彭 琴, 趙紳君, 李 武
(昆明醫(yī)科大學(xué)第一附屬醫(yī)院 感染科, 昆明 650000)
肝纖維化相關(guān)信號(hào)轉(zhuǎn)導(dǎo)通路研究進(jìn)展
彭 琴, 趙紳君, 李 武
(昆明醫(yī)科大學(xué)第一附屬醫(yī)院 感染科, 昆明 650000)
肝纖維化是肝臟對(duì)各種慢性肝損傷進(jìn)行自我修復(fù)的一種病理過程,最終進(jìn)展為肝硬化、肝衰竭,甚至肝癌。如何早期干預(yù)和治療肝纖維化顯得尤為重要??偨Y(jié)了TGFβ/Smad信號(hào)通路、Notch信號(hào)通路、Wnt信號(hào)通路、Hedgehog信號(hào)通路及整合素信號(hào)通路在肝纖維化發(fā)生機(jī)制中的最新研究進(jìn)展,指出各信號(hào)通路在肝纖維化的發(fā)生發(fā)展中發(fā)揮極其重要的作用,有望為肝纖維化的治療提供新的方向。
肝硬化; 信號(hào)傳導(dǎo); 肝星狀細(xì)胞; 綜述
肝纖維化是一種進(jìn)行性的病理過程。其病理特征是細(xì)胞外基質(zhì)(ECM)合成過多和降解不足導(dǎo)致ECM在肝內(nèi)沉積。慢性肝損傷時(shí),肝星狀細(xì)胞(HSC)被激活并產(chǎn)生大量ECM從而促進(jìn)肝纖維化的形成。因此,HSC的激活是肝纖維化形成的關(guān)鍵點(diǎn)[1-2]。多條信號(hào)轉(zhuǎn)導(dǎo)通路可以調(diào)控HSC的激活,其中血小板源性生長(zhǎng)因子信號(hào)通路、JAK/STAT信號(hào)通路、核因子-κB信號(hào)通路等已研究的較為深入與廣泛[3]。目前公認(rèn)TGFβ1是最強(qiáng)的HSC活化因子[4],而Wnt/β-catenin信號(hào)通路與肝纖維化間的密切關(guān)系也成為研究熱點(diǎn)[5],此外目前主要的研究通路還有Notch信號(hào)通路、Hedgehog信號(hào)通路和整合素信號(hào)通路等[6]。研究肝纖維化進(jìn)展中涉及的信號(hào)通路,可以進(jìn)一步闡明肝纖維化的發(fā)病機(jī)制,為肝纖維化的治療提供新的思路及作用靶點(diǎn),現(xiàn)綜述如下。
TGFβ超家族是具有多樣性、多效性的生物學(xué)活性細(xì)胞因子,在調(diào)節(jié)細(xì)胞增殖、分化、遷移及凋亡等方面有著重要的作用,是維持組織器官內(nèi)穩(wěn)態(tài)必不可少的因子[7]。脊椎動(dòng)物共有3種TGFβ,即TGFβ1、TGFβ2和TGFβ3,在肝臟中主要是TGFβ1。TGFβ超家族跨膜受體共有Ⅰ、Ⅱ、Ⅲ型(TβRI、TβRⅡ、TβRⅢ),TβRⅡ 胞漿區(qū)具有絲氨酸/蘇氨酸激酶區(qū),其胞外端先與配體結(jié)合,其胞內(nèi)段的絲氨酸/蘇氨酸激酶被活化,被活化的TβRⅡ使TβRⅠ進(jìn)一步活化,從而將生物信號(hào)向細(xì)胞內(nèi)轉(zhuǎn)導(dǎo)[8]。信號(hào)轉(zhuǎn)導(dǎo)分子為Smads蛋白,Smads蛋白家族至少有Smad 1~9等9種,分為3類,受體型Smad(R-Smad),包括Smad1、2、3、5、8、9;協(xié)同型Smad(Co-Smad),目前僅有Smad 4,可與R-Smad結(jié)合協(xié)助其進(jìn)入細(xì)胞核;抑制型Smad(I-Smad)包括Smad 6、7,研究[9-11]發(fā)現(xiàn)Smad7能抑制R-Smad信號(hào)傳遞作用,如通過抑制Smad2、3磷酸化阻斷TGFβ/Smad信號(hào)轉(zhuǎn)導(dǎo)作用。