鄧 娜, 夏桂玲, 楊 龍, 何炯紅, 李 雋, 田 銀, 楊 英
(貴州醫(yī)科大學(xué)附屬人民醫(yī)院心內(nèi)科,貴州 貴陽(yáng) 550002)
AT1R-CaN信號(hào)通路在乳鼠肥大心室肌細(xì)胞Nav1.5蛋白表達(dá)調(diào)控中的作用*
鄧 娜, 夏桂玲, 楊 龍△, 何炯紅, 李 雋, 田 銀, 楊 英
(貴州醫(yī)科大學(xué)附屬人民醫(yī)院心內(nèi)科,貴州 貴陽(yáng) 550002)
目的: 探討血管緊張素Ⅱ 1型受體(AT1R)-鈣調(diào)神經(jīng)磷酸酶(CaN)信號(hào)通路在乳鼠肥大心室肌細(xì)胞Nav1.5 mRNA和蛋白表達(dá)調(diào)控中的作用。方法: 分離1日齡SD乳大鼠心室獲心室肌細(xì)胞,分為對(duì)照(control)組、苯腎上腺素(PE)組、 氯沙坦(Los)+PE組和環(huán)孢素A(CsA)+PE組;重組腺病毒shRNA干擾載體介導(dǎo)CaN A亞基β亞型(CnAβ)基因沉默分為腺病毒空載體(Ad-Null)組、Ad-Null+PE組、重組腺病毒CnAβshRNA1(Ad-CnAβshRNA1)組和Ad-CnAβshRNA1+PE組。實(shí)時(shí)熒光定量逆轉(zhuǎn)錄PCR檢測(cè)腦鈉尿肽(BNP)、β-肌球蛋白重鏈(β-MHC)和Nav1.5的mRNA表達(dá)。Western blot法檢測(cè)全細(xì)胞提取蛋白CnAβ和Nav1.5的表達(dá)。結(jié)果: PE干預(yù)24 h明顯增加心室肌細(xì)胞蛋白/DNA比值、細(xì)胞BNP和β-MHC的mRNA表達(dá)以及細(xì)胞面積;上調(diào)CnAβ蛋白表達(dá),下調(diào)Nav1.5蛋白表達(dá)。CsA和Los干預(yù)明顯抑制PE干預(yù)的上述效應(yīng)。PE下調(diào)Nav1.5的mRNA表達(dá),但Los和CsA不能抑制此種效應(yīng)。Ad-CnAβshRNA1沉默乳鼠心室肌細(xì)胞CnAβ基因抑制了PE對(duì)BNPmRNA的上調(diào)作用,抑制了PE對(duì)Nav1.5蛋白表達(dá)的下調(diào)作用。結(jié)論:AT1R-CaN信號(hào)通路參與調(diào)控培養(yǎng)的乳鼠肥大心室肌細(xì)胞Nav1.5蛋白表達(dá)的調(diào)控。
心肌肥大; 室性心律失常; 鈉離子通道; 血管緊張素Ⅱ 1型受體; 鈣調(diào)神經(jīng)磷酸酶
心臟肥大是心臟在長(zhǎng)期超負(fù)荷下的一種有效代償,但終因心室重構(gòu)失代償而發(fā)展為充血性心力衰竭(congestive heart failure,CHF)[1]。心臟性猝死(sudden cardiac death,SCD)是CHF患者主要的死亡原因[2],超過(guò)85%的嚴(yán)重CHF患者體表心電圖記錄到室性心律失常[3]。心室動(dòng)作電位由一系列離子通道所產(chǎn)生的離子流形成。心室動(dòng)作電位時(shí)程(action potential duration,APD)延長(zhǎng)是心衰的共同特征[4],由此產(chǎn)生興奮性恢復(fù)延遲,易發(fā)早期和晚期后除極,還將進(jìn)一步誘發(fā)沖動(dòng)傳導(dǎo)和折返異常[5],即心室電重構(gòu)。離子通道是產(chǎn)生動(dòng)作電位的分子基礎(chǔ),離子通道重構(gòu)是心室電重構(gòu)的重要基礎(chǔ)。
