国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

結(jié)核分枝桿菌耐利福平機(jī)制及其研究進(jìn)展

2017-02-27 13:43:04向敏綜述張泓陳玲審校
海南醫(yī)學(xué) 2017年17期
關(guān)鍵詞:利福平亞基基因突變

向敏綜述張泓,陳玲審校

(遵義醫(yī)學(xué)院附屬醫(yī)院呼吸二科,貴州遵義563003)

結(jié)核分枝桿菌耐利福平機(jī)制及其研究進(jìn)展

向敏綜述張泓,陳玲審校

(遵義醫(yī)學(xué)院附屬醫(yī)院呼吸二科,貴州遵義563003)

結(jié)核病是嚴(yán)重危害公眾健康的全球性公共衛(wèi)生問題,耐藥結(jié)核病尤其是耐多藥結(jié)核病的傳播使結(jié)核病疫情更加嚴(yán)峻。利福平是重要的一線抗結(jié)核藥之一,并且作為耐多藥結(jié)核病的替代標(biāo)志物。因此了解結(jié)核分枝桿菌耐利福平機(jī)制對(duì)預(yù)防及控制耐藥結(jié)核病有著重要意義。本文就結(jié)核分枝桿菌耐利福平機(jī)制及其研究進(jìn)展進(jìn)行綜述。

結(jié)核分枝桿菌;利福平;耐藥;機(jī)制

結(jié)核病(tuberculosis,TB)是由結(jié)核分枝桿菌(Mycobacterium tuberculosis,Mtb)引起的慢性傳染病,已成為嚴(yán)重危害公眾健康的全球性公共衛(wèi)生問題。近年來,由于化療方案不合理應(yīng)用、患者醫(yī)從性差等原因,耐藥結(jié)核病逐漸增多。耐藥結(jié)核病,尤其是耐多藥結(jié)核病(multidrug resistant tuberculosis,MDR-TB)的傳播使結(jié)核病疫情更加嚴(yán)峻,全球結(jié)核病防治工作也面臨更大挑戰(zhàn)。WHO 2016年結(jié)核病報(bào)告[1]顯示,2015年全球結(jié)核病、耐利福平結(jié)核病、耐多藥結(jié)核病發(fā)患者數(shù)分別為1 040萬、10萬及48萬,結(jié)核病死亡人數(shù)為140萬,提示全球耐藥結(jié)核病疫情嚴(yán)重。利福平(Rifampin,RIF)是重要的一線抗結(jié)核藥之一,并且作為耐多藥結(jié)核病的替代標(biāo)志物[2]。結(jié)核分枝桿菌耐利福平預(yù)示著患者化療療程延長,預(yù)后差。因此了解結(jié)核分枝桿菌耐利福平機(jī)制對(duì)預(yù)防及控制耐藥結(jié)核病有著重要意義。結(jié)核分枝桿菌耐藥機(jī)制主要包括靶基因構(gòu)改變、外排泵機(jī)制、細(xì)胞壁通透性變化、產(chǎn)生藥物降解、失活酶及代謝途徑改變等。本文就結(jié)核分枝桿菌耐利福平機(jī)制及其研究進(jìn)展綜述如下:

1 藥物作用靶基因變異機(jī)制

細(xì)菌內(nèi)藥物作用靶基因突變是結(jié)核分枝桿菌耐利福平的主要機(jī)制[3]。結(jié)核分枝桿菌RNA聚合酶參與細(xì)菌轉(zhuǎn)錄及RNA延伸,是生存所必需的酶。利福平通過非共價(jià)鍵與結(jié)核分枝桿菌DNA依賴的RNA聚合酶亞基特異性結(jié)合,抑制RNA聚合酶活性,干擾細(xì)菌轉(zhuǎn)錄起始和RNA延伸,阻礙蛋白質(zhì)合成從而發(fā)揮殺菌作用。RNA聚合酶由α2ββ'ω 5個(gè)亞單位組成,各亞基分別由rpoA、rpoB、rpoC和rpoZ基因編碼[4-5],基因突變將導(dǎo)致相應(yīng)RNA聚合酶亞基結(jié)構(gòu)改變,影響利福平與之結(jié)合從而產(chǎn)生耐藥。