TGFβ/Smad 途徑已發(fā)現(xiàn)可通過抑制HSC膠原分泌及細(xì)胞活化來改善肝纖維化進(jìn)程 。Balta等[12]將白楊素用于治療肝纖維化大鼠模型,發(fā)現(xiàn)α-平滑肌肌動(dòng)蛋白、Smad2、Smad3的表達(dá)顯著下調(diào),從而抑制HSC活化,首次證實(shí)了白楊素具有抗肝纖維化作用。Argentou等[13]研究發(fā)現(xiàn)在接受抗HBV治療后成功控制肝臟炎癥的患者中,Smad7表達(dá)增加,而未接受抗病毒治療或者肝臟炎癥控制不佳的患者中主要以Smad2、Smad3、Smad4表達(dá)為主,表明誘導(dǎo)Smad7表達(dá)上調(diào)可能成為治療肝纖維化的新方向。這些研究提示有效的干預(yù)TGFβ/Smad 信號(hào)通路可作為肝纖維化的防治靶點(diǎn)。但由于其具有多種生物學(xué)功能,因此仍需對(duì)TGFβ1參與肝纖維化的作用機(jī)制進(jìn)一步研究,為肝纖維化靶向治療提供新的理論依據(jù)。
Notch是廣泛存在于細(xì)胞表面并介導(dǎo)細(xì)胞間信號(hào)轉(zhuǎn)導(dǎo)的一類高度保守的受體蛋白。Notch信號(hào)通路在肝臟的發(fā)育、損傷修復(fù)、肝臟代謝、肝纖維化和肝細(xì)胞癌的發(fā)生中起著重要作用[14-15]。在脊椎動(dòng)物中Notch有4種受體(Notch1~4)和5種配體(Delta1、Delta3、Delata4、Jag-1和Jag-2)[16]。Notch信號(hào)的產(chǎn)生是通過相鄰細(xì)胞的Notch配體與受體相互作用,Notch蛋白經(jīng)過3次剪切,由胞內(nèi)結(jié)構(gòu)域(Notch intracellular domain,NICD)釋放入胞質(zhì),NICD是Notch受體的主要功能結(jié)構(gòu)域,其RAM區(qū)和ANK(ankyrin)重復(fù)序列與細(xì)胞核內(nèi)的DNA結(jié)合蛋白CSL相結(jié)合并使之活化,形成NICD/CSL轉(zhuǎn)錄激活復(fù)合體,使Notch信號(hào)通路Hes、Hey等靶基因表達(dá),發(fā)揮生物學(xué)功能[17]。Notch 信號(hào)通路可能通過調(diào)控HSC的活化來參與肝纖維化的發(fā)生,選擇性干擾Notch3,具有抗肝纖維化的作用[18]。Zhang等[19]研究發(fā)現(xiàn)Notch信號(hào)通路通過參與調(diào)控上皮-間充質(zhì)轉(zhuǎn)化(epithelial-mesenchymal transition,EMT)誘導(dǎo)肝纖維化形成,靜止期HSC轉(zhuǎn)化成促成纖維性HSC時(shí),Notch信號(hào)通路被激活,Notch2、Notch3、Hey2和HeyL表達(dá)明顯增加,使用γ-分泌酶抑制劑DAPT(Notch特異性阻斷劑)后,EMT發(fā)生逆轉(zhuǎn),維持HSC靜息表型。Bansal等[20]在體內(nèi)、體外試驗(yàn)中證實(shí)Notch信號(hào)通路通過激活HSC和決定巨噬細(xì)胞M1/M2極化命運(yùn)來參與肝纖維化的形成。以上研究均提示Notch信號(hào)通路可能是調(diào)節(jié)HSC活化的重要信號(hào)通路之一。
