細胞懸液尾靜脈注射,糖尿病組和正常對照組不予處理。所有操作均按外科手術操作要求在無菌條件下進行。

3.5 活體生物發(fā)光成像 胰腺包膜下移植組和尾靜脈移植組小鼠予以吸入異氟烷麻醉,活體生物發(fā)光成像前15 min每只小鼠經(jīng)腹腔注射螢光素底物200 μL。經(jīng)Lumina II IVIS成像系統(tǒng)檢測螢光素酶發(fā)光信號(曝光時間為1 min),于移植后 1、 3、 5、 7、14、21和28 d觀察活體生物發(fā)光成像。移植后第7天各組取2只小鼠,分離其心臟、肺、脾、腎、肝及胰腺,置入含400 mg/L螢光素底物的6孔板中,檢測螢光素酶發(fā)光信號(曝光時間為1 s)。

3.6 組織病理學觀察 hUCMSCs-EGFP/Luc細胞移植28 d后,水合氯醛麻醉胰腺包膜下移植組、尾靜脈移植組、糖尿病模型組和正常對照組小鼠,心臟灌注法固定后取胰腺組織,置于10%多聚甲醛4 ℃固定4 h,常規(guī)石蠟包埋、切片,蘇木精-伊紅染色法染色后顯微鏡下觀察。

3.7 移植后功能學檢測 隨機血糖檢測:移植后各組小鼠每3 d尾靜脈采血檢測血糖至第28天。血清胰島素含量檢測:各組取5只小鼠于移植后3、7、14、21及28 d眼眶取血,分離血清后按照小鼠胰島素 ELISA試劑盒說明稀釋標準品、加樣、顯色,酶標儀測定吸光度,通過標準曲線計算樣品中小鼠胰島素濃度。葡萄糖耐量實驗:移植后21 d,各組取5只小鼠禁食8 h后腹腔注射葡萄糖生理鹽水2 g/kg,于注射后0、15、 30、 60、 120和180 min尾靜脈采血檢測血糖水平。

4 統(tǒng)計學處理

采用 SPSS 13.0 軟件進行統(tǒng)計學處理,計量資料以均數(shù) ±標準差(mean±SD) 表示。均數(shù)間的比較采用單因素方差分析,多重比較采用LSD-t檢驗。以P<0.05為差異有統(tǒng)計學意義。

結 果

1 hUCMSCs和hUCMSCs-EGFP/Luc的鑒定結果

分離的人臍帶間充質(zhì)干細胞形態(tài)均一,呈長梭形或鼓錘狀生長。流式細胞術分析顯示間充質(zhì)干細胞表面標志物CD44、CD90、CD29和CD105的表達率分別為99.3%、99.6%、99.8%和96.4%,造血細胞標志物CD34和CD45的表達率僅為1.41%和1.27%,1.02%表達白細胞表面抗原HLA-DR。經(jīng)過4周的成骨實驗,茜素紅染色證實骨結節(jié)形成;成脂實驗發(fā)現(xiàn),hUCMSCs誘導4周后,細胞增大、形態(tài)不規(guī)則、富含脂肪顆粒囊泡,脂肪小滴可被油紅O紅染。成骨成脂實驗證明所分離的細胞具有分化潛能,符合hUCMSCs的特性。hUCMSCs感染病毒48 h后,免疫熒光顯微鏡觀察細胞成功標記EGFP。經(jīng)過7~10 d嘌呤霉素篩選,流式細胞術分析95.4%的hUCMSCs穩(wěn)定表達EGFP,見圖1。

2 hUCMSCs-EGFP/Luc細胞移植后的體內(nèi)分布

活體生物發(fā)光成像系統(tǒng)動態(tài)監(jiān)測顯示,胰腺包膜下移植組的hUCMSCs-EGFP/Luc主要定位于胰腺部位,移植后24 h發(fā)光強度為(3.15±0.58)×106p·s-1·cm-2·sr-1,相當于5×105個細胞;移植后7 d監(jiān)測離體胰腺、心臟、肺、脾、腎及肝組織的光信號進一步證實,僅胰腺組織發(fā)出光信號;發(fā)光可持續(xù)至少28 d,隨時間推移進行性減弱,28 d時為(8.48±0.78)×104p·s-1·cm-2·sr-1。尾靜脈移植組的細胞主要定位于肺部,胰腺及肝臟僅發(fā)出少量光信號,移植后24 h胰腺部位的發(fā)光強度為(2.93±0.36)×104p·s-1·cm-2·sr-1,相當于5×103個細胞,并且于移植后5 d細胞光信號完全衰減,見圖2。

