国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

間充質(zhì)干細(xì)胞對移植物的保護(hù)作用*

2017-01-12 01:40:35黃江鵬陳忠華宮念樵
關(guān)鍵詞:調(diào)節(jié)性移植物內(nèi)質(zhì)網(wǎng)

黃江鵬, 陳忠華, 宮念樵△, 時(shí) 軍△

1南昌大學(xué)第一附屬醫(yī)院普外一科,南昌 3300062華中科技大學(xué)同濟(jì)醫(yī)學(xué)院附屬同濟(jì)醫(yī)院器官移植研究所,武漢 430030

?

間充質(zhì)干細(xì)胞對移植物的保護(hù)作用*

黃江鵬1, 陳忠華2, 宮念樵2△, 時(shí) 軍1△

1南昌大學(xué)第一附屬醫(yī)院普外一科,南昌 3300062華中科技大學(xué)同濟(jì)醫(yī)學(xué)院附屬同濟(jì)醫(yī)院器官移植研究所,武漢 430030

間充質(zhì)干細(xì)胞; 移植物; 免疫調(diào)節(jié); 內(nèi)質(zhì)網(wǎng)應(yīng)激

器官移植是治療終末期臟器功能衰竭的有效方法,但移植過程中可能出現(xiàn)缺血再灌注損傷、免疫排斥反應(yīng)、炎癥反應(yīng)、氧化應(yīng)激以及內(nèi)質(zhì)網(wǎng)應(yīng)激等多種損傷,嚴(yán)重影響移植物的功能和存活。例如,胰島移植后3 d內(nèi)可能發(fā)生瞬時(shí)血液介導(dǎo)的炎癥反應(yīng)(instant blood-mediated inflammatory reaction,IBMIR),并可導(dǎo)致超過50%胰島細(xì)胞凋亡或者失活[1]。

間充質(zhì)干細(xì)胞(mesenchymal stem cells,MSCs)又稱為基質(zhì)細(xì)胞或間充質(zhì)祖細(xì)胞,在人類和嚙齒類動(dòng)物中,可以從外周血、胎盤組織、臍帶血、脂肪組織、骨髓腔組織、關(guān)節(jié)液、腱、牙髓、肺、胎兒肝臟等多種組織和器官中獲得。其中,MSCs從骨髓中獲取相對容易,也是許多研究人員分離、培養(yǎng)MSCs時(shí)的首選。在設(shè)定的分化環(huán)境中,MSCs可以成脂、成骨、成軟骨化[2-3]。MSCs能抑制免疫排斥,旁分泌多種營養(yǎng)因子,減弱內(nèi)質(zhì)網(wǎng)應(yīng)激,并且向移植區(qū)域遷徙,改善移植區(qū)微環(huán)境,有效提高移植物的存活,改善移植物功能。自Bartholomew等發(fā)現(xiàn)MSCs能顯著延長非人類靈長類動(dòng)物皮膚移植物存活后,在一系列嚙齒類動(dòng)物的胰島、腎臟、肝臟、心臟移植的實(shí)驗(yàn)中,這種保護(hù)作用也得到驗(yàn)證[4-9]。其中涉及到3個(gè)主要的機(jī)制。

1 調(diào)節(jié)免疫應(yīng)答作用

炎癥和排斥反應(yīng)可嚴(yán)重?fù)p害移植物各種功能。MSCs能有效減弱相關(guān)損害,提高移植物的存活率和改善移植物功能。MSCs與多種免疫細(xì)胞通過細(xì)胞-細(xì)胞直接接觸或旁分泌細(xì)胞因子及趨化因子的方式,直接或間接調(diào)節(jié)免疫細(xì)胞的增殖和功能狀態(tài),抑制排斥反應(yīng)。MSCs的保護(hù)機(jī)制尚未在體內(nèi)實(shí)驗(yàn)中得到完全闡釋,然而在體外實(shí)驗(yàn)中已有進(jìn)展。MSCs通常被認(rèn)為具有低免疫原性,這和它限制性表達(dá)MHC-Ⅱ、協(xié)同刺激分子并且不刺激T細(xì)胞的增殖有關(guān)。盡管低濃度干擾素可刺激MSCs上調(diào)MHC-Ⅱ的表達(dá)并可能發(fā)揮非專職抗原提呈作用,然而,稍高濃度干擾素即可扭轉(zhuǎn)MSCs這一功能,并發(fā)揮強(qiáng)大免疫抑制作用[10]。