鈉離子通道是由結(jié)構(gòu)蛋白α亞單位Nav1.5、輔助蛋白β亞單位以及一些調(diào)節(jié)性蛋白所構(gòu)成的大分子復(fù)合體,其中Nav1.5是完成通道功能的主要結(jié)構(gòu),可引起心肌細(xì)胞動(dòng)作電位的快速上升,同時(shí)使沖動(dòng)在心肌組織間快速傳導(dǎo)[6],鈉離子通道的這些功能特點(diǎn),使其在室性心律失常相關(guān)的SCD中起到了重要作用[7]。
研究表明血管緊張素Ⅱ 1型受體(angiotensin Ⅱ type 1 receptor,AT1R)和鈣調(diào)神經(jīng)磷酸酶(calcineurin,CaN)分別通過(guò)一定途徑參與了心肌肥大及肥大心肌離子通道重構(gòu)[8-9],而且CaN作為AT1R的下游信號(hào)分子促進(jìn)心肌肥大的發(fā)生發(fā)展[10],但AT1R是否通過(guò)CaN參與肥大心室肌細(xì)胞鈉離子通道重構(gòu)的調(diào)控尚不明確。本研究旨在通過(guò)體外培養(yǎng)原代心室肌細(xì)胞,探討AT1R-CaN信號(hào)通路對(duì)肥大心室肌細(xì)胞鈉離子通道重構(gòu)的調(diào)控作用。
1 主要試劑與儀器
高糖DMEM培養(yǎng)基、特優(yōu)級(jí)胎牛血清(fetal bovine serum,F(xiàn)BS)、胰蛋白酶、II型膠原酶和5-溴脫氧尿嘧啶核苷(5-bromo-2’-deoxyuridine,BrdU)均為Gibco產(chǎn)品;介導(dǎo)沉默CaN A亞基β亞型(CnAβ)基因的重組腺病毒shRNA干擾載體 (Ad-CnAβshRNA)及空載體(Ad-Null)由漢恒生物科技有限公司包裝制備;苯腎上腺素(phenylephrine, PE)、環(huán)孢素A(cyclosporin A, CsA)和氯沙坦(losartan,Los)均為Sigma產(chǎn)品;兔抗大鼠α-橫紋肌肌動(dòng)蛋白(alpha-sarcomeric actin,α-SCA)抗體、山羊抗兔FITC-IgG和BCA蛋白質(zhì)定量試劑盒購(gòu)自北京中杉金橋公司;DNA/RNA/蛋白質(zhì)分離試劑盒為Omega產(chǎn)品;兔源Nav1.5抗體購(gòu)自CST;兔源CnAβ抗體購(gòu)自Merck Millipore;TransScript?First-Strand cDNA Synthesis SuperMix和TransStart? Top Green qPCR SuperMix購(gòu)自北京全式金生物技術(shù)有限公司;其余試劑均為進(jìn)口分裝或國(guó)產(chǎn)分析純。恒溫磁力攪拌器(金壇市科析儀器有限公司);Bio-Rad 550酶標(biāo)儀、Bio-Rad化學(xué)發(fā)光儀(Bio-Rad);倒置顯微鏡(Olympus);熒光正置顯微鏡(Leica);PCR儀(MJ Research)。
2 實(shí)驗(yàn)動(dòng)物
1日齡SD乳大鼠,雌雄不限,清潔級(jí)別,由北京大學(xué)醫(yī)學(xué)部動(dòng)物中心提供,許可證號(hào)為SYXK(京)2011-0039。
3 實(shí)驗(yàn)方法
3.1 乳鼠心室肌細(xì)胞分離與培養(yǎng) 分離乳鼠左心室,保留室間隔,酶解法分離細(xì)胞,差速貼壁與BrdU結(jié)合純化獲得心室肌細(xì)胞。
3.2 心室肌細(xì)胞的鑒定 細(xì)胞爬片培養(yǎng)48 h,免疫熒光法檢測(cè)α-SCA抗原。以乳鼠心臟成纖維細(xì)胞作為陰性對(duì)照。