3 組織病理學變化

胰腺組織HE染色顯示正常小鼠胰島大小正常、細胞形態(tài)清晰,富含β細胞;糖尿病模型組胰島萎縮、邊界模糊,炎癥細胞浸潤伴纖維化形成;胰腺包膜下移植組較糖尿病模型組胰島邊界清晰,細胞形態(tài)恢復,無炎癥細胞浸潤;尾靜脈移植組胰島較糖尿病模型組清晰,但仍有炎細胞浸潤和纖維化形成,見圖3。

Figure 1.Identification of purified hUCMSCs and hUCMSCs-EGFP/Luc. A: flow cytometry confirmed the surface markers of purified hUCMSCs; B: morphology of hUCMSCs (×100); C: osteogenesis test confirmed the differentiation potential of hUCMSCs (alizarin red staining, scale bar=50 μm); D: adipogenesis test confirmed the differentiation potential of hUCMSCs (oil red O staining, scale bar=50 μm); E: fluorescence image of hUCMSCs-EGFP/Luc (scale bar=50 μm); F: flow cytometry confirmed the expression rate of EGFP in hUCMSCs-EGFP/Luc.

圖1 hUCMSCs和hUCMSCs-EGFP/Luc的鑒定

4 移植后功能學改變

4.1 血糖 移植前除正常對照組外各組血糖值均大于成模標準300 mg/dL,組間差異無統(tǒng)計學意義。移植后第3天,胰腺包膜下移植組隨機血糖開始逐漸下降,第15天降至(200.0±54.5)mg/dL,并維持到觀察結束,顯著逆轉(zhuǎn)高血糖(P<0.05)。尾靜脈移植組于移植后第3天血糖開始下降,第6天降至(300.0±36.7)mg/dL,之后血糖緩慢上升,血糖明顯高于胰腺包膜下移植組(P<0.05),見圖4。

4.2 血清胰島素水平 ELISA檢測小鼠外周血胰島素含量顯示,胰腺包膜下移植組胰島素水平在各時點均明顯高于糖尿病模型組和尾靜脈移植組(P<0.05),且隨時間推移胰島素分泌能力有增高趨勢,但仍低于正常對照組(P<0.05)。尾靜脈移植組胰島素水平與糖尿病組相比差異無統(tǒng)計學意義,見圖5、表1。

4.3 糖耐量 腹腔注射葡萄糖后,胰腺包膜下移植組血糖值在30 min達峰值,60 min恢復至空腹水平,葡萄糖調(diào)控能力明顯高于糖尿病模型組(P<0.05)。靜脈移植組血糖值在60 min達峰值,之后緩慢下降,葡萄糖調(diào)控能力明顯低于胰腺包膜下移植組(P<0.05),見圖6、表2。

Figure 2.Invivoandinvitrobioluminescence imaging of hUCMSCs-GFP/Luc. A: location and intensity of luminescence signal at day 1, day 3, day 5, day 7, day 14, day 21 and day 28 after hUCMSCs-GFP/Luc transplanted by pancreatic capsule method; B: location and intensity of luminescence signal at 4 h, day 1, day 3, day 5 and day 7 after hUCMSCs-GFP/Luc transplanted by tail vein method; C: quantification of bioluminescence intensity at day 1, day 3, day 5, day 7, day 14, day 21 and day 28 after hUCMSCs-GFP/Luc transplanted by pancreatic capsule method; D:exvivobioluminescence imaging of various tissues and organs after hUCMSCs-GFP/Luc transplanted by pancreatic capsule method. The color bar represents photons per second per square centimeter per steradian (p·s-1·cm-2·sr-1).

圖2 移植后hUCMSCs的體內(nèi)分布

Figure 3.Morphological changes of islets (HE staining, ×200). A: untreated nondiabetic group; B: untreated diabetic group; C: pancreatic capsule transplantation group; D: tail vein injection group.