1.1 rpoB基因ropB基因全長3 519 bp(Gene ID:888164),編碼RNA聚合酶β亞基[4],rpoB基因突變是結(jié)核分枝桿菌耐利福平的主要機(jī)制[3]。近95%~97%的耐利福平菌株突變發(fā)生在rpoB基因507~533位密碼子共81個(gè)堿基組成的區(qū)域,也被稱為利福平耐藥決定區(qū)(RRDR)[6]。突變主要以堿基置換為主,插入及缺失較少見。國外多年來報(bào)道顯示,531、526以及516為最常見的突變位點(diǎn),其中S531L是最常見的突變形式,突變率約為63%[7-12]。在耐利福平菌株(包括單耐利福平、耐多藥及廣泛耐藥菌株)中突變率在8.3%~97%均有報(bào)道[7-12],其差異受菌株耐藥譜、研究數(shù)量及地域[13]等影響。各國rpoB最常見突變位點(diǎn)也有差異,如南非東開普省、科特迪瓦以D516V為主[11,14],伊朗西部以L511P為主[15],非洲東南部斯威士蘭以I572F(30%)為主,且突變率僅次于S531L(46%)[16]。我國研究RRDR區(qū)域內(nèi)基因突變[17-21]發(fā)現(xiàn),在4 895株耐利福平菌株中有4 571株(93.4%)檢測(cè)到RRDR區(qū)發(fā)生基因錯(cuò)義突變,197種不同突變類型,突變率略低于國外報(bào)道。其中發(fā)生單一位點(diǎn)突變4 275株(87.3%)、61種不同突變類型;雙位點(diǎn)聯(lián)合突變菌株251株(5.1%)、115種組合類型;多位點(diǎn)聯(lián)合突變菌株12株(0.3%)、9種組合類型;堿基插入突變菌株9株(0.18%)、2種組合類型;堿基缺失突變菌株12株(0.3%)、9種組合類型。在所有單位點(diǎn)錯(cuò)義突變中,531、526、516位點(diǎn)突變率居前三位,與國外報(bào)道一致[22]。531位點(diǎn)突變率為52.8%,共12種氨基酸突變類型:其中Ser→Leu突變率最高為50.2%,與國外報(bào)道大抵一致。其次為Ser→Trp 1.7%和Ser→Tyr 0.5%。526位點(diǎn)突變率為21.8%,共13種氨基酸突變類型,頻率最高的是His→Asp 9.1%,其次是His→Tyr 6.7%、His→Leu 1.94%、His→Arg 1.6%和His→Asn 1.2%。516位點(diǎn)突變率為6.0%,共11種氨基酸突變類型,頻率最高的前幾位分別為Asp→Val 2.6%、Asp→Gly 1.6%和Asp→Tyr 1.1%。聯(lián)合突變中516、511、526位點(diǎn)出現(xiàn)頻率最高,分別為120、109和87次。聯(lián)合突變中Thr508Pro、Ser509Gly、Ser512Gly、Met515Trp等突變形式在單位點(diǎn)突變中未見報(bào)道。插入突變發(fā)生在514和515位點(diǎn),插入密碼子為TTC (Phe)。堿基缺失突變發(fā)生在509~526位點(diǎn),其中有1株在526位點(diǎn)發(fā)生1堿基(bp)缺失,5株在512、516、517及518區(qū)域發(fā)生3堿基(bp)缺失,1株在514~515區(qū)域發(fā)生6堿基(bp)缺失,2株在509~511、513~515位點(diǎn)發(fā)生9堿基(bp)缺失,1株在516~520區(qū)域發(fā)生15堿基(bp)缺失。結(jié)核分枝桿菌耐藥水平與耐藥基因不同的突變位點(diǎn)有關(guān),研究發(fā)現(xiàn)513位點(diǎn)、G523A、H526D, H526R,H526Y,H526F、H526Q、S531L、S531F及單個(gè)密碼子內(nèi)雙堿基突變與利福平高水平耐藥有關(guān),而在511、514、516、518、521、522和533等位點(diǎn)突變與低水平耐藥有關(guān)[4,22-24]。研究發(fā)現(xiàn)約6.6%耐利福平菌株未發(fā)生RRDR區(qū)域內(nèi)基因突變[17-21],而少數(shù)敏感菌株(1.7%)出現(xiàn)RRDR內(nèi)突變[25],提示并非所有RRDR內(nèi)突變均與耐藥有關(guān),已發(fā)現(xiàn)508、509位點(diǎn)突變與結(jié)核分枝桿菌耐利福平無關(guān)[24]。RRDR序列外基因突變統(tǒng)計(jì)[21,26]發(fā)現(xiàn),在1 041株利福平耐藥菌株中,有124株(11.9%)菌株在RRDR外發(fā)生錯(cuò)義基因突變,共94種突變類型;有25株獨(dú)立發(fā)生RRDR外位點(diǎn)突變,共19種突變類型,總突變率為2.4%,占RRDR外突變的15.3%。這些RRDR外突變包括單位點(diǎn)突變Val146Phe、Val176Phe、Pro206Arg、Glu247Gln、Val251Ala、Val251Phe、Val251Leu、Gln253Leu、Tyr314Cys、His323Tyr、IIe572Phe、IIe572Thr、Asp626Glu、Asp657His和Lys891Thr;雙位點(diǎn)突變Val146Phe/ Pro402Ser、Ser311Leu/Leu60Arg、Ser311Leu/Val112Ala及三位點(diǎn)突變Gln139Lys/Gly201Cys/Lys167Arg。有99株發(fā)生與RRDR內(nèi)共同突變,總突變率為9.5%,占RRDR外突變的80.0%,主要以雙位點(diǎn)突變(89株)為主。在所有結(jié)核分枝桿菌耐利福平菌株中約2.4%菌株獨(dú)立發(fā)生RRDR外序列基因突變,提示RRDR區(qū)外突變雖以其極低的突變率存在但仍有不可小覷的作用。研究發(fā)現(xiàn)146、572和626位點(diǎn)突變與利福平耐藥有關(guān),且146位點(diǎn)發(fā)生的突變可能與利福平低水平耐藥有關(guān)[27-29]。RRDR外基因突變也可能為利福平耐藥補(bǔ)償基因[29]。在泰國曼谷的一項(xiàng)研究發(fā)現(xiàn),155株MDR菌株全部發(fā)生常見耐藥突變S531L及RRDR區(qū)外不常見突變L812P[30],提示L812P可能作為S531L的補(bǔ)償基因是大型社區(qū)爆發(fā)菌株傳播的補(bǔ)充效應(yīng),同時(shí)S531L及L812P聯(lián)合突變可能與社區(qū)內(nèi)MDR菌株持續(xù)性傳播有關(guān)。

