吳鋒 鐘萬(wàn)勰
摘要:
研究水波位移法中勢(shì)能的正定性問(wèn)題.將水的不可壓縮條件用于重力勢(shì)能,得到具有正定性的勢(shì)能;通過(guò)數(shù)值算例比較水波正定勢(shì)能和非正定勢(shì)能對(duì)計(jì)算結(jié)果的影響.由數(shù)值實(shí)驗(yàn)結(jié)果可知:對(duì)于非正定勢(shì)能,數(shù)值離散后容易出現(xiàn)負(fù)的特征值,而取正定勢(shì)能時(shí)則不會(huì).負(fù)的特征值意味著數(shù)值發(fā)散,結(jié)果不符合物理實(shí)際,應(yīng)當(dāng)避免.
關(guān)鍵詞:
水波位移法; 不可壓縮條件; 正定勢(shì)能
中圖分類號(hào): O313.7
文獻(xiàn)標(biāo)志碼: A
Abstract:
The positive definite property of the potential energy in water wave displacement method is studied. The water incompressible condition is substituted to the gravitational potential energy to produce positive definite potential energy. Some numerical tests are used to investigate the effect of positive and nonpositive definite energy on calculation results. The numerical test results show that, the nonpositive definite potential energy may results in negative eigenvalues which violate the physical law. However, the positive definite potential energy can exclude the negative eigenvalues.
Key words:
water wave displacement method; incompressible condition; positive definite potential energy
0引言
對(duì)水波的數(shù)值模擬,常規(guī)做法是在Euler坐標(biāo)下進(jìn)行的.[13]然而,在Euler坐標(biāo)下,當(dāng)涉及到自由表面等動(dòng)邊界問(wèn)題時(shí),存在數(shù)值困難.[47]因此,近年來(lái)基于Lagrange坐標(biāo)的水波位移法逐漸得到重視和發(fā)展.其實(shí)早在1788年,LAGRANGE[8]在其經(jīng)典名著《Analytical mechanics》中就已經(jīng)討論水波基于位移的約束作用量和約束變分原理,然而該論述遲遲沒(méi)有得到重視,基于位移的水波模擬計(jì)算也沒(méi)有很好地發(fā)展.1998年,MORRISON[9]在國(guó)際頂尖期刊Reviews of Modern Physics上發(fā)表的Hamiltonian deocription of the ideal fluid中,在介紹水波基于位移的變分原理時(shí),仍然認(rèn)為位移等Lagrangian變量(或稱為物質(zhì)變量)對(duì)于讀者而言是新鮮事物,故特意強(qiáng)調(diào).
2006年以來(lái),鐘萬(wàn)勰等將Lagrange坐標(biāo)與Hamilton理論相結(jié)合研究淺水波問(wèn)題.[1014]他們建立以位移表示的動(dòng)能、勢(shì)能、Lagrange函數(shù)和Hamilton變分原理,并進(jìn)而導(dǎo)出基于位移的淺水波方程(Shallow Water Equation based on Displacement, SWED),同時(shí)研究SWED的數(shù)值求解格式,對(duì)作用量在時(shí)間和空間上同時(shí)進(jìn)行有限元離散,然后通過(guò)最小作用量變分原理,導(dǎo)出保辛的離散積分格式,在長(zhǎng)時(shí)間仿真計(jì)算中可以很好地保守能量,并將之用于三峽升船機(jī)水箱的研究中.考慮到算法的守恒性以及對(duì)動(dòng)邊界、自由面的處理是目前計(jì)算水波動(dòng)力學(xué)中的兩個(gè)難題,而在Hamilton體系下結(jié)合Lagrange坐標(biāo)研究水波的非線性演化,既可以準(zhǔn)確地處理自由面和動(dòng)邊界,又可以充分利用保辛算法守恒性好、無(wú)人為耗散的優(yōu)點(diǎn),值得進(jìn)一步研究和發(fā)展.
