陳淼 許秩 范學(xué)明 劉德銘 盧健東 黃詩(shī)惠
摘要:
為求解平面裂紋問(wèn)題的應(yīng)力強(qiáng)度因子,提出基于Muskhelishvili基本解和樣條虛邊界元法的樣條虛邊界元交替法.該方法將平面內(nèi)帶裂紋有限域問(wèn)題分解成帶裂紋無(wú)限域問(wèn)題與不帶裂紋有限域問(wèn)題的疊加.帶裂紋無(wú)限域問(wèn)題利用Muskhelishvili基本解法直接得出,不帶裂紋有限域問(wèn)題采用樣條虛邊界元法求解.利用該方法對(duì)復(fù)合型中心裂紋方板和I型偏心裂紋矩形板進(jìn)行分析.數(shù)值結(jié)果表明該方法精度高且適用性強(qiáng).
關(guān)鍵詞:
平面裂紋; 樣條虛邊界元法; 交替法; 斷裂力學(xué); Muskhelishvili基本解; 應(yīng)力強(qiáng)度因子
中圖分類號(hào): O302
文獻(xiàn)標(biāo)志碼: A
Abstract:
To solve the stress intensity factor of plane crack problem, a spline fictitious boundary element alternating method is proposed based on Muskhelishvili fundamental solution and spline fictitious boundary element method. A finite field crack problem is transformed into the superposition of a simple finite field problem without crack and an infinite problem with crack. The Muskhelishvili fundamental solution method is used to solve the infinite problem with crack and the spline fictitious boundary element method is implemented to solve the simple finite field problem without crack. A square plate with a slant center crack and a Itype rectangular plate with an eccentric crack are solved using the method. The numerical results show that the method is of high accuracy and strong applicability.
Key words:
plane crack; spline fictitious boundary element method; alternating method; fracture mechanics; Muskhelishvili fundamental solution; stress intensity factor
0引言
任何材料和工程結(jié)構(gòu)都會(huì)不同程度地存在裂紋缺陷,其產(chǎn)生和擴(kuò)展對(duì)構(gòu)件的承載能力會(huì)造成很大程度的破壞,因此斷裂力學(xué)在現(xiàn)代強(qiáng)度理論中的地位越來(lái)越重要.應(yīng)力強(qiáng)度因子是表征裂紋特性的重要參量,所以對(duì)其計(jì)算是斷裂力學(xué)研究的重要環(huán)節(jié).
在現(xiàn)階段,求解應(yīng)力強(qiáng)度因子的方法主要為改進(jìn)的有限元法,包括奇異有限元法和擴(kuò)展有限元法.[12]奇異有限元法通過(guò)移動(dòng)節(jié)點(diǎn)使奇異點(diǎn)出現(xiàn)在1/4處而不是中點(diǎn)處,使得邊界節(jié)點(diǎn)處出現(xiàn)奇異的應(yīng)力場(chǎng),但是該方法存在單元直接協(xié)調(diào)性和計(jì)算收斂性的問(wèn)題.擴(kuò)展有限元法改進(jìn)單元的形函數(shù),使之包含不連續(xù)性的基本成分,從而放松對(duì)網(wǎng)格密度的劃分要求,但是其剛度矩陣存在病態(tài)問(wèn)題并增加許多額外的未知量.
為更加高效精確地分析裂紋問(wèn)題,有學(xué)者提出求解裂紋問(wèn)題應(yīng)力強(qiáng)度因子的SchwartzNeumann交替法.該方法將帶裂紋的復(fù)雜結(jié)構(gòu)分解成為一個(gè)不含裂紋的復(fù)雜結(jié)構(gòu)與一個(gè)含裂紋的無(wú)限大域,運(yùn)用迭代方法或者線性方程對(duì)分解后的結(jié)構(gòu)進(jìn)行求解.含裂紋無(wú)限域采用Muskhelishvili基本解[3]求解,能夠直接利用表達(dá)式求解出平面內(nèi)任意一點(diǎn)的響應(yīng)和裂紋尖端的應(yīng)力強(qiáng)度因子,因此具有精度高和計(jì)算量小的優(yōu)點(diǎn).不含裂紋的復(fù)雜結(jié)構(gòu)可以采用數(shù)值方法求解,有限元法是最為常見(jiàn)的數(shù)值方法[410],將交替法與有限元法相結(jié)合的方法稱為有限元交替法.然而,有限元法的應(yīng)力結(jié)果相較于位移結(jié)果來(lái)說(shuō)精度較低,在循環(huán)迭代的過(guò)程中會(huì)造成誤差的進(jìn)一步增大.
樣條虛邊界元法是一種高效的間接邊界元法,其只需要對(duì)邊界進(jìn)行劃分,可降低問(wèn)題求解的維度,使得計(jì)算效率大大提高,目前已經(jīng)在工程實(shí)踐中應(yīng)用.[1114]Muskhelishvili基本解和樣條虛邊界元法都是基于無(wú)限域推導(dǎo)出來(lái)的,所以在全平面內(nèi)都可以運(yùn)用疊加原理.本文在利用交替法將原結(jié)構(gòu)分解之后,采用以上2種方法分別對(duì)分解后的結(jié)構(gòu)進(jìn)行求解.