1.2 rpoC基因rpoC全長3 951 bp(Gene ID:888177),編碼RNA聚合酶β'亞基[4]。β及β'亞基在α亞基處結(jié)合并形成形似蟹的兩個(gè)鉗子,鉗子間形成包含有催化活性并容納核酸轉(zhuǎn)錄的間隙(稱為主通道活性區(qū)域),β'亞基使核酸在活性中心內(nèi)更加牢固并穩(wěn)定延長復(fù)合物[31]。研究發(fā)現(xiàn)rpoA或rpoC基因突變?cè)趤碜园戏俏鏖_普省、非洲西部加納、非洲東部烏干達(dá)、葡萄牙里斯本、瑞典烏普薩拉、俄羅斯等國家的耐利福平菌株十分常見,并且約90%的突變位于rpoC基因[2,32-37]。據(jù)統(tǒng)計(jì)目前已發(fā)現(xiàn)的rpoC基因突變位點(diǎn)超過63個(gè),突變形式超過85個(gè),包括G332R、V483G、V483A、N698S、K1152Q等[2,32-38],暫未發(fā)現(xiàn)堿基缺失及插入突變。在中國北方耐利福平菌株中最常見的突變位點(diǎn)是483 (33.7%)和491(14.4%)[2]。但并非所有的rpoA或rpoC基因突變均代表補(bǔ)償基因,一些rpoC基因的突變是系譜特異性標(biāo)志,如A542A和G594E分別是拉丁美洲地中海譜系和哈勒姆(Haarlem)譜系的標(biāo)志[2]。在利福平敏感菌株中發(fā)現(xiàn)T721C突變,提示此突變不是利福平耐藥性標(biāo)志[2]。多項(xiàng)研究表明rpoC作為rpoB中耐藥基因突變(主要是rpoB S531 L)的補(bǔ)償突變,能促進(jìn)一些臨床耐藥菌株恢復(fù)適應(yīng)性,使耐藥菌株存活更久并增強(qiáng)菌株傳播能力[33,35,37]。