圖3 小鼠胰島形態(tài)變化

Figure 4.Blood glucose levels of diabetic mice after hUCMSCs transplantation.Mean±SD.n=10.#P<0.05vsnormal group;*P<0.05vstail vein group.

圖4 移植后各組血糖變化

討 論

本研究使用酶消化法分離純化hUCMSCs,利用流式細胞術分析細胞表面標志物的表達,通過成脂成骨實驗證實分離純化的人臍帶來源細胞符合間充質(zhì)干細胞特性[25]。利用EGFP和螢光素酶報告系統(tǒng)標記hUCMSCs,直觀監(jiān)測移植的hUCMSCs在體內(nèi)的遷移和定位。通過胰腺包膜下移植和尾靜脈移植2種途徑移植hUCMSCs治療糖尿病小鼠,體內(nèi)生物發(fā)光信號追蹤發(fā)現(xiàn)胰腺包膜下移植的hUCMSCs主要定位于胰腺組織,光信號可持續(xù)至少28 d,而尾靜脈移植的hUCMSCs主要定位于肺部,光信號在移植后5 d完全衰減。組織病理學觀察發(fā)現(xiàn)胰腺包膜下移植途徑對胰島細胞的修復和組織形態(tài)的改善作用更良好。功能學檢測發(fā)現(xiàn),胰腺包膜下移植途徑較尾靜脈移植途徑降糖作用顯著,在觀察期內(nèi)可將血糖降至接近正常水平,胰島素分泌能力和β細胞對葡萄糖的調(diào)控能力強于尾靜脈移植組,表明胰腺包膜下移植途徑在損傷胰島細胞修復、胰島細胞再生以及改善胰島功能方面優(yōu)于尾靜脈移植途徑。

Figure 5.Serum insulin levels of diabetic mice after transplantation. Mean±SD.n=5.#P<0.05vstail vein group;&P<0.05vsnormal group.

圖5 移植后各組血清胰島素水平變化

Figure 6.The blood glucose level by glucose tolerance test at day 21 after transplantation.Mean±SD.n=5.#P<0.05vsnormal group;*P<0.05vstail vein group.

圖6 移植后第21天糖耐量試驗血糖水平

對細胞的動態(tài)追蹤可監(jiān)測細胞在體內(nèi)的生物活性,螢光素酶在三磷酸腺苷(ATP)和體內(nèi)活細胞的氧氣環(huán)境下,可催化D-luciferin使其發(fā)出能穿透5~10 mm組織的光。該光信號具有低背景和高信噪比的優(yōu)勢,穩(wěn)定性好,發(fā)光強度與細胞數(shù)量呈線性相關,且不影響細胞生長動力學和干細胞的分化能力[26-27],因此我們利用螢光素酶生物發(fā)光成像追蹤活細胞在生物體內(nèi)的遷移、定位和細胞數(shù)量,實現(xiàn)對小鼠體內(nèi)移植的hUCMSCs的動態(tài)監(jiān)測。本研究中,我們將攜帶EGFP和螢光素酶報告基因的慢病毒載體感染hUCMSCs,移植到小鼠體內(nèi)后經(jīng)活體生物發(fā)光成像技術分析發(fā)現(xiàn),胰腺包膜下途徑移植的細胞約有5×105個細胞定位在胰腺部位,而尾靜脈途徑移植的細胞僅有5×103個細胞,2種移植途徑最終定位于胰腺的細胞數(shù)量存在明顯差異。此前有研究發(fā)現(xiàn)[28],靜脈移植間充質(zhì)干細胞,細胞主要定位于肺部,僅有不到0.04%的細胞遷移到心臟、肝、脾和腎,尾靜脈移植的細胞同樣到達肺部后被滯留,僅有不到0.1%細胞到達胰腺,說明MSCs更傾向于遷移至血流豐富且流速相對緩慢的組織器官。我們認為,hUCMSCs細胞較大,直徑為20~24 μm,而肺毛細血管直徑為10~15 μm,當通過尾靜脈途徑移植的hUCMSCs經(jīng)血液循環(huán)到達肺毛細血管后,大部分形成栓子發(fā)生凋亡,造成局部炎癥反應,受損的肺部組織會釋放間質(zhì)金屬蛋白酶、血小板源性生長因子等細胞因子,促使hUCMSCs向受損組織遷移,因此通過尾靜脈途徑移植的hUCMSCs大部分定位在肺部。當hUCMSCs到達胰腺組織后,可分泌生長因子抑制胰腺細胞的凋亡[29],分泌的促血管生長因子可促進血管生長,改善微循環(huán),利于胰島損傷的修復[30],hUCMSCs可優(yōu)先遷移到胰腺的淋巴結,發(fā)揮免疫調(diào)節(jié)功能,抑制致糖尿病的T細胞介導的免疫反應,減少T細胞對胰島的破壞[31],除此之外,hUCMSCs細胞自身可發(fā)生自發(fā)性細胞融合以適應胰島細胞表型[32],可能有少量hUCMSCs在胰腺微環(huán)境下分化為胰島細胞,直接代償胰島功能[33]。由此我們猜測到達胰腺組織的細胞數(shù)量將影響干細胞改善糖尿病作用的發(fā)揮。直接移植到胰腺包膜下的干細胞,無需經(jīng)血液循環(huán),不受肺部組織的截留影響,因此能更加直接地發(fā)揮其治療效果,改善糖尿病作用更加顯著。