1.1 MSCs與T淋巴細(xì)胞的相互作用

T淋巴細(xì)胞是在移植后參與急性免疫排斥反應(yīng)的主要細(xì)胞群。MSCs在和T淋巴細(xì)胞的相互作用中,一方面可以通過細(xì)胞-細(xì)胞直接接觸抑制T細(xì)胞的增殖,如抑制分子程序性死亡1(programmed cell death 1,PD-1)及其配體PD-L1。在體外實(shí)驗(yàn),MSCs經(jīng)干擾素的刺激可上調(diào)表面分子PD-L1的表達(dá)并抑制T細(xì)胞的增殖[11-12]。在體內(nèi),前期糖尿病NOD鼠的胰腺中MSCs能高表達(dá)PD-L1并且抑制T細(xì)胞增殖從而延緩1型糖尿病的發(fā)展[13]。另外,粘附分子ICAM1和VCAM1,共刺激分子B7-H4均可在MSCs表達(dá)上調(diào),通過細(xì)胞-細(xì)胞直接接觸作用,調(diào)節(jié)T細(xì)胞的增殖[14-15]。這些表明,MSCs可以通過細(xì)胞-細(xì)胞直接接觸作用抑制T細(xì)胞的增殖而參與免疫調(diào)節(jié)。

另一方面,MSCs還能夠旁分泌多種可溶性分子如轉(zhuǎn)化生長因子β(transforming growth factor β,TGF-β)、IL-10、前列腺素E2(prostaglandin E2,PGE2)、基質(zhì)金屬蛋白酶(matrix metalloproteinases,MMPs)、半乳糖凝集素家族、吲哚胺2,3雙加氧酶(indoleamine 2,3,dioxygenase,IDO)等,抑制T細(xì)胞的激活或者增殖。體外被γ-干擾素(interferon-γ,IFN-γ)刺激后,MSCs能分泌TGF-β,抑制T細(xì)胞增殖;靜脈內(nèi)注射MSCs后,血清中的TGF-β和IL-10也可升高,并抑制T細(xì)胞增殖[16-18]。MSCs介導(dǎo)的PGE2的免疫抑制效果雖具有爭議性,然而越來越多研究表明,PGE2在MSCs抑制T細(xì)胞的增殖方面具有重要作用[19-20]。例如,移植肺間充質(zhì)干細(xì)胞(LR-MSCs)經(jīng)過IL-1β刺激可以大幅提高PGE2的分泌,并抑制T細(xì)胞的激活和增殖[21]。MMP-2、MMP-9裂解T細(xì)胞表面分子CD25,使得T細(xì)胞對IL-2的刺激無反應(yīng),抑制T細(xì)胞的激活[22];半乳糖凝集素家族通過多種方式引起T細(xì)胞的凋亡,并影響T細(xì)胞的激活、功能、細(xì)胞因子的分泌,進(jìn)而調(diào)節(jié)免疫作用[23-26]。由此可見,MSCs可以通過旁分泌的方式分泌多種可以調(diào)節(jié)T細(xì)胞增殖和分化的分子,調(diào)節(jié)免疫耐受。

1.2 MSCs和樹突狀細(xì)胞的相互作用

MSCs可以抑制樹突狀細(xì)胞(DCs)成熟,減弱其抗原提呈功能,誘生調(diào)節(jié)性T細(xì)胞。其機(jī)制包括:①抑制單核細(xì)胞分化為未成熟DCs[27-28];②通過IL-6的分泌抑制炎性DCs的產(chǎn)生[29];③MSCs分泌IL-6,下調(diào)DCs表面共刺激分子CD80、CD86及MHC-Ⅱ類分子表達(dá),進(jìn)而抑制DCs成熟、阻斷DCs抗原提呈功能[30]。最近發(fā)現(xiàn),MSCs分泌IL-6并上調(diào)細(xì)胞因子信號抑制物1(suppressor of cytokine signaling 1,SOCS1)的表達(dá),阻斷DCs中的TLR4信號通路,從而抑制DCs成熟分化[31]??梢?,IL-6在MSCs調(diào)節(jié)DCs的作用中至關(guān)重要。此外,MSCs調(diào)節(jié)DCs的作用也可能和IL-10密切相關(guān)。MSCs能夠激活JAK/STAT通路,從而活化SOCS3,增加產(chǎn)生依賴IL-10的調(diào)節(jié)性DCs,繼而發(fā)揮抗炎效應(yīng)和免疫調(diào)節(jié)作用[32-33]。另有研究表明,在和MSCs共培養(yǎng)的DCs體系中,IL-10的分泌上調(diào),TNF-α、INF-γ、IL-12等炎性因子的分泌則會下調(diào)[28,34-35]。而這些炎性因子的改變可能在炎癥介導(dǎo)的移植物免疫微環(huán)境中起重要調(diào)節(jié)作用。

DCs遷移至淋巴結(jié)區(qū)域,將抗原呈遞給T細(xì)胞,這一過程與趨化因子受體CCR7密切關(guān)聯(lián)。MSCs通過下調(diào)DCs的CCR7的表達(dá),減弱DCs的遷移作用[36]。因此,MSCs可能通過減弱DCs的遷移作用減弱免疫排斥,保護(hù)移植物的功能和存活。