1.3 rpoA基因rpoA全長1 044 bp(Gene ID:887 629),編碼RNA聚合酶α亞基[4]。α亞基(分為αI和αII亞基)位于ββ'亞基結(jié)合處,α亞基N-端負(fù)責(zé)裝配ββ'亞基,C-端與各種轉(zhuǎn)錄激活因子以及DNA序列啟動(dòng)子相互作用[31]。目前已發(fā)現(xiàn)的rpoA基因突變形式有:G31S、G31A、D57N、V59A、T63T、S165I、K177M、T181A、V183G、E184D、T187A、T187P、A189E、D190G、R191L、V192A、V192G、T196P、T196A、T196S、D199G、L304R、S307L和E319K[2,34-37]。rpoA同為rpoB補(bǔ)償基因,在耐藥結(jié)核分枝桿菌中作用與rpoC類似[33,35]。

1.4 rpoZ基因rpoZ全長333 bp(Gene ID: 886754),編碼RNA聚合酶中最小的ω亞基[5]。ω亞基是RNA聚合酶活性和細(xì)胞生存中非必需的,但其在結(jié)構(gòu)上包繞β'亞基C-端尾部有保護(hù)及幫助β'亞基折疊的作用,協(xié)助RNA聚合酶組裝并增加RNA聚合酶穩(wěn)定性的作用[5,31,39]。研究表明rpoZ基因突變對(duì)分枝桿菌生物膜造成損害[5],但其在結(jié)核分枝桿菌耐利福平機(jī)制中的作用尚不明確。目前暫未見rpoZ基因突變報(bào)道。雖然結(jié)核分枝桿菌耐利福平主要與rpoB基因突變有關(guān),但到目前為止約3.8%的耐利福平菌株沒有檢測(cè)到rpoB基因突變[29],提示結(jié)核分枝桿菌耐利福平尚存在其他機(jī)制。

2 藥物外排泵機(jī)制

越來越多的研究證明結(jié)核分枝桿菌細(xì)胞對(duì)藥物的主動(dòng)排出是耐藥的關(guān)鍵因素,在沒有rpoB基因突變情況下,結(jié)核分枝桿菌對(duì)利福平耐藥可能由外排泵導(dǎo)致[40-41]。外排泵為胞膜蛋白,當(dāng)其過度表達(dá)時(shí)會(huì)將結(jié)核分枝桿菌內(nèi)藥物過多泵出菌體外,使菌體內(nèi)抗結(jié)核藥物濃度降低導(dǎo)致殺菌作用減弱從而產(chǎn)生耐藥[41-42]。五個(gè)家族的外排泵與藥物耐藥有關(guān):ATP結(jié)合盒(ABC)超家族,主要異化子超家族(MFS),耐藥結(jié)節(jié)分化(RND)超家族,多藥和毒性化合物外排(MATE)家族及小多重藥耐藥(SMR)家族[42]。目前發(fā)現(xiàn)與利福平可能相關(guān)的外排泵有Rv1410c、Rv1258c、Rv1819c、Rv2333、Rv2846c、Rv2936、Rv2937、Rv2938、Rv3239c、Rv3728、Rv0783、Rv0842、Rv0933,其中屬于ABC家族的特異性利福平外排泵Rv2936以及屬于MFS家族的Rv1258c、Rv1410c和Rv0783被認(rèn)為與利福平低濃度耐藥有關(guān)[40,43-44]。

3 細(xì)胞通透性改變

細(xì)胞壁通透性變化是除靶基因突變外結(jié)核分枝桿菌株利福平耐藥的另一主要原因。結(jié)核分枝桿菌細(xì)胞壁外膜滲透性極低,這一生理特性保護(hù)其免受有毒化合物影響,對(duì)于結(jié)核分枝桿菌的毒性和致病性以及其在體內(nèi)嚴(yán)峻環(huán)境下生存是必需的。細(xì)胞壁通透性降低將減少菌體內(nèi)抗結(jié)核藥物的濃度導(dǎo)致耐藥。近年來有研究表明減少結(jié)核分枝桿菌外膜通道蛋白CpnT介導(dǎo)的外膜通透性可能導(dǎo)致結(jié)核分枝桿菌耐藥[45],編碼孔蛋白的MspA基因突變引起的孔蛋白丟失可能導(dǎo)致結(jié)核分枝桿菌對(duì)鏈霉素耐藥[46],分枝桿菌的MspA基因缺失與利福平耐藥有關(guān)[47]。但與結(jié)核分枝桿菌耐利福平的相關(guān)通道蛋白及具體機(jī)制目前尚不清楚。