Wnt信號(hào)通路參與了多種生物功能的調(diào)控,包括細(xì)胞生長(zhǎng)、增殖和細(xì)胞凋亡。同時(shí),它的異常又參與腫瘤、炎癥性疾病及纖維化疾病的發(fā)生[21]。Wnt信號(hào)通路主要成分包含Wnt蛋白家族、 Frizzled/低密度脂蛋白受體相關(guān)蛋白(Fz/LRP)、Dishevelled 蛋白(Dsh)、β-catenin、糖原合成激酶(glycogen synthase kinase,GSK)3β、支架蛋白(Axin)、結(jié)腸腺瘤性息肉病基因蛋白(adenomatous polyposis coli,APC)和T淋巴細(xì)胞因子/淋巴增強(qiáng)因子(T cell factor/lymphoid enhancing factor,TCF/LEF)轉(zhuǎn)錄因子家族。Wnt信號(hào)通路分為經(jīng)典和非經(jīng)典信號(hào)通路,區(qū)別在于前者有β-catenin參與。經(jīng)典Wnt/β-catenin信號(hào)通路是近年來提出的促HSC凋亡的主要信號(hào)通路之一[21-23],通路激活時(shí),Wnt蛋白結(jié)合胞膜受體Frizzled和其共受體LRP5/6,三者形成多元復(fù)合物激活Dsh蛋白,破壞APC-Axin-GSK3β-CK蛋白復(fù)合物的活性,使胞漿內(nèi)β-catenin不能被磷酸化而失活,易位至細(xì)胞核并與TCF/LEF結(jié)合從而調(diào)節(jié)靶基因轉(zhuǎn)錄[24]。Zhang等[25]研究發(fā)現(xiàn)青蒿琥酯可通過抑制microRNA-154表達(dá)作用于Wnt/β-catenin信號(hào)通路,下調(diào)β-catenin介導(dǎo)的基因轉(zhuǎn)錄,進(jìn)而促進(jìn)HSC凋亡,抑制肝纖維化的發(fā)生。Ma等[26]用人類尿激酶纖溶酶原激活物(human urokinase-type plasminogen activator,uPA )轉(zhuǎn)染骨髓間充質(zhì)干細(xì)胞( bone marrow-derived mesenchymal stem cells,BMSCs),將uPA-BMSCs作用于CCl4誘導(dǎo)肝纖維化大鼠模型與對(duì)照組相比,uPA-BMSCs組肝功能明顯改善,肝纖維化程度明顯減輕。用Western Blot 檢測(cè)發(fā)現(xiàn)uPA-BMSCs組β-catenin、Wnt4和Wnt5a表達(dá)明顯下調(diào),表明uPA-BMSCs可能成為治療肝纖維化的新方法。
Hh信號(hào)通路在胚胎發(fā)生、組織內(nèi)穩(wěn)態(tài)、細(xì)胞分化和增殖中起重要作用。在脊椎動(dòng)物中,合成的分泌型Hh蛋白包括聲刺猬蛋白(Shh)、印度刺猬蛋白(Ihh)和沙漠刺猬蛋白(Dhh)。Hh信號(hào)通路有2種膜受體蛋白,一種是膜受體Patched(Ptch),包括Ptch1和Ptch2,具有阻斷和轉(zhuǎn)導(dǎo)Hh信號(hào)的作用。另一種是膜蛋白受體Smoothened(Smo),Smo是一個(gè)7次跨膜蛋白,為G蛋白偶聯(lián)受體類似物,為肝損傷后再生和修復(fù)所必須[27]。 鋅指結(jié)構(gòu)轉(zhuǎn)錄因子Gli家族有Gli1、Gli2、Gli3 3種亞型,3種Gli蛋白表現(xiàn)出不同的調(diào)節(jié)作用和生物學(xué)特性,Gli1通常作為Hh信號(hào)轉(zhuǎn)導(dǎo)的激活劑,而Gli2、Gli3同時(shí)具有轉(zhuǎn)錄激活和抑制功效[28]。Hh信號(hào)通路參與調(diào)節(jié)活化HSC、EMT和血管重塑,在肝纖維化進(jìn)展中發(fā)揮重要作用[29-30]。在健康成人肝臟中,Hh信號(hào)途徑是靜止的,其Hh配體缺乏[31]。