本文首先對(duì)Muskhelishvili基本解進(jìn)行詳細(xì)介紹,得出其應(yīng)力、位移和應(yīng)力強(qiáng)度因子的表達(dá)式,然后闡述樣條虛邊界元法分析平面有限域問(wèn)題的基本過(guò)程,在此基礎(chǔ)上,結(jié)合交替法提出求解平面問(wèn)題應(yīng)力強(qiáng)度因子的樣條虛邊界元交替法.最后,對(duì)復(fù)合型中心裂紋方板和I型偏心裂紋矩形板進(jìn)行數(shù)值分析,考察本文方法的準(zhǔn)確性和實(shí)用性.
1Muskhelishvili基本解
假設(shè)在無(wú)限大域中的實(shí)軸上存在一條裂紋ab,裂紋左尖端和右尖端x軸坐標(biāo)分別是a和b.假設(shè)裂紋上表面的應(yīng)力為f+y和f+xy,下表面的應(yīng)力為f-y和f-xy,所求點(diǎn)的坐標(biāo)為z=x+iy,見(jiàn)圖1[13].
由表1可發(fā)現(xiàn)當(dāng)虛實(shí)邊界距離d減小到20.0的時(shí)候結(jié)果即收斂,并且與解析解保持較高程度的吻合.為保證結(jié)果的穩(wěn)定性,本算例取d=2.0進(jìn)行計(jì)算.在利用奇異有限元法計(jì)算時(shí),裂紋尖端附近采用1/4奇異性單元,其他部分采用四邊形單元,根據(jù)不同的裂紋長(zhǎng)度和角度分別采用不同的單元數(shù)和自由度,各種情況自由度見(jiàn)表2.將2種數(shù)值方法的計(jì)算結(jié)果與解析解進(jìn)行比較,見(jiàn)表2和表3.
從表2和3中可以看出:采用樣條虛邊界元交替法計(jì)算的數(shù)值和解析解之間的誤差不超過(guò)2%,達(dá)到較高的精度;而采用奇異有限元法算出的結(jié)果與解析解的誤差普遍大于本方法,最大誤差達(dá)5.6%,可知本文方法的精度有明顯的提升.另外需要注意的是,裂紋越長(zhǎng),無(wú)限大板的假定所帶來(lái)的差別也越大,因此長(zhǎng)裂紋誤差變大的現(xiàn)象是可以預(yù)見(jiàn)的.
5結(jié)論
本文在交替法的基礎(chǔ)上,結(jié)合Muskhelishvili基本解和樣條虛邊界元法,提出求解裂紋問(wèn)題的樣條虛邊界元交替法.利用該方法對(duì)復(fù)合型中心裂紋方板和I型偏心裂紋矩形板進(jìn)行分析后發(fā)現(xiàn),相對(duì)于奇異有限元法來(lái)說(shuō),該方法具有更高精度的應(yīng)力強(qiáng)度因子計(jì)算能力,并且其還能適應(yīng)各種不同的裂紋分布情況,是一種有效且實(shí)用的求解裂紋問(wèn)題的新型數(shù)值分析方法.通過(guò)復(fù)合型中心裂紋方形板算例分析,發(fā)現(xiàn)以下規(guī)律:(1) 裂紋長(zhǎng)度越大,應(yīng)力強(qiáng)度因子越大;(2) 隨著裂紋與受載荷方向夾角的增大,I類應(yīng)力強(qiáng)度因子隨之增大,II類應(yīng)力強(qiáng)度因子先增大后減小.
參考文獻(xiàn):
[1]段靜波, 李道奎, 雷勇軍. 斷裂力學(xué)分析的奇異有限元法研究綜述[J]. 機(jī)械強(qiáng)度, 2012, 34(2): 262269. DOI: 10.16579/j.issn.1001.9669.2012.02.005.
DUAN J B, LI D K, LEI Y J. Advances in singular finite element method for fracture mechanics analysis[J]. Journal of Mechanical Strength, 2012, 34(2): 262269. DOI: 10.16579/j.issn.1001.9669.2012.02.005.
[2]茹忠亮, 朱傳銳, 張友良, 等. 斷裂問(wèn)題的擴(kuò)展有限元法研究[J]. 巖土力學(xué), 2011, 32(7): 21712186. DOI: 10.3969/j.issn.10007598.2011.07.042.
RU Z L, ZHU C R, ZHANG Y L, et al. Study of fracture problem with extended finite element method[J]. Rock and Soil Mechanics, 2011, 32(7): 21712176. DOI: 10.3969/j.issn.10007598.2011.07.042.