4 其他機(jī)制

與外排、轉(zhuǎn)運(yùn)和毒力相關(guān)的基因簇Rv0559c(參與細(xì)胞壁和細(xì)胞過程)、Rv0560c(編碼參與中間代謝和呼吸的蛋白)在結(jié)核分枝桿菌耐利福平中起關(guān)鍵作用,但具體促發(fā)機(jī)制還有待進(jìn)一步研究[48]。Zheng等[49]認(rèn)為野生型與耐藥型菌株的混合感染是無rpoB基因突變耐利福平菌株的可能耐藥機(jī)制,并提出摩奴2(Manu2)譜系菌株作為混合感染中的主要群體,有協(xié)助或影響宿主免疫應(yīng)答導(dǎo)致混合感染的能力,由其引起的混合感染是沒有任何rpoB基因突變的耐利福平菌株的可能耐藥機(jī)制。但混合感染可能引起GeneXpert等檢測(cè)方法的敏感性降低,導(dǎo)致耐利福平菌株突變可能被DNA測(cè)序錯(cuò)過[50]。

綜上所述,結(jié)核分枝桿菌耐利福平機(jī)制包括藥物作用靶基因突變、外排泵機(jī)制、細(xì)胞壁通透性變化等,其中靶基因突變,尤其是編碼RNA聚合酶β亞基的rpoB基因突變是其主要耐藥機(jī)制。相關(guān)基因中rpoA、rpoC作為補(bǔ)償基因,主要作用為增強(qiáng)耐藥菌株傳播能力。但目前仍有部分利福平耐藥機(jī)制尚不完全清楚。了解已知的利福平耐藥機(jī)制,進(jìn)一步研究發(fā)現(xiàn)新的耐利福平相關(guān)基因及其耐藥機(jī)制,能為耐藥結(jié)核病的早期診治及控制奠定理論和臨床實(shí)踐的基礎(chǔ)。

[1]WHO.Global Tuberculosis Report 2016[M].World Health Organization,2016:24-38.

[2]Li QJ,Jiao WW,Yin QQ,et al.Compensatory mutations of rifampin resistance are associated with transmission of multidrug-resistant Mycobacterium tuberculosis beijing genotype strains in China[J].AntimicrobAgents Chemother,2016,60(5):2807-2812.

[3]Goldstein BP.Resistance to rifampicin:a review[J].J Antibiot(Tokyo),2014,67(9):625-630.

[4]Nusrath UA,Hassan S,Indira KV,et al.Insights into RpoB clinical mutants in mediating rifampicin resistance in Mycobacterium tuberculosis[J].J Mol Graph Model,2016,67:20-32.

[5]魏亞蕊,吳小剛,伊衛(wèi)東,等.RNA聚合酶ω亞基的研究進(jìn)展[J].中國植保導(dǎo)刊,2012,32(6):11-15.

[6]Ullah I,Shah AA,Basit A,et al.Rifampicin resistance mutations in the 81 bp RRDR of rpo B gene in Mycobacterium tuberculosis clinical isolates using Xpert MTB/RIF in Khyber Pakhtunkhwa,Pakistan:a retrospective study[J].BMC Infect Dis,2016,16:413.

[7]Rukasha I,Said HM,Omar SV,et al.Correlation of rpoB mutations with minimal inhibitory concentration of rifampin and rifabutin in Mycobacterium tuberculosis in an HIV/AIDS endemic setting,South Africa[J].Front Microbiol,2016,7:1947.

[8]Singhal R,Myneedu VP,Arora J,et al.Early detection of multi-drug resistance and common mutations in Mycobacterium tuberculosis isolates from Delhi using GenoType MTBDR plus assay[J].Indian J Med Microbiol,2015,33 Suppl(5):46-52.

[9]Abate D,Tedla Y,Meressa D,et al.Isoniazid and rifampicin resistance mutations and their effect on second-line anti-tuberculosis treatment[J].Int J Tuberc Lung Dis,2014,18(8):946-951.