3.3 最佳Ad-CnAβshRNA的篩選 原代心室肌細(xì)胞培養(yǎng)48 h,以1×106個(gè)細(xì)胞數(shù)計(jì)算,選取MOI=50對(duì)應(yīng)病毒量的 Ad-CnAβshRNA1、Ad-CnAβshRNA2、Ad-CnAβshRNA3及Ad-Null,感染心室肌細(xì)胞48 h,免疫印跡檢測(cè)各組心室肌細(xì)胞CnAβ蛋白表達(dá)情況,CnAβ蛋白表達(dá)量最低所對(duì)應(yīng)的Ad-CnAβshRNA為最佳Ad-CnAβshRNA。結(jié)果顯示Ad-CnAβshRNA1感染心室肌細(xì)胞48 h CnAβ蛋白表達(dá)下降最為顯著,用于后續(xù)實(shí)驗(yàn)。
3.4 細(xì)胞干預(yù)分組 (1) 試劑干預(yù):細(xì)胞培養(yǎng)48 h,更換無(wú)血清DMEM培養(yǎng)基,分組干預(yù)。對(duì)照組細(xì)胞不予干預(yù),共培養(yǎng)26 h;PE組細(xì)胞培養(yǎng)2 h后給予PE 100 μmol/L,干預(yù)24 h;Los+PE組細(xì)胞給予氯沙坦10 μmol/L預(yù)處理2 h,繼之加入PE 100 μmol/L干預(yù)24 h;CsA+PE組細(xì)胞給予環(huán)孢素10 μg/L預(yù)處理2 h,繼之加入PE 100 μmol/L干預(yù)24 h。(2) 基因沉默干預(yù):細(xì)胞培養(yǎng)48 h,更換成無(wú)血清無(wú)雙抗DMEM培養(yǎng)基,分組干預(yù)。Ad-Null:加入MOI=50對(duì)應(yīng)量的腺病毒空載體,感染6 h后更換成2倍體積新鮮無(wú)血清無(wú)雙抗DMEM,繼續(xù)培養(yǎng)至48 h。Ad-Null+PE組:加入MOI=50對(duì)應(yīng)量的腺病毒空載體,感染6 h后換成2倍體積新鮮無(wú)血清無(wú)雙抗DMEM,感染24 h后加PE 100 μmol/L,繼續(xù)培養(yǎng)至48 h。Ad-CnAβshRNA1組:加入MOI=50對(duì)應(yīng)量的具有最佳干擾效果的Ad-CnAβshRNA1,感染6 h后換成2倍體積新鮮無(wú)血清無(wú)雙抗DMEM,繼續(xù)培養(yǎng)至48 h。Ad-CnAβshRNA1+PE組:加入MOI=50對(duì)應(yīng)的Ad-CnAβshRNA1,感染6 h后換成2倍體積新鮮無(wú)血清無(wú)雙抗DMEM,轉(zhuǎn)染24 h后加PE 100 μmol/L,繼續(xù)培養(yǎng)至48 h。
3.5 肥大刺激有效性鑒定 按照Omega DNA/RNA/蛋白質(zhì)分離試劑盒說(shuō)明測(cè)定共提取細(xì)胞DNA和蛋白,并分別測(cè)其含量,計(jì)算蛋白/DNA比值。RT-qPCR測(cè)定心室肌細(xì)胞腦鈉尿肽(brain natriuretic peptide, BNP)和β-肌球蛋白重鏈(β-myosin heavy chain, β-MHC)的mRNA表達(dá)。結(jié)晶紫染色拍照,軟件測(cè)量細(xì)胞面積大小。
3.6 RT-qPCR檢測(cè)mRNA水平 利用Oligo 6.0軟件設(shè)計(jì)引物(序列見(jiàn)表1)。TRIzol法提取細(xì)胞總mRNA,按TransScript?First-Strand cDNA Synthesis SuperMix和TransStart?Top Green qPCR SuperMix說(shuō)明書(shū)的步驟檢測(cè)并計(jì)算各基因的mRNA相對(duì)表達(dá)量。
表1 各基因的引物序列