然而,在慢性肝損傷中,Hh信號(hào)被異常激活,Hh與Ptch結(jié)合,誘導(dǎo)Smo羧基端的多個(gè)絲氨酸/蘇氨酸殘基發(fā)生磷酸化,Smo被激活,激活的Smo與驅(qū)動(dòng)蛋白樣分子Costal2(COS2)及絲氨酸/蘇氨酸激酶fused(Fus)、Fus抑制劑(Sufu)形成復(fù)合物并從微管上解離出來,使Gli蛋白以全長(zhǎng)形式進(jìn)入細(xì)胞核內(nèi)并激活下游靶基因轉(zhuǎn)錄激活HSC,進(jìn)而促進(jìn)肝纖維化發(fā)生[27,32]。Li等[33]通過Real-time PCR方法檢測(cè)到Hh信號(hào)通路組件Ihh、Smo、Ptch、Gli2和Gli3在HSC中表達(dá),進(jìn)一步研究發(fā)現(xiàn)通過構(gòu)建和減少靶向Ihh、Smo和Gli2的siRNA載體靶基因表達(dá),抑制Hh信號(hào)通路,減少α平滑肌肌動(dòng)蛋白、Ⅰ型膠原蛋白的表達(dá),表明Hh信號(hào)通路參與調(diào)節(jié)HSC激活和膠原分泌。Uschner等[34]通過研究他汀類藥物對(duì)肝硬化和非肝硬化的門靜脈高壓的作用機(jī)制,發(fā)現(xiàn)Hh信號(hào)組分Shh和Gli2蛋白在肝硬化和非肝硬化肝臟中表達(dá)均顯著上調(diào),發(fā)現(xiàn)他汀類藥物抑制非經(jīng)典(Shh/Rho)Hh信號(hào)通路降低肝硬化門靜脈高壓,而激活經(jīng)典(Shh/Gli)Hh信號(hào)通路加重非肝硬化門靜脈高壓。此外,Hh信號(hào)通路可通過與Notch通路、代謝、輻射等的相互作用來調(diào)節(jié)HSC[30,35]。越來越多的以Hh通路作為靶向治療肝纖維化的生物劑或藥物被證實(shí)具有抗纖維化作用[36-37],但仍需提高對(duì)Hh參與肝纖維化發(fā)病機(jī)制的了解,為防治肝纖維化提供新的方向。
整合素是細(xì)胞表面跨膜糖蛋白,構(gòu)成介導(dǎo)細(xì)胞-細(xì)胞和細(xì)胞-ECM相互作用的異二聚體細(xì)胞受體家族。由α和β兩種亞基組成, α和β亞基共同組合表達(dá),并表現(xiàn)出不同的配體特異性。整合素信號(hào)通路在HSC活化、肝纖維化中發(fā)揮重要作用[38]。當(dāng)細(xì)胞受細(xì)胞因子刺激后,整合素激活并黏附于ECM,ECM與細(xì)胞骨架蛋白連接起來形成黏著斑,形成ECM-整合素-細(xì)胞骨架跨膜信號(hào)系統(tǒng),進(jìn)而向細(xì)胞核內(nèi)傳遞信號(hào)。黏著斑激酶(focal adhesion kinase ,FAK)在整合素介導(dǎo)的信號(hào)轉(zhuǎn)導(dǎo)中起重要作用,由整合素激活FAK介導(dǎo)的信號(hào)轉(zhuǎn)導(dǎo)通路如:FAK-Ras-Raf-MAPK/ERK、FAK-PI3K-Akt、FAK-Wnt/β-catenin等對(duì)HSC激活起著至關(guān)重要的作用[39],其中FAK-Ras-Raf-MAPK/ERK通路是目前研究較為清楚的通路。整合素誘導(dǎo)激活FAK,磷酸化的Tyr925與Grb2蛋白結(jié)合啟動(dòng)并激活Ras蛋白,活化的Ras蛋白觸發(fā)MAP-激酶級(jí)聯(lián)如Raf和MAPK依次活化,MAPK易位到細(xì)胞核內(nèi),將信號(hào)專遞至細(xì)胞核內(nèi) ,從而促進(jìn)HSC激活。Bi等[40]研究發(fā)現(xiàn)肝特異性ECM通過激活整合素途徑促進(jìn)骨髓間充質(zhì)干細(xì)胞的肝分化,促進(jìn)急性或慢性肝纖維化的大鼠肝臟的再生,益于肝纖維化逆轉(zhuǎn)。有研究[41]發(fā)現(xiàn)骨膜素可通過激活整合素αvβ5、αvβ3等調(diào)節(jié)HSC激活促進(jìn)小鼠肝纖維化,當(dāng)骨膜素基因水平表達(dá)下調(diào)時(shí),小鼠肝纖維化程度改善,表明骨膜素-αv整合素軸將作為肝纖維化新的治療靶標(biāo)。