[10]Shubladze N,Tadumadze N,Bablishvili N.Molecular patterns of multidrug resistance of Mycobacterium tuberculosis in Georgia[J].Int J Mycobacteriol,2013,2(2):73-78.

[11]N'Guessan K,Assi JS,Ouassa T,et al.Assessment of the genotype MTBDR plus assay for rifampin and isoniazid resistance detection on sputum samples in Cote d'Ivoire[J].Eur J Microbiol Immunol (Bp),2014,4(3):166-173.

[12]Ajbani K,Rodrigues C,Shenai S,et Aal.Mutation Detection and Accurate Diagnosis of ExtensivelyDrug-Resistant Tuberculosis:Report from a Tertiary Care Center in India[J].J Clin Microbiol,2011,49 (4):1588-1590.

[13]Chen L,Gan X,Li N,et al.rpoB gene mutation profile in rifampicin-resistant Mycobacterium tuberculosis clinical isolates from Guizhou,one of the highest incidence rate regions in China[J].J Antimicrob Chemother,2010,65(6):1299-1301.

[14]Georghiou SB,Seifert M,Catanzaro D,et al.Frequency and distribution of tuberculosis resistance-associated mutations between Mumbai,Moldova,and Eastern Cape[J].Antimicrob Agents Chemother, 2016,60(7):3994-4004.

[15]Mohajeri P,Sadri H,Farahani A,et al.Frequency of mutations associated with rifampicin resistance in Mycobacterium tuberculosis strains isolated from Patients in West of Iran[J].Microb Drug Resist,2015, 21(3):315-319.

[16]Sanchez-Padilla E,Merker M,Beckert P,et al.Detection of drug-resistant tuberculosis by Xpert MTB/RIF in Swaziland[J].N Engl J Med,2015,372(12):1181-1182.

[17]李麗,孟繁榮,劉志輝.中國利福平耐藥結(jié)核分枝桿菌株rpoB基因耐藥決定區(qū)基因突變的分子特征[J].實(shí)用醫(yī)學(xué)雜志,2015,31(14): 2372-2375.

[18]Zhang Z,Lu J,Liu M,et al.Genotyping and molecular characteristics of multidrug-resistant Mycobacterium tuberculosis isolates from China[J].J Infect,2015,70(4):335-345.

[19]鄒悅,肖謙,蘇海濤.結(jié)核分枝桿菌利福平耐藥與rpoB基因突變特征的關(guān)系探討[J].中國衛(wèi)生標(biāo)準(zhǔn)管理,2015,6(29):199-201.

[20]Yin QQ,Jiao WW,Li QJ,et al.Prevalence and molecular characteristics of drug-resistant Mycobacterium tuberculosisin Beijing,China: 2006 versus 2012[J].BMC Microbiol,2016,16:85.

[21]胡族瓊,劉燕文,周文,等.結(jié)核分枝桿菌rpoB基因突變特征與利福平耐藥水平關(guān)系的研究[J].中國人獸共患病學(xué)報(bào),2016,32(1): 39-44.

[22]Bedewi Omer Z,Mekonnen Y,Worku A,et al.Evaluation of the GenoType MTBDR plus,assay for detection of rifampicin-and isoniazid-resistant Mycobacterium tuberculosis,isolates in central Ethiopia [J].Int J Mycobacteriol,2016,5(4):475-481.

[23]Bahrmand AR,Titov LP,Tasbiti AH,et al.High-level rifampin resistance correlates with multiple mutations in the rpoB Gene of pulmonary tuberculosis isolates from the Afghanistan border of Iran[J].J Clin Microbiol,2009,47(9):2744-2750.

[24]金韜,葉松.結(jié)核分枝桿菌耐藥性分子機(jī)制研究現(xiàn)狀[J].醫(yī)學(xué)動(dòng)物防制,2010,26(10):911-913.

[25]Guo Q,Yu Y,Zhu YL,et al.Rapid detection of rifampin-resistant clinical isolates of Mycobacterium tuberculosis by reverse dot blot hybridization[J].Biomed Environ Sci,2015,28(1):25-35.