綜上所述,我們利用螢光素酶報告系統(tǒng)標記人臍帶間充質(zhì)干細胞,追蹤干細胞移植糖尿病小鼠后在體內(nèi)的遷移和定位情況,結合組織病理和功能學檢測比較胰腺包膜下移植途徑和尾靜脈移植途徑對糖尿病的治療效果。研究結果表明,2種移植途徑均可改善糖尿病癥狀,但胰腺包膜下移植治療效果更好,干細胞移植途徑可影響糖尿病的治療療效。

[1] Ryan EA, Paty BW, Senior PA, et al. Five-year follow-up after clinical islet transplantation[J]. Diabetes, 2005, 54(7):2060-2069.

[2] Shapiro AM, Lakey JR, Ryan EA, et al. Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen[J]. N Engl J Med, 2000, 343(4):230-238.

[3] Matsumoto S.Clinical allogeneic and autologous islet cell transplantation: update[J]. Diabetes Metab J, 2011, 35(3):199-206.

[4] Bellin MD, Barton FB, Heitman A, et al. Potent induction immunotherapy promotes long-term insulin indepen-dence after islet transplantation in type 1 diabetes[J]. Am J Transplant, 2012, 12(6):1576-1583.

[5] Stanekzai J, Isenovic ER, Mousa SA. Treatment options for diabetes: potential role of stem cells[J]. Diabetes Res Clin Pract, 2012, 98(3):361-368.

[6] Davey GC, Patil SB, O’Loughlin A, et al.Mesenchymal stem cell-based treatment for microvascular and secondary complications of diabetes mellitus[J]. Front Endocrinol (Lausanne), 2014, 5:86.

[7] Wallner C, Abraham S, Wagner JM, et al. Local application of isogenic adipose-derived stem cells restores bone healing capacity in a type 2 diabetes model[J]. Stem Cells Transl Med, 2016, 5(6):836-844.

[8] Hashemian SJ, Kouhnavard M, Nasli-Esfahani E, et al. Mesenchymal stem cells: rising concerns over their application in treatment of type one diabetes mellitus[J]. J Diabetes Res, 2015, 2015:675103.

[9] Rackham CL, Dhadda PK, Chagastelles PC, et al. Pre-culturing islets with mesenchymal stromal cells using a direct contact configuration is beneficial for transplantation outcome in diabetic mice[J]. Cytotherapy, 2013, 15(4):449-459.

[10]Park JH, Park J, Hwang SH, et al. Delayed treatment with human umbilical cord blood-derived stem cells attenuates diabetic renal injury[J].Transplant Proc, 2012, 44(4):1123-1126.

[11]Borg DJ, Weigelt M, Wilhelm C, et al. Mesenchymal stromal cells improve transplanted islet survival and islet function in a syngeneic mouse model[J]. Diabetologia, 2014, 57(3):522-531.