3.7 Western blot實(shí)驗(yàn) 提取細(xì)胞總蛋白,測(cè)定蛋白濃度。取40 μg總蛋白上樣,電泳后轉(zhuǎn)移蛋白至NC膜上,5%脫脂牛奶封閉1 h。加兔抗大鼠GAPDH抗體(1∶1 000),兔抗大鼠Nav1.5抗體(1∶1 000)或兔抗大鼠CnAβ抗體(1∶500),4 ℃孵育過(guò)夜。充分漂洗后,加入辣根過(guò)氧化酶標(biāo)記的 II 抗室溫孵育1 h。充分漂洗后顯影、攝片并進(jìn)行條帶灰度定量測(cè)定。
4 統(tǒng)計(jì)學(xué)處理
采用Graphpad Prism 6軟件進(jìn)行統(tǒng)計(jì)分析。數(shù)據(jù)采用均數(shù)±標(biāo)準(zhǔn)差(mean±SD)表示。應(yīng)用單因素方差分析(one-way ANOVA)及Tukey檢驗(yàn)進(jìn)行多組間兩兩比較,以P<0.05為差異有統(tǒng)計(jì)學(xué)意義。
1 原代心室肌細(xì)胞的鑒定
細(xì)胞培養(yǎng)48 h,倒置顯微鏡下可見(jiàn)心室肌細(xì)胞呈長(zhǎng)梭形、多邊形或不規(guī)則形,核仁清晰可見(jiàn),單個(gè)細(xì)胞貼壁后可見(jiàn)節(jié)律性舒縮搏動(dòng)。α-SCA抗體免疫熒光染色心室肌細(xì)胞陽(yáng)性,成纖維細(xì)胞陰性,見(jiàn)圖1。
2 肥大刺激有效性鑒定
給予PE刺激24 h,心室肌細(xì)胞蛋白/DNA比值增大,BNP和β-MHC的mRNA表達(dá)明顯上調(diào),心室肌細(xì)胞表面積增大。該結(jié)果提示PE刺激心室肌細(xì)胞肥大。CsA和Los干預(yù)抑制PE引起的上述效應(yīng),見(jiàn)圖2~4。
3 Los和CsA抑制了PE刺激增加的心室肌細(xì)胞CnAβ的蛋白表達(dá)
Figure 1.α-Sarcometric actin (α-SCA) immunofluorescence staining of ventricular myocytes and fibroblast (×100). A: ventricular myocytes with α-SCA immunofluorescence staining; B: ventricular myocyte nuclei with DAPI staining; C: cardiac fibroblasts with α-SCA immunofluorescence staining; D: cardiac fibroblast nuclei with DAPI staining.
圖1 心室肌細(xì)胞和成纖維細(xì)胞α-橫紋肌肌動(dòng)蛋白免疫熒光染色
給予PE刺激心室肌細(xì)胞24 h,細(xì)胞CnAβ蛋白表達(dá)明顯上調(diào);Los和CsA顯著抑制了PE的此種效應(yīng),見(jiàn)圖5。
4 Los和CsA對(duì)PE刺激Nav1.5的mRNA和蛋白表達(dá)的調(diào)控作用
給予PE刺激心室肌細(xì)胞24 h,細(xì)胞Nav1.5的mRNA和蛋白表達(dá)明顯下調(diào); Los和CsA抑制PE刺激的Nav1.5蛋白表達(dá)下調(diào),但未能抑制PE誘導(dǎo)的Nav1.5 mRNA表達(dá)下調(diào),見(jiàn)圖6。
Figure 2.Pretreatment of neonatal rat ventricular myocytes with Los or CsA blocked the ability of PE to increase the protein-to-DNA ratio. Mean±SD.n=4.**P<0.01vscontrol group;##P<0.01vsPE group.