肝纖維化的發(fā)生發(fā)展涉及多種信號(hào)通路,其中TGFβ/Smad信號(hào)通路幾乎參與肝臟疾病進(jìn)展的的所有階段,TGFβ1是最強(qiáng)的HSC活化因子,Wnt信號(hào)通路是近年研究的熱點(diǎn)。但仍有一些信號(hào)轉(zhuǎn)導(dǎo)通路機(jī)制尚未完全明了,如整合素信號(hào)通路在肝纖維化中的作用主要是介導(dǎo)細(xì)胞-ECM間的相互作用,但其在HSC激活中的確切作用機(jī)制尚不清晰。因此,為更好的了解肝纖維化的發(fā)病機(jī)制,以下問題需進(jìn)一步解決:(1)各信號(hào)轉(zhuǎn)導(dǎo)通路在肝臟疾病中的確切機(jī)制需進(jìn)一步闡明;(2)各通路間相互協(xié)調(diào),相互促進(jìn),其共同作用分子機(jī)制有待進(jìn)一步研究;(3)肝纖維化被認(rèn)為是可逆的,多種信號(hào)通路參與肝纖維化的發(fā)病機(jī)制,哪些信號(hào)通路可能參與纖維化逆轉(zhuǎn)過程? 這些問題的解決將進(jìn)一步闡明肝纖維化的發(fā)病機(jī)制,為開發(fā)強(qiáng)效的針對(duì)性強(qiáng)的靶向治療小分子物質(zhì)或藥物提供新的理論依據(jù)。
[1] YANG Y, KIM B, PARK YK, et al. Astaxanthin prevents TGFβ1-induced pro-fibrogenic gene expression by inhibiting Smad3 activation in hepatic stellate cells[J]. Biochim Biophys Acta, 2015, 1850(1): 187-185.
[2] CAO Y, XIA YZ, CHEN J, et al. Anti-fibrosis effects of deoxyschizandrin in human hepatic stellate cells[J]. Chin J Clin Pharmacol Ther, 2016, 21(8): 878-883. (in Chinese) 曹媛, 夏延哲, 陳杰, 等. 五味子甲素在人肝星狀細(xì)胞中的抗纖維化作用[J]. 中國(guó)臨床藥理學(xué)與治療學(xué), 2016, 21(8): 878-883.
[3] BATALLER R, BRENNER DA. Liver fibrosis[J]. J Clin Invest, 2005, 115(2): 209-218.
[4] LUO SZ, LI ZH, XU MY, et al.Reversal of liver fibrosis through AG490 inhibition of the TGFβ1-STAT3 pathway[J]. Chin J Hepatol, 2015, 23(12):939-943. (in Chinese) 羅聲政, 李鄭紅, 徐銘益,等. AG490抑制轉(zhuǎn)化生長(zhǎng)因子β1-STAT3信號(hào)通路逆轉(zhuǎn)肝纖維化的機(jī)制研究[J]. 中華肝臟病雜志, 2015, 23(12): 939-943.