[12]Tsai PJ, Wang HS,Shyr YM, et al. Transplantation of insulin-producing cells from umbilical cord mesenchymal stem cells for the treatment of streptozotocin-induced diabetic rats[J]. J Biomed Sci, 2012, 19:47.

[13]Jiao F, Wang J, Dong ZL, et al. Human mesenchymal stem cells derived from limb bud can differentiate into all three embryonic germ layers lineages[J]. Cell Reprogram, 2012, 14(4):324-333.

[14]Katikireddy KR, Dana R, Jurkunas UV. Differentiation potential of limbal fibroblasts and bone marrow mesenchymal stem cells to corneal epithelial cells[J]. Stem Cells, 2014, 32(3):717-729.

[15]Amiri B, Ghollasi M, Shahrousvand M, et al. Osteoblast differentiation of mesenchymal stem cells on modified PES-PEG electrospun fibrous composites loaded with Zn2SiO4bioceramic nanoparticles[J]. Differentiation, 2016,92(4):148-158.

[16]Hao H, Liu J, Shen J, et al. Multiple intravenous infusions of bone marrow mesenchymal stem cells reverse hyperglycemia in experimental type 2 diabetes rats[J]. Biochem Biophys Res Commun, 2013, 436(3):418-423.

[17]Thakkar UG, Trivedi HL, Vanikar AV, et al. Insulin-secreting adipose-derived mesenchymal stromal cells with bone marrow-derived hematopoietic stem cells from autologous and allogenic sources for type 1 diabetes mellitus [J].Cytotherapy, 2015, 17(7):940-947.

[18] Xiao N, Zhao X, Luo P, et al. Co-transplantation of mesenchymal stromal cells and cord blood cells in treatment of diabetes [J].Cytotherapy, 2013, 15(11):1374-1384.

[19]Kerby A, Jones ES, Jones PM, et al. Co-transplantation of islets with mesenchymal stem cells in microcapsules demonstrates graft outcome can be improved in an isolated-graft model of islet transplantation in mice[J]. Cytotherapy, 2013, 15(2):192-200.

[20] Seshareddy K, Troyer D, Weiss ML. Method to isolate mesenchymal-like cells from Wharton’s Jelly of umbilical cord[J]. Methods Cell Biol, 2008, 86:101-119.

[21] Anter J, Quesada-Gomez JM, Dorado G, et al. Effect of hydroxytyrosol on human mesenchymal stromal/Stem cell differentiation into adipocytes and osteoblasts[J]. Arch Med Res, 2016, 47(3):162-171.

[22] Bai X, Pinkernell K, Song YH, et al. Genetically selected stem cells from human adipose tissue express cardiac markers[J]. Biochem Biophys Res Commun, 2007, 353(3):665-671.

[23]Chen H, Carlson EC, Pellet L, et al. Over expression of metallothionein in pancreatic β-cells reduces streptozotocin-induced DNA damage and diabetes[J]. Diabetes, 2001, 50(9):2040-2046.

[24]Lumelsky N, Blondel O, Laeng P, et al. Differentiation of embryonic stem cells to insulin-secreting structures similar to pancreatic islets[J].Science, 2001, 292(5520):1389-1394.

[25]Oh SH, Muzzonigro TM, Bae SH, et al. Adult bone marrow-derived cells trans-differentiating into insulin-producing cells for the treatment of type I diabetes[J]. Lab Invest, 2004, 84(5):607-617.

[26]Bai X, Yan Y, Song YH, et al. Both cultured and freshly isolated adipose tissue-derived stem cells enhance cardiac function after acute myocardial infarction[J]. Eur Heart J, 2010, 31(4):489-501.

[27]Bai X, Yan Y, Coleman M, et al. Tracking long-term survival of intramyocardially delivered human adipose tissue-derived stem cells using bioluminescence imaging[J]. Mol Imaging Biol, 2011, 13(4):633-645.

[28]Lee RH, Pulin AA, Seo MJ, et al. Intravenous hMSCs improve myocardial infarction in mice because cells embolized in lung are activated to secrete the anti-inflammatory protein TSG-6[J]. Cell Stem Cell, 2009, 5(1):54-63.

[29]Hess D, Li L, Martin M, et al. Bone marrow-derived stem cells initiate pancreatic regeneration[J]. Nat Biotechnol, 2003, 21(7):763-770.