[3]WANG L, ATLURI S N. Recent advances in the alternating method for elastic and inelastic fracture analyses[J]. Computer Methods in Applied Mechanics and Engineering, 1996, 137(1): 158. DOI: 10.1016/00457825(96)010547.
[4]WANG H K, HAYNES R,HUANG H Z, et al. The use of highperformance fatigue mechanics and the extended kalman/particle filters, for diagnostics and prognostics of aircraft structures[J]. Computer Modeling in Engineering & Sciences, 2015, 105(1): 124. DOI: 10.1201/b180092.
[5]NIKISHKOV G P, PARK J H, ATLURI S N. SGBEMFEM Alternating method for analyzing 3D nonplanar cracks and their growth in structural components[J]. CMES, 2001, 2(3): 401422. DOI: 10.3970/cmes.2001.002.401.
[6]TIAN L, DONG L, BHAVANAM S, et al. Mixedmode fracture & nonplanar analyses of cracked Ibeams, using a 3D SGBEMFEM Alternating Method[J]. Theoretical and Applied Fracture Mechanics, 2014, 74: 188199. DOI: 10.1016/j.tafmec.2014.10.002.
[7]TIAN L, DONG L, PHAN N, et al. Threedimensional SGBEMFEM alternating method for analyzing fatiguecrack growth in and the life of attachment lugs[J]. Journal of Engineering Mechanics, 2015, 141(4): 04014142. DOI: 10.1061/(ASCE)EM.19437889.0000870.
[8]KAMAYA M, NISHIOKA T. Analysis of surface crack in cylinder by finite element alternating method[J]. Journal of Pressure Vessel Technology, 2005, 127(2): 165172. DOI: 10.1115/1.1903003.
[9]張建宇, 費(fèi)斌軍. 疲勞多裂紋問(wèn)題研究進(jìn)展[J]. 力學(xué)與實(shí)踐, 2003, 25(1): 610. DOI: 10.6052/100009922001051.
ZHANG J Y, FEI B J. Progress of studies on multiple fatigue cracks[J]. Mechanics in Engineering, 2003, 25(1): 610. DOI: 10.3969/j.issn.10000879.2003.01.002.
[10]NISHIOKA T, ATLURI S N. Analytical solution for embedded elliptical cracks, and finite element alternating method for elliptical surface cracks, subjected to arbitrary loadings[J]. Engineering Fracture Mechanics, 1983, 17(3): 247268. DOI: 10.1016/00137944(83)900322.
[11]SU C, HAN D J. Elastic analysis of orthotropic plane problems by the spline fictitious boundary element method[J]. Applied Mathematics and Mechanics, 2002, 23(4): 446453. DOI: 10.1007/BF02436213.
[12]SU C, ZHAO S W, MA H T. Reliability analysis of plane elasticity problems by stochastic spline fictitious boundary element method[J]. Engineering Analysis with Boundary Elements, 2012, 36(2): 118124. DOI: 10.1016/j.enganabound.2011.07.015.
[13]SU C, XU J. Reliability analysis of Reissner plate bending problems by stochastic spline fictitious boundary element method[J]. Engineering Analysis with Boundary Elements, 2015, 51: 3743. DOI: 10.1016/j.enganabound.2014.10.006.
[14]SU C, XU J. Stochastic spline fictitious boundary element method for analysis of thin plate bending problems with random fields[J]. Engineering Analysis with Boundary Elements, 2015, 58: 8698. DOI: 10.1016/j.enganabound.2015.03.014.
[15]徐芝綸. 彈性力學(xué)簡(jiǎn)明教程[M]. 北京: 高等教育出版社, 2013.
[16]蘇成. 分域樣條虛邊界元法及其在高層建筑結(jié)構(gòu)分析中的應(yīng)用[D]. 廣州: 華南理工大學(xué), 1997.
[17]蘇成, 鄭淳. 應(yīng)力強(qiáng)度因子計(jì)算的樣條虛邊界元法[J]. 工程力學(xué), 2007, 24(8): 4953. DOI: 10.3969/j.issn.10004750.2007.08.009.
SU C, ZHENG C. Calculation of stress intensity factors by spline fictitious boundary element method[J]. Engineering Mechanics, 2007, 24(8): 4953. DOI: 10.3969/j.issn.10004750.2007.08.009.
[18]陳芳, 王生楠. III復(fù)合型裂紋的應(yīng)力強(qiáng)度因子有限元計(jì)算分析[J]. 機(jī)械設(shè)計(jì)與制造, 2009(8): 2021. DOI: 10.3969/j.issn.10013997.2009.08.008.
CHEN F, WANG S N. III mixedmode crack stress intensity factor of the finite element calculation and analysis[J]. Machinery Design and Manufacture, 2009(8): 2021. DOI: 10.3969/j.issn.10013997.2009.08.008.
[19]中國(guó)航空研究院.應(yīng)力強(qiáng)度因子手冊(cè)[M]. 北京: 科學(xué)出版社, 1981.
(編輯武曉英)