[5] ZHOU XL, YU SP. Role of Wnt signaling pathway in progression of liver cirrhosis[J]. J Clin Hepatol, 2015, 31(9): 1540-1542. (in Chinese) 周雪玲, 余水平. Wnt信號(hào)通路對(duì)肝硬化進(jìn)展的影響[J]. 臨床肝膽病雜志, 2015, 31(9): 1540-1542.
[6] REN CZ, HAO LS. Signal transduction involved in activation of hepatic stellate cells[J]. J Clin Hepatol, 2015, 31(3): 452-456. (in Chinese) 任昌鎮(zhèn), 郝禮森. 肝星狀細(xì)胞活化過程中的信號(hào)轉(zhuǎn)導(dǎo)[J]. 臨床肝膽病雜志, 2015, 31(3): 452-456.
[7] FABREGAT I, MORENO-CACERES J, SANCHEZ A, et al. TGF-β signalling and liver disease [J]. FEBS J, 2016, 283(12): 2219-2232.
[8] MASSAGUE J. TGFβ signalling in context [J]. Nat Rev Mol Cell Biol, 2012, 13(10): 616-630.
[9] HANYU A, ISHIDOU Y, EBISAWA T,et al. The N domain of Smad7 is essential for specific inhibition of transforming growth factor-beta signaling [J]. J Cell Biol, 2001, 155(6): 1017-1027.
[10] DOOLEY S, HAMZAVI J, BREIKOPF K, et al. Smad7 prevents activation of hepatic stellate cells and liver fibrosis in rats [J]. Gastroenterology, 2003, 125(1): 178-191.
[11] SCHULTZE-MOSGAU S, BLAESE MA, GRABENBAUER G, et al. Smad-3 and Smad-7 expression following anti-transforming growth factor beta 1 (TGFbeta1)-treatment in irradiated rat tissue[J]. Radiother Oncol, 2004, 70(3): 249-259.
[12] BALTA C, HERMAN H, BOLDURA OM, et al. Chrysin attenuates liver fibrosis and hepatic stellate cell activation through TGF-β/Smad signaling pathway [J]. Chem Biol Interact, 2015, 240: 94-101.
[13] ARGENTOU N, GERMANIDIS G, HYTIROGLOU P, et al. TGF-β signaling is activated in patients with chronic HBV infection and repressed by SMAD7 overexpression after successful antiviral treatment [J]. Inflamm Res, 2016, 65(5): 355-365.
[14] GEISLER F, STRAZZABOSCO M. Emerging roles of Notch signaling in liver disease [J]. Hepatology, 2015, 61(1): 382-392.
[15] CHEN Y, ZHENG S, Qi D, et al. Inhibition of Notch signaling by a γ-secretase inhibitor attenuates hepatic fibrosis in rats[J]. PLoS One, 2012, 7(10): e46512.
[16] ZHANG X, DU G, XU Y, et al. Inhibition of notch signaling pathway prevents cholestatic liver fibrosis by decreasing the differentiation of hepatic progenitor cells into cholangiocytes [J]. Lab Invest, 2016, 96(3): 350-360.
[17] TANRIVERDI G, KAYA-DAGISTANLI F, AYLA S, et al. Resveratrol can prevent CCl 4 -induced liver injury by inhibiting Notch signaling pathway [J]. Histol Histopathol, 2016, 31(7): 769-784.
[18] CHEN YX, WENG ZH, QI D, et al. Effect of Notch signaling on the activation of hepatic stellate cells [J].Chin J Hepatol, 2012, 20(9): 677-682. (in Chinese) 陳毅雄, 翁志宏, 祁丹, 等. 調(diào)控Notch信號(hào)對(duì)肝星狀細(xì)胞活化的影響[J]. 中華肝臟病雜志, 2012, 20(9): 677-682.