[30]Mathews V, Hanson PT, Ford E, et al. Recruitment of bone marrow-derived endothelial cells to sites of pancreatic beta-cell injury[J]. Diabetes, 2004, 53(1):91-98.

[31]Madec AM, Mallone R, Afonso G, et al. Mesenchymal stem cells protect NOD mice from diabetes by inducing regulatory T cells[J]. Diabetologia, 2009, 52(7):1391-1399.

[32]Terada N, Hamazaki T, Oka M, et al. Bone marrow cells adopt the phenotype of other cells by spontaneous cell fusion[J]. Nature, 2002, 416(6880):542-545.

[33]Ezquer F, Ezquer M, Contador D, et al. The antidiabetic effect of mesenchymal stem cells is unrelated to their transdifferentiation potential but to their capability to restore Th1/Th2 balance and to modify the pancreatic microenvironment[J]. Stem Cells, 2012, 30(8):1664-1674.

(責任編輯: 陳妙玲, 羅 森)

Transplantation of human umbilical cord mesenchymal stem cells through different approaches for treatment of diabetic mice

JIANG Dou-kou1,2, LI Qing1, YANG Xiao-fei1, 2, LI Yang1, LI Fu-rong1

(1TheKeyLaboratoryofStemCellandCellularTherapy,TheSecondClinicalMedicalCollegeofJinanUniversity,ShenzhenPeople’sHospital,Shenzhen518020,China;2DepartmentofPathophysiology,SchoolofMedicine,JinanUniversity,Guangzhou510632,China.E-mail:frli62@163.com)

AIM: To compare the therapeutic effects of transplantation of human umbilical cord mesenchymal stem cells (hUCMSC) through different ways on diabetic mice. METHODS: hUCMSCs were labeled with enhanced green fluorescent protein (EGFP) and luciferase (Luc) reporter gene, and then the cells were transplanted into the diabetic mice through pancreas or tail vein to monitor the migration of the hUCMSCsinvivo. The pathological changes of pancreas tissue sections were determined by HE staining. Weight and blood glucose of the mice were measured dynamically. To compare the therapeutic effects, serum insulin levels were analyzed and glucose tolerance test were also performed. RESULTS:Invivobioluminescence imaging results showed that the hUCMSCs transplanted into pancreatic capsule was mainly located in the pancreas while the hUCMSCs transplanted through vein tail injection was mainly located in the lung. HE staining illustrated that islet cells presented distinctive boundary and no infiltration of inflammatory cells in pancreatic capsule transplantation group was observed, but a little inflammatory cell infiltration and fibrosis formation in tail vein injection group were seen. A significant decrease in blood glucose level and a significant increase in serum insulin level in pancreas transplantation group were showed as compared with vein tail injection group. CONCLUSION: Transplantation of hUCMSCs through different approaches demonstrates different effects.The transplantation of hUCMSCs into pancreatic capsule is more effective on hyperglycemia reversion, insulin secretion and improvement of beta-cell function than that through tail vein.

Human umbilical cord mesenchymal stem cells; Transplantation; Type 1 diabetes mellitus

1000- 4718(2017)04- 0612- 08

2016- 10- 24

2016- 12- 22

國家自然科學基金資助項目(No.81270857; No.81670702); 廣東省自然科學基金資助項目(No.2015A030313762); 深圳市科技計劃(No.JCYJ2016031115823245; No.CXZZ20140903103747568; No.JCYJ20140416122811921);博士后科學基金資助項目(No.2016M592603)

R587.1; R363

A

10.3969/j.issn.1000- 4718.2017.04.007

△通訊作者 Tel: 0755-25533018; E-mail: frli62@163.com

猜你喜歡
螢光包膜胰島
臨床胰島制備研究進展
假包膜外切除術治療無功能型垂體腺瘤的療效
垂體腺瘤假包膜的研究進展
肥料包膜材料使用安全風險評價和控制研究
原發(fā)性肝癌假包膜影像表現(xiàn)與病理分級的對照研究*
人工胰島成功用于小鼠
流螢之光
活色螢光“耀”個性
流螢之光
車胤螢光苦讀終所成