圖2 Los和CsA抑制PE刺激增加的心室肌細(xì)胞蛋白/DNA比值
Figure 3.Pretreatment of neonatal rat ventricular myocytes with Los or CsA blocked the ability of PE to increase the mRNA expression of BNP and β-MHC. Mean±SD.n=3.*P<0.05,**P<0.01vscontrol group;#P<0.05,##P<0.01vsPE group.
圖3 Los和CsA抑制PE刺激增加的心室肌細(xì)胞肥大基因表達(dá)
5 Ad-CnAβshRNA1干擾CnAβ表達(dá)抑制PE增加的BNP mRNA表達(dá)
心室肌細(xì)胞培養(yǎng)48 h,Ad-CnAβshRNA1和Ad-Null分別感染心室肌細(xì)胞24 h后給予PE刺激24 h。結(jié)果顯示PE刺激感染Ad-Null的心室肌細(xì)胞,其BNP的mRNA表達(dá)明顯上調(diào);而在感染Ad-CnAβshRNA1的心室肌細(xì)胞,PE刺激不能使細(xì)胞BNP的mRNA表達(dá)上調(diào),見(jiàn)圖7。
6 Ad-CnAβshRNA1干擾CnAβ表達(dá)對(duì)PE刺激Nav1.5的蛋白表達(dá)的調(diào)控作用
心室肌細(xì)胞培養(yǎng)48 h,Ad-CnAβshRNA1和Ad-Null分別感染心室肌細(xì)胞24 h后給予PE刺激24 h。結(jié)果顯示感染Ad-Null的細(xì)胞Nav1.5蛋白表達(dá)明顯下調(diào);感染Ad-CnAβshRNA1的細(xì)胞Nav1.5蛋白表達(dá)無(wú)明顯下調(diào),見(jiàn)圖8。
Figure 4.Pretreatment of neonatal rat ventricular myocytes with Los or CsA blocked the ability of PE to increase the size of the cell surface (crystal violet staining, ×100). A: control group; B: PE group; C: Los+PE group; D: CsA+PE group. Mean±SD.n=3.**P<0.01vscontrol group;#P<0.05,##P<0.01vsPE group.
圖4 Los和CsA抑制PE刺激增加的心室肌細(xì)胞表面積
Figure 5.Pretreatment of neonatal rat ventricular myocytes with Los or CsA blocked the ability of PE to increase protein expression of CnAβ. Mean±SD.n=5.**P<0.01vscontrol group;##P<0.01vsPE group.
圖5 Los和CsA抑制PE刺激增加的心室肌細(xì)胞CnAβ的蛋白表達(dá)
Figure 6.Los and CsA both increased the mRNA (A;n=3) and protein (B;n=5) expression of Nav1.5 reduced by PE treatment. Mean±SD.*P<0.05vscontrol group;#P<0.05,##P<0.01vsPE group.
圖6 Los和CsA增加PE所抑制的Nav1.5蛋白表達(dá)
Figure 7.Knockdown ofCnAβexpression in the neonatal rat ventricular myocytes using Ad-CnAβshRNA1 inhibited the ability of PE to increase the mRNA expression of BNP. The data was presented by relative value of Ad-Null group. Mean±SD.n=3.*P<0.05vsAd-Null group;#P<0.05vsAd-Null+PE group.