[19] ZHANG QD, XU MY, CAI XB, et al. Myofibroblastic transformation of rat hepatic stellate cells: the role of Notch signaling and epithelial-mesenchymal transition regulation [J]. Eur Rev Med Pharmacol Sci, 2015, 19(21): 4130-4138.
[20] BANSAL R, BAARLEN JV, STORM G, et al. The interplay of the Notch signaling in hepatic stellate cells and macrophages determines the fate of liver fibrogenesis [J]. Sci Rep, 2015, 5: 18272.
[21] THOMPSON MD, MONGA SP. WNT/beta-catenin signaling in liver health and disease [J]. Hepatology, 2007, 45(5): 1298-1305.
[22] CHENG JH, SHE H, HAN YP, et al. Wnt antagonism inhibits hepatic stellate cell activation and liver fibrosis [J]. Am J Physiol Gastrointest Liver Physiol, 2008, 294(1): g39-g49.
[23] LIN X, KONG LN, HUANG C, et al. Hesperetin derivative-7 inhibits PDGF-BB-induced hepatic stellate cell activation and proliferation by targeting Wnt/β-catenin pathway[J]. Int Immunopharmacol, 2015, 25(2): 311-320.
[24] MONGA SP. Role of Wnt/β-catenin signaling in liver metabolism and cancer [J]. Int J Biochem Cell Biol, 2011, 43(7): 1021-1029.
[25] ZHANG Y, ZHANG H, PENG R, et al. Mechanism research on Artesunate in the treatment of liver fibrosis by inhibiting miR-154/β-catenin in hepatic stellate cell[J]. China Med Herald, 2016,13(1): 35-38.(in Chinese) 張英, 張洪, 彭銳, 等.青蒿琥酯抑制肝星狀細(xì)胞microRNA-154/β-catenin治療肝纖維化的機(jī)制研究[J].中國(guó)醫(yī)藥導(dǎo)報(bào), 2016, 13(1): 35-38.
[26] MA ZG, LV XD, ZHAN LL, et al. Human urokinase-type plasminogen activator gene-modified bone marrow-derived mesenchymal stem cells attenuate liver fibrosis in rats by down-regulating the Wnt signaling pathway [J]. World J Gastroenterol, 2016, 22(6): 2092-2103.
[27] MICHELOTTI GA, XIE G, SWIDERSKA M, et al. Smoothened is a master regulator of adult liver repair[J]. J Clin Invest, 2013, 123(6): 2380-2394.
[28] VELCHETI V, GOVINDAN R. Hedgehog signaling pathway and lung cancer [J]. J Thorac Oncol, 2007, 2(1): 7-10.[29] PEREIRA TA, XIE G, CHOI SS, et al. Macrophage-derived Hedgehog ligands promotes fibrogenic and angiogenic responses in human schistosomiasis mansoni [J]. Liver Int, 2013, 33(1): 149-161.
[30] XIE G, KARACA G, SWIDERSKA-SYN M, et al. Cross-talk between Notch and Hedgehog regulates hepatic stellate cell fate in mice[J]. Hepatology, 2013, 58(5): 1801-1813.
[31] CHE L, YUAN YH, JIA J, et al. Activation of sonic hedgehog signaling pathway is an independent potential prognosis predictor in human hepatocellular carcinoma patients[J]. Chin J Cancer Res, 2012, 24(4): 323-331.
[32] HOOPER JE, SCOTT MP. Communicating with Hedgehogs [J]. Na Rev Mol Cell Biol, 2005, 6(4): 306-317.
[33] LI T, LENG XS, ZHU JY, et al. Suppression of hedgehog signaling regulates hepatic stellate cell activation and collagen secretion [J]. Int J Clin Exp Pathol, 2015, 8(11): 14574-14579.
[34] USCHNER FE, RANABHAT G, CHOI SS, et al. Statins activate the canonical hedgehog-signaling and aggravate non-cirrhotic portal hypertension, but inhibit the non-canonical hedgehog signaling and cirrhotic portal hypertension [J]. Sci Rep, 2015, 5: 14573.