[26]李麗,孟繁榮,劉志輝.中國結(jié)核分枝桿菌株rpoB基因耐藥決定區(qū)外序列的基因突變[J].現(xiàn)代醫(yī)院,2015,15(8):24-26.

[27]Jamieson FB,Guthrie JL,Neemuchwala A,et al.Profiling of rpoB mutations and MICs for rifampin and rifabutin in Mycobacterium tuberculosis[J].J Clin Microbiol,2014,52(6):2157-2162.

[28]Siu GK,Zhang Y,Lau TC,et al.Mutations outside the rifampicin resistance-determining region associated with rifampicin resistance in Mycobacterium tuberculosis[J].J Antimicrob Chemother,2011,66(4): 730-733.

[29]Tang K,Sun H,Zhao Y,et al.Characterization of rifampin-resistant isolates of Mycobacterium tuberculosis from Sichuan in China[J].Tuberculosis(Edinb),2013,93(1):89-95.

[30]Regmi SM,Chaiprasert A,Kulawonganunchai S,et al.Whole genome sequence analysis of multidrug-resistant Mycobacterium tuberculosis Beijing isolates from an outbreak in Thailand[J].Mol Genet Genomics,2015,290(5):1933-1941.

[31]Alifano P,Palumbo C,Pasanisi D,et al.Rifampicin-resistance,rpoB polymorphism and RNA polymerase genetic engineering[J].J Biotechnol,2015,202:60-77.

[32]Otchere ID,Asante-Poku A,Osei-Wusu S,et al.Detection and characterization of drug-resistant conferring genes in Mycobacterium tuberculosis complex strains:A prospective study in two distant regions of Ghana[J].Tuberculosis(Edinb),2016,99:147-154.

[33]Ssengooba W,Meehan CJ,Lukoye D,et al.Whole genome sequencing to complement tuberculosis drug resistance surveys in Uganda [J].Infect Genet Evol,2016,40:8-16.

[34]Perdig?o J,Silva H,Machado D,et al.Unraveling Mycobacterium tuberculosis genomic diversity and evolution in Lisbon,Portugal,a highly drug resistant setting[J].BMC Genomics,2014,15:991.

[35]Casali N,Nikolayevskyy V,Balabanova Y.Evolution and transmission of drug-resistant tuberculosis in a Russian population[J].Nat Genet,2014,46(3):279-286.

[36]Brandis G,Hughes D.Genetic characterization of compensatory evolution in strains carrying rpoB Ser531Leu,the rifampicin resistance mutation most frequently found in clinical isolates[J].J Antimicrob Chemother,2013,68(11):2493-2497.

[37]de Vos M,Müller B,Borrell S,et al.Putative compensatory mutations in the rpoC gene of rifampin-resistant Mycobacterium tuberculosis are associated with ongoing transmission[J].Antimicrob Agents Chemother,2013,57(2):827-832.

[38]廖小琴,劉梅,彭章麗,等.耐利福平結(jié)核分枝桿菌rpoA、rpoB、rpoC和rpoZ突變的研究[J/CD].中華臨床醫(yī)師雜志:電子版,2013,7 (22):38-40.

[39]Minakhin L,Bhagat S,Brunning A,et al.Bacterial RNA polymerase subunit omega and eukaryotic RNA polymerase subunit RPB6 are sequence,structural,and functional homologs and promote RNA polymerase assembly[J].Proc Natl Acad Sci USA,2001,98(3): 892-897.

[40]Li G,Zhang J,Guo Q,et al.Study of efflux pump gene expression in rifampicin-monoresistant Mycobacterium tuberculosis clinical isolates [J].JAntibiot(Tokyo),2015,68(7):431-435.

[41]Yamchi JK,Haeili M,Feyisa SG,et al.Evaluation of efflux pump gene expression among drug susceptible and drug resistant strains of Mycobacterium tuberculosis,from Iran[J].Infect Genet Evol,2015, 36:23-26.

[42]Aygül A.The importance of efflux systems in antibiotic resistance and efflux pump inhibitors in the management of resistance[J]. Mikrobiyol Bul,2015,49(2):278-291.

[43]Black PA,Warren RM,Louw GE,et al.Energy metabolism and drug efflux in Mycobacterium tuberculosis[J].Antimicrob Agents Chemother,2014,58(5):2491-2503.