當(dāng)涉及到深水波計(jì)算時(shí),考慮到水的不可壓縮條件,需要建立水波的約束變分原理.雖然LAGRANGE[8]已經(jīng)討論過(guò)不可壓縮水波的約束作用量和約束變分原理,但該作用量中的勢(shì)能并不具備正定性.如果基于此不正定的勢(shì)能進(jìn)行數(shù)值離散,則不能保證離散的Hamilton函數(shù)的正定性.著作《力功能辛——離散:祖沖之方法論》 [15]指出:“Hamilton函數(shù)為正定.……,在物理上說(shuō),振動(dòng)不會(huì)隨時(shí)間衰減,而是不斷重復(fù).”這表明如果數(shù)值離散時(shí)不能保證Hamilton函數(shù)的正定性,會(huì)導(dǎo)致振動(dòng)隨時(shí)間衰減或者放大,而非不斷重復(fù),這與物理實(shí)際不吻合.在Lagrange坐標(biāo)下研究水波數(shù)值模擬時(shí),Hamilton函數(shù)由勢(shì)能和動(dòng)能組成,其中動(dòng)能天然具有正定性,因此勢(shì)能的正定性對(duì)于模擬的正確性至關(guān)重要.本文討論勢(shì)能正定性對(duì)水波位移法數(shù)值模擬的影響,分別導(dǎo)出具有非正定勢(shì)能和正定勢(shì)能的2種約束作用量,接著通過(guò)數(shù)值算例,觀察兩者的數(shù)值表現(xiàn),驗(yàn)證正定勢(shì)能的必要性.
1矩形水池的約束作用量
首先,
分析深為H、長(zhǎng)為L(zhǎng)的矩形水池,見(jiàn)圖1,其中虛線是變形后的水面,實(shí)線表示水面靜止時(shí)的形狀.靜止時(shí)水中各個(gè)質(zhì)點(diǎn)的坐標(biāo)為(x,z).初始時(shí)刻水面靜止,t時(shí)刻的位移分別為u(x,z,t)和w(x,z,t).
分別采用非正定勢(shì)能和正定勢(shì)能2種不同作用量計(jì)算,采用有限元對(duì)作用量進(jìn)行空間離散,單元分別選取表1中的單元進(jìn)行組合,算例則標(biāo)記為UiWjPk.例如,假設(shè)水平位移取2號(hào)單元近似,豎向位移取3號(hào)單元近似,而壓強(qiáng)取1號(hào)單元近似,則該算例記為U2W3P4.在選取單元組合時(shí),要求壓強(qiáng)單元的節(jié)點(diǎn)數(shù)少于或等于位移單元的節(jié)點(diǎn)數(shù).計(jì)算結(jié)果分別見(jiàn)表2~4.
比較表2~4可知:當(dāng)采用非正定勢(shì)能時(shí),需要建立恰當(dāng)?shù)奈灰婆c壓強(qiáng)的離散格式.如果位移與壓強(qiáng)的離散不恰當(dāng),會(huì)出現(xiàn)負(fù)的特征值,這意味著在水波演化模擬時(shí),計(jì)算會(huì)發(fā)散;而采用具有正定勢(shì)能的作用量計(jì)算時(shí),由于勢(shì)能的正定性得到保證,不會(huì)出現(xiàn)負(fù)特征值.
4結(jié)論
水波計(jì)算分析是實(shí)用的重要課題,本文研究走的是與以往完全不同的道路,運(yùn)用Lagrange坐標(biāo)的位移法,其數(shù)值離散是在變分原理控制下的.對(duì)于作用量,本文關(guān)注Hamilton函數(shù)的正定性,尤其是正定勢(shì)能的重要性.本文通過(guò)數(shù)值算例,比較水波正定勢(shì)能與非正定勢(shì)能的數(shù)值表現(xiàn),指出當(dāng)水波非正定時(shí),數(shù)值離散后容易出現(xiàn)負(fù)的特征值,而取正定勢(shì)能時(shí)則不會(huì).負(fù)的特征值意味著數(shù)值發(fā)散,結(jié)果不符合物理實(shí)際,應(yīng)當(dāng)避免.
參考文獻(xiàn):
[1]
IZEM N, SEAID M, WAKRIM M. A discontinuous Galerkin method for twolayer shallow water equations[J]. Mathematics and Computers in Simulation, 2016(120): 1223. DOI: 10.1016/j.matcom.2015.04.009.