[35] YANG JJ, TAO H, LI J. Hedgehog signaling pathway as key player in liver fibrosis: new insights and perspectives [J]. Expert Opin Ther Targets, 2014, 18(9): 1011-1021.
[36] YU F, LU Z,CHEN B, et al. Salvianolic acid B-induced microRNA-152 inhibits liver fibrosis by attenuating DNMT1‐mediated Patched1 methylation[J]. J Cell Mol Med, 2015, 19(11): 2617-2632.
[37] EIAGROUDY NN, EINAGA RN, EIRAZEQ RA, et al. Forskolin, a hedgehog signaling inhibitor, attenuates carbon tetrachloride-induced liver fibrosis in rats [J]. Br J Pharmacol, 2016, 173(22): 3248-3260.
[38] ZHANG K, JIANG MN, ZHANG CH, et al. Effect of Gan-fu-kang compound on hepatic expression of integrin α5β1/FAK signal pathway in carbon tetrachloride-induced liver fibrosis in rats [J].J Clin Hepatol, 2012, 15(2): 104-107. (in Chinese) 張坤, 姜妙娜, 張彩華, 等. 肝復(fù)康對(duì)肝纖維化大鼠肝組織整合素α5β1/FAK信號(hào)通路的調(diào)節(jié)作用[J]. 實(shí)用肝臟病雜志, 2012, 15(2): 104-107.
[39] ELAHARKAWY AM, OAKLEY F, MANN DA. The role and regulation of hepatic stellate cell apoptosis in reversal of liver fibrosis [J]. Apoptosis, 2005, 10(5): 927-939.
[40] BI H, MING L, CHENG R, et al. Liver extracellular matrix promotes BM-MSCs hepatic differentiation and reversal of liver fibrosis through activation of integrin pathway[J]. J Tissue Eng Regen Med, 2016. [Epub ahead of print]
[41] SUGIYAMA A, KANNO K, NISHIMICHI N, et al. Periostin promotes hepatic fibrosis in mice by modulating hepatic stellate cell activation via αv integrin interaction[J]. J Gastroenterol, 2016, 51(12): 1161-1174.
引證本文:PENG Q, ZHAO SJ, LI W. Research advances in signaling pathways involved in the development of hepatic fibrosis[J]. J Clin Hepatol, 2017, 33(5): 954-958. (in Chinese) 彭琴, 趙紳君, 李武. 肝纖維化相關(guān)信號(hào)轉(zhuǎn)導(dǎo)通路研究進(jìn)展[J]. 臨床肝膽病雜志, 2017, 33(5): 954-958.
(本文編輯:王 瑩)
Research advances in signaling pathways involved in the development of hepatic fibrosis
PENGQin,ZHAOShenjun,LIWu.
(DepartmentofInfectiousDiseases,TheFirstAffiliatedHospitalofKunmingMedicalUniversity,Kunming650000,China)
Liver fibrosis is a pathological process for the liver to repair various chronic liver injuries and may eventually progress to liver cirrhosis, liver failure, or even liver cancer. Therefore, early intervention and treatment of liver fibrosis is of particular importance. This article summarizes the latest research advances in the roles of TGF-β/Smad signaling pathway, Notch signaling pathway, Wnt signaling pathway, Hedgehog signaling pathway, and integrin signaling pathway in the pathogenesis of liver fibrosis and points out that these signaling pathways play an extremely important role in the development and progression of liver fibrosis and may provide new directions for the treatment of liver fibrosis
liver cirrhosis; signal transduction; hepatic stellate cells; review
10.3969/j.issn.1001-5256.2017.05.035
2016-11-14;
2017-01-19。
云南省自然科學(xué)基金(2009CD087)
彭琴(1990-),女, 主要從事肝病的基礎(chǔ)及臨床研究。
李武,電子信箱:liwukm@126.com。
R575.2
A
1001-5256(2017)05-0954-05