[44]Pang Y,Lu J,Wang Y,et al.Study of the rifampin monoresistance mechanism in Mycobacterium tuberculosis[J].AntimicrobAgents Chemother,2013,57(2):893-900.

[45]Danilchanka O,Pires D,Anes E,et al.The Mycobacterium tuberculosis outer membrane channel protein CpnT confers susceptibility to toxic molecules[J].Antimicrob Agents Chemother,2015,59(4): 2328-2336.

[46]SpeerA,Rowland JL,Niederweis M.Mycobacterium tuberculosis is resistant to streptolydigin[J].Tuberculosis(Edinb),2013,93(4): 401-404.

[47]Stephan J,Mailaender C,Etienne G,et al.Multidrug resistance of a porin deletion mutant of Mycobacterium smegmatis[J].Antimicrob Agents Chemother,2004,48(11):4163-4170.

[48]de Knegt GJ,Bruning O,ten Kate MT,et al.Rifampicin-induced transcriptome response in rifampicin-resistant Mycobacterium tuberculosis [J].Tuberculosis(Edinb),2013,93(1):96-101.

[49]Zheng C,Li S,Luo Z,et al.Mixed infections and rifampin heteroresistance among Mycobacterium tuberculosis clinical isolates[J].J Clin Microbiol,2015,53(7):2138-2147.

[50]Zetola NM,Shin SS,Tumedi KA,et al.Mixed Mycobacterium tuberculosis complex infections and false-negative results for rifampin resistance by geneXpert MTB/RIF are associated with poor clinical outcomes[J].J Clin Microbiol,2014,52(7):2422-2429.

Mechanism of rifampicin resistance in Mycobacterium tuberculosis and its research progress.

XIANG Min,ZHANG Hong,CHEN Ling.Respiratory DepartmentⅡ,Affiliated Hospital of Zunyi Medical College,Zunyi 563003,Guizhou,CHINA

Tuberculosis is a global public health problem that seriously endanger public health,and the spread of drug-resistant tuberculosis,especially multidrug-resistant tuberculosis(MDR-TB),makes tuberculosis more severe. Rifampicin is one of the important first-line anti-tuberculosis drugs and serves as an alternative marker for MDR-TB. Therefore,understanding the mechanism of rifampicin resistance in Mycobacterium tuberculosis is of great significance to the prevention and control of drug-resistant tuberculosis.In this paper,the mechanism of rifampicin resistance in Mycobacterium tuberculosis and its research progress is reviewed.

Mycobacterium tuberculosis;Rifampicin;Drug resistance;Mechanism

R378.91+1

A

1003—6350(2017)17—2853—04

2017-03-12)

10.3969/j.issn.1003-6350.2017.17.031

國家自然科學(xué)基金(編號(hào):81360002)通訊作者:陳玲。E-mail:lingjuncd@163.com

猜你喜歡
利福平亞基基因突變
大狗,小狗——基因突變解釋體型大小
英語世界(2023年6期)2023-06-30 06:29:10
管家基因突變導(dǎo)致面部特異性出生缺陷的原因
心臟鈉通道β2亞基轉(zhuǎn)運(yùn)和功能分析
基因突變的“新物種”
2013~2015年陜西地區(qū)結(jié)核分枝桿菌對(duì)利福平耐藥性及rpoB基因突變的相關(guān)研究
注射用利福平治療68例復(fù)治菌陽糖尿病合并肺結(jié)核療效觀察
胰島素通過mTORC2/SGK1途徑上調(diào)肺泡上皮鈉通道α亞基的作用機(jī)制
利福平致藥源性血小板減少癥一例
氨苯砜、利福平、氯苯吩嗪聯(lián)合治療多菌型麻風(fēng)病的臨床分析
從EGFR基因突變看肺癌異質(zhì)性
阳新县| 九台市| 德江县| 内丘县| 荃湾区| 桑日县| 沁源县| 富锦市| 邻水| 文化| 临朐县| 张家界市| 永和县| 金门县| 陆丰市| 石河子市| 伽师县| 托里县| 和硕县| 沧源| 公主岭市| 新安县| 梁山县| 章丘市| 红桥区| 上思县| 吉林省| 霍城县| 北安市| 皋兰县| 黑山县| 寿光市| 彰化市| 闵行区| 来凤县| 南木林县| 阿拉善左旗| 南溪县| 遵义县| 太白县| 紫阳县|