圖7 Ad-CnAβshRNA1敲減CnAβ表達(dá)抑制PE增加BNP mRNA表達(dá)的效應(yīng)
心肌肥大、心衰患者室性心律失常風(fēng)險(xiǎn)顯著增加,其機(jī)制之一是存在心室電重構(gòu),如心室動(dòng)作電位時(shí)程、易發(fā)早期和晚期后除極、沖動(dòng)傳導(dǎo)和折返異常等[5]。離子通道重構(gòu)是這些心臟電生理變化的重要基礎(chǔ)。
α1-腎上腺素受體(α1-adrenergic receptors,α1-ARs)屬于G蛋白偶聯(lián)受體(G protein-coupled receptor,GPCRs),是腎上腺素、去甲腎上腺素等兒茶酚胺類(lèi)心臟肥大效應(yīng)的重要調(diào)節(jié)因素[11]。本研究結(jié)果顯示,給予PE干預(yù)24h的原代心室肌細(xì)胞其蛋白/DNA比值明顯增高,BNP和β-MHC的mRNA表達(dá)上調(diào),心室肌細(xì)胞表面積顯著增加,均提示PE誘導(dǎo)了心室肌細(xì)胞肥大[12]。肥大因素刺激心肌局部腎素-血管緊張素系統(tǒng)(renin-angiotensin system,RAS)被激活,細(xì)胞內(nèi)AT1R活化,參與了促心肌肥大過(guò)程。CaN是AT1R下游的信號(hào)分子之一,在心肌肥大的發(fā)生發(fā)展過(guò)程中起著重要作用[13]。本研究使用PE誘導(dǎo)心室肌細(xì)胞肥大,再分別用AT1R阻斷劑Los、CaN抑制劑CsA和Ad-CnAβshRNA特異性沉默心室肌細(xì)胞CnAβ基因表達(dá),阻斷AT1R-CaN信號(hào)通路不同位點(diǎn),均明顯抑制了PE的促肥大效應(yīng),說(shuō)明AT1R-CaN信號(hào)通路參與PE誘導(dǎo)的乳大鼠心室肌細(xì)胞肥大。但是AT1R-CaN信號(hào)通路是否參與肥大心室肌細(xì)胞中離子通道重構(gòu),未見(jiàn)相關(guān)報(bào)道。
Figure 8.Knockdown ofCnAβexpression in the neonatal rat ventricular myocytes using Ad-CnAβshRNA1 inhibited the ability of PE to reduce protein expression of Nav1.5. Mean±SD.n=5.*P<0.05vsAd-Null group;#P<0.05vsAd-Null+PE group.
圖8 Ad-CnAβshRNA1敲減CnAβ表達(dá)增加PE所抑制的Nav1.5蛋白表達(dá)
鈉離子通道是心肌細(xì)胞快速去極化的主要組成成分,形成動(dòng)作電位上升支,隨后引發(fā)興奮收縮偶聯(lián)級(jí)聯(lián)[14]。研究發(fā)現(xiàn)心衰患者除動(dòng)作電位時(shí)程改變外,心肌傳導(dǎo)異常也是SCD風(fēng)險(xiǎn)增高的主要原因[15]。鈉離子通道的活性是心室肌細(xì)胞興奮傳導(dǎo)的決定因素之一。鈉離子通道的丟失能引起興奮傳導(dǎo)失敗或傳導(dǎo)減慢,導(dǎo)致心衰心肌離散度增強(qiáng)從而促進(jìn)折返和室性心律失常。本研究PE可致肥大心室肌細(xì)胞鈉離子通道亞基Nav1.5的mRNA和蛋白表達(dá)下調(diào),意味著PE誘導(dǎo)的心室肌肥大存在鈉離子通道丟失,可能導(dǎo)致肥大心室肌細(xì)胞中鈉離子通道功能減弱,繼而快速鈉電流減小,引起心室肌細(xì)胞興奮傳導(dǎo)異常等電重構(gòu)現(xiàn)象及興奮收縮偶聯(lián)的異常。這在一定程度上解釋了心衰患者易發(fā)SCD與Nav1.5表達(dá)異常引起心室電重構(gòu)有關(guān)。本研究Los、CsA和Ad-CnAβshRNA特異性沉默心室肌細(xì)胞CnAβ基因表達(dá)均在蛋白水平抑制PE的上述效應(yīng),然而我們的研究并未發(fā)現(xiàn)分別阻斷AT1R和CaN能抑制PE對(duì)肥大心室肌細(xì)胞Nav1.5 mRNA表達(dá)的影響,說(shuō)明AT1R-CaN信號(hào)通路在蛋白水平調(diào)控PE對(duì)心室肌細(xì)胞Nav1.5的影響,可能是通過(guò)影響Nav1.5的翻譯效率或Nav1.5的穩(wěn)定性,從而影響Nav1.5的合成或降解,這將在今后的實(shí)驗(yàn)中進(jìn)一步驗(yàn)證。近期的研究表明在過(guò)表達(dá)AT1R的轉(zhuǎn)基因小鼠中心室肌鈉通道表達(dá)下調(diào),鈉離子流密度下降了60%,動(dòng)作電位上升的最大速度減慢,并導(dǎo)致了QRS波時(shí)限增寬,均支持我們的上述研究結(jié)果[15]。