[2]KHAN A A, LAI W C. Modeling shallow water flows using the discontinuous Galerkin method[M]. Boca Raton: CRC Press, 2014: 1621.
[3]THOMAS T J, DWARAKISH G S. Numerical wave modeling: a review[J]. Aquatic Procedia, 2015, 4: 443448. DOI: 10.1016/j.aqpro.2015.02.059.
[4]DEHGHAN M, SALEHI R. A meshless based numerical technique for traveling solitary wave solution of Boussinesq equation[J]. Applied Mathematical Modelling, 2012, 36(5): 19391956. DOI: 10.1016/j.apm.2011.07.075.
[5]MURILLO J, GARCANAVARRO P. Augmented versions of the HLL and HLLC Riemann solvers including source terms in one and two dimensions for shallow flow applications[J]. Journal of Computational Physics, 2012, 231(20): 68616906. DOI: 10.1016/j.jcp.2012.06.031.
[6]AMIRI S M, TALEBBEYDOKHTI N, BAGHLANI A. A twodimensional wellbalanced numerical model for shallow water equations[J]. Scientia Iranica, 2012, 20(1): 97107. DOI: 10.1016/j.scient.2012.12.001.
[7]LIANG Q, MARCHE F. Numerical resolution of wellbalanced shallow water equations with complex source terms[J]. Advances in Water Resources, 2009, 32(6): 873884. DOI: 10.1016/j.advwatres.2009.02.010.
[8]LAGRANGE J L. Analytical mechanics[M]. Berlin: Springer Science & Business Media, 2013: 110143.
[9]MORRISON P J. Hamiltonian description of the ideal fluid[J]. Reviews of Modern Physics, 1998, 70(2): 467521. DOI: 10.1103/RevModPhys.70.467.
[10]鐘萬(wàn)勰, 陳曉輝. 淺水波的位移法求解[J]. 水動(dòng)力學(xué)研究與進(jìn)展: A輯. 2006, 21(4): 486493. DOI: 10.16076/j.cnki.cjhd.2006.04.010.
ZHONG W X, CHEN X H. Solving shallow water waves with the displacement method[J]. Journal of Hydrodynamics: Ser A, 2006, 21(4): 486493. DOI: 10.16076/j.cnki.cjhd.2006.04.010.
[11]吳鋒, 鐘萬(wàn)勰. 淺水動(dòng)邊界問(wèn)題的位移法模擬[J]. 計(jì)算機(jī)輔助工程, 2016, 25(2): 513. DOI: 10.13340/j.cae.2016.02.002.
WU F, ZHONG W X. Simulation on moving boundaries of shallow water using displacement method[J]. Computer Aided Engineering, 2016, 25(2): 513. DOI: 10.13340/j.cae.2016.02.002.
[12]吳鋒, 鐘萬(wàn)勰. 淺水問(wèn)題的約束Hamilton變分原理及祖沖之類保辛算法[J]. 應(yīng)用數(shù)學(xué)和力學(xué), 2016, 37(1): 113. DOI: 10.3879/j.issn.10000887.2016.01.001.
WU F, ZHONG W X. The constrained Hamilton variational principle for shallow water problems and the Zuclass symplectic algorithm[J]. Applied Mathematics and Mechanics, 2016, 37(1): 113. DOI: 10.3879/j.issn.10000887.2016.01.001.
[13]姚征, 鐘萬(wàn)勰. 位移法淺水波方程的解及其特性[J]. 計(jì)算機(jī)輔助工程. 2016, 25(2): 14. DOI: 10.13340/j.cae.2016.02.001.
YAO Z, ZHONG W X. Solutions and characteristics of shallow water equation based on displacement method[J]. Computer Aided Engineering, 2016, 25(2): 14. DOI: 10.13340/j.cae.2016.02.001.
[14]WU F, ZHONG W X. Constrained Hamilton variational principle for shallow water problems and Zuclass symplectic algorithm[J]. Applied Mathematics and Mechanics, 2015, 37(1): 114. DOI: 10.1007/s1048301620519.
[15]鐘萬(wàn)勰, 吳鋒. 力功能辛——離散: 祖沖之方法論[M]. 大連: 大連理工大學(xué)出版社, 2016: 138190.
(編輯武曉英)