綜上所述,AT1R-CaN信號(hào)通路參與PE誘導(dǎo)的乳鼠肥大心室肌細(xì)胞Nav1.5蛋白表達(dá)的調(diào)控。
[1] Shimizu I, Minamino T. Physiological and pathological cardiac hypertrophy[J]. J Mol Cell Cardiol, 2016, 97(2): 245-262.
[2] Mareev VY, Mareev YV. Methods of prevention of sudden death in chronic heart failure[J]. Kardiologiia, 2015, 55(9): 72-83.
[3] Lane RE, Cowie MR, Chow AW. Prediction and prevention of sudden cardiac death in heart failure[J]. Heart, 2005, 91(5):674-680.
[4] Wang Y, Hill JA. Electrophysiological remodeling in heart failure[J]. J Mol Cell Cardiol, 2010, 48(4):619-632.
[5] Wang Y, Tandan S, Hill JA. Calcineurin-dependent ion channel regulation in heart[J]. Trends Cardiovasc Med, 2014, 24(1):14-22.
[6] Bezzina CR, Rook MB, Groenewegen WA, et al. Compound heterozygosity for mutations (W156X and R225W) in SCN5A associated with severe cardiac conduction disturbances and degenerative changes in the conduction system[J]. Circ Res, 2003, 92(2):159-168.
[7] Antzelevitch C. Brugada syndrome[J]. Pacing Clin Electrophysiol, 2006, 29(10): 1130-1159.
[8] Zhou C, Ziegler C, Birder LA, et al. Angiotensin II and stretch activate NADPH oxidase to destabilize cardiac Kv4.3 channel mRNA[J]. Circ Res, 2006, 98(8):1040-1047.
[9] Huo R, Sheng Y, Guo WT, et al. The potential role of Kv4.3 K+channel in heart hypertrophy[J]. Channels, 2014, 8(3):203-209.
[10]Rohini A, Agrawal N, Koyani CN, et al. Molecular targets and regulators of cardiac hypertrophy[J]. Pharmacol Res, 2010, 61(4):269-280.
[11]Cotecchia S, Del Vescovo CD, Colella M, et al. The α1-adrenergic receptors in cardiac hypertrophy: signaling mechanisms and functional implications[J]. Cell Signalling, 2015, 27(10):1984-1993.
[12]Huang S, Zou X, Zhu JN, et al. Attenuation of micro-RNA-16 derepresses the cyclins D1, D2 and E1 to provoke cardiomyocyte hypertrophy[J]. J Cell Mol Med, 2015, 19(3): 608-619.
[13]Wu X, Zhang T, Bossuyt J, et al. Local InsP3-dependent perinuclear Ca2+signaling in cardiac myocyte excitation-transcription coupling[J]. J Clin Invest, 2006, 116(3): 675-682.
[14]Zaklyazminskaya E, Dzemeshkevich S. The role of mutations in theSCN5Agene in cardiomyopathies[J]. Biochim Biophys Acta, 2016, 1863(7 Pt B):1799-1805.
[15]Mathieu S, El Khoury N, Rivard K, et al. Reduction in Na+current by angiotensin II is mediated by PKCalpha in mouse and human-induced pluripotent stem cell-derived cardiomyocytes[J]. Heart Rhythm, 2016, 13(6):1346-1354.
(責(zé)任編輯: 林白霜, 羅 森)
RoleofAT1R-CaNsignalingpathwayinregulationofNav1.5proteinexpressioninhypertrophicventricularmyocytesfromneonatalrats
DENGNa,XIAGui-ling,YANGLong,HEJiong-hong,LIJun,TIANYin,YANGYing
(DepartmentofCardiology,GuizhouProvincialPeople’sHospital,ThePeople’sHospitalofGuizhouMedicalUniversity,Guiyang550002,China.E-mail:yanglong1001@163.com)
AIM: To investigate the effect of angiotensin II type 1 receptor (AT1R)-calcineurin (CaN) signaling pathway on the expression of sodium current channel Nav1.5 at mRNA and protein levels in the hypertrophic ventricular myocytes from neonatal rats. METHODS: The ventricular myocytes were isolated from the ventricles of 1-day-old neonatal Sprague-Dawley rats and were divided into 4 groups according to different drug intervention as control group, phenylephrine (PE) group, losartan (Los)+PE group and cyclosporin A (CsA)+PE group. The method of RNA interference mediated by adenovirus carrying short hairpin RNA (shRNA) was used to knock down the gene which encodes the beta subtype of CaN A subunit (CnAβ) and the cells were divided into 4 groups as Ad-Null group, Ad-Null+PE group, Ad-CnAβshRNA1 group and Ad-CnAβshRNA1+PE group. The mRNA expression of brain natriuretic peptide (BNP), β-myosin heavy chain (β-MHC) and Nav1.5 was detected by RT-qPCR. The protein levels of CnAβ and Nav1.5 in the whole-cell extracts were determined by Western blot analysis. RESULTS: Treatment of the neonatal rat ventricular myocytes with PE for 24 h increased the protein-to-DNA ratio and the mRNA expression of BNP and β-MHC. The size of the cell surface was also increased after PE treatment. Treatment of the cells with PE increased the protein expression of CnAβ, and reduced the protein expression of Nav1.5. Both Los and CsA prevented those effects of PE. The mRNA expression of Nav1.5 was reduced by PE, and no significant difference of Nav1.5 mRNA expression among PE group, Los+PE group and CsA+PE group was observed. Silencing ofCnAβin the neonatal rat ventricular myocytes using Ad-CnAβshRNA1 inhibited the ability of PE to increase the mRNA expression of BNP, and diminished the ability of PE to reduce the protein expression of Nav1.5. CONCLUSION: AT1R-CaN signaling pathway participates in regulating protein expression of Nav1.5 in the hypertrophic ventricular myocytes from neonatal rats.
Cardiac hypertrophy; Ventricular arrhymaias; Sodium channels; Angiotensin II type 1 receptor; Calcineurin
1000- 4718(2017)02- 0221- 06
2016- 08- 02
2016- 12- 01
國(guó)家自然科學(xué)基金資助項(xiàng)目(No. 81260040);貴州省科學(xué)技術(shù)基金資助項(xiàng)目(黔科合J字[2012]2239號(hào))
R
A
10.3969/j.issn.1000- 4718.2017.02.005
雜志網(wǎng)址: http://www.cjpp.net
△通訊作者 Tel: 0851-85937194; E-mail: yanglong1001@163.com