1.3 MSCs和巨噬細(xì)胞的相互作用

在移植腎中可以活檢出活化的M2型巨噬細(xì)胞,但激活方式與經(jīng)典的M1型巨噬細(xì)胞不同。在移植腎微環(huán)境中,M2型巨噬細(xì)胞可通過Th2細(xì)胞分泌的細(xì)胞因子如IL-13、IL-14激活[37],而不是通過經(jīng)典的Th1細(xì)胞分泌的干擾素等細(xì)胞因子激活。MSCs被IFN-γ和TNF-α刺激后,可上調(diào)IDO的分泌,激活M2型巨噬細(xì)胞,從而抑制T細(xì)胞的增殖,調(diào)節(jié)免疫應(yīng)答[38-39]。

1.4 MSCs和自然殺傷細(xì)胞的相互作用

MSCs還可以調(diào)節(jié)自然殺傷細(xì)胞(NK細(xì)胞)的功能。NK細(xì)胞可選擇性殺傷未成熟DCs,忽視成熟DCs并增強(qiáng)免疫殺傷力;另外還可以分泌多種毒性細(xì)胞因子和趨化因子。MSCs抑制NK細(xì)胞功能的機(jī)制復(fù)雜,可能通過分泌PGE2和TGF-β來發(fā)揮作用[40]。另外MSCs還可下調(diào)NK細(xì)胞表面激動(dòng)性受體如NKp44、NKG2D和NKp30的表達(dá),抑制NK細(xì)胞的增殖、細(xì)胞毒性及因子的分泌[41]。

1.5 MSCs和B淋巴細(xì)胞的相互作用

MSCs可以抑制B細(xì)胞表面相關(guān)趨化因子的受體CXCR4、CXCR5、CXCR7及其配體CXCL12、CXCL13的表達(dá),進(jìn)而影響B(tài)細(xì)胞的趨化能力。MSCs還可使B細(xì)胞停滯于G0/G1期,抑制B細(xì)胞的增殖[42]。

1.6 MSCs和調(diào)節(jié)性淋巴細(xì)胞群的相互作用

調(diào)節(jié)性淋巴細(xì)胞群在誘導(dǎo)免疫耐受和減弱免疫排斥方面具有重要作用。MSCs能夠誘導(dǎo)和擴(kuò)增調(diào)節(jié)性淋巴細(xì)胞群。MSCs治療實(shí)體器官移植(mesenchymal stem cells in solid organ transplantation,MISOT)的研究發(fā)現(xiàn),MSCs調(diào)節(jié)移植后排斥反應(yīng)的主要機(jī)制包括擴(kuò)增調(diào)節(jié)性T細(xì)胞[43-44]和抑制效應(yīng)T細(xì)胞及記憶性T細(xì)胞的增殖[45]。MSCs高效誘生Treg細(xì)胞可能和部分細(xì)胞因子密切相關(guān)[46]。然而,通過細(xì)胞接觸方式上調(diào)IL-10、TGF-β和PGE2的分泌,是人MSCs誘導(dǎo)產(chǎn)生CD4+CD25hiFOXP3+Treg細(xì)胞的關(guān)鍵[47]。在體內(nèi),F(xiàn)OXP3+Treg細(xì)胞的產(chǎn)生與IDO表達(dá)有關(guān),這個(gè)因子由IFN-γ刺激MSCs產(chǎn)生[48]。此外,MSCs還可促進(jìn)生成其它調(diào)節(jié)性細(xì)胞如調(diào)節(jié)性巨噬細(xì)胞(Mreg)、調(diào)節(jié)性B細(xì)胞(Breg)、Tr1 IL-10+和Th3 TGF-β+等,參與移植免疫調(diào)節(jié)[49-55]。

2 修復(fù)受損組織

MSCs具有多向分化、修復(fù)及再生受損組織的潛能。它可遷移至受損區(qū)域,分泌多種細(xì)胞因子,甚至可分化為具有功能的細(xì)胞,保護(hù)或者替代受損的細(xì)胞,以維持甚至改善組織的功能。研究表明,MSCs經(jīng)靜脈輸注治療,雖然大量滯留于肺毛細(xì)血管床,但在各種疾病模型如心肌梗死、腦外傷、肝纖維化、肺化學(xué)損傷、各類腫瘤和移植中,仍有部分細(xì)胞趨向于受損組織區(qū)域并發(fā)揮修復(fù)作用[56-57]。然而,MSCs主要通過分化替代還是旁分泌效應(yīng)發(fā)揮修復(fù)作用一直存在爭議。

一方面,MSCs可以分化成有功能的細(xì)胞或者實(shí)質(zhì)細(xì)胞替代受損細(xì)胞。將雄性小鼠MSCs經(jīng)外周血注入雌性小鼠體內(nèi),能夠得到具有胰島素分泌功能的胰腺β細(xì)胞[58]。鏈脲菌素誘導(dǎo)的糖尿病小鼠接受BMC移植后,在其體內(nèi)檢測到供者來源的胰島素陽性細(xì)胞[59]。將MSCs經(jīng)肝細(xì)胞生長培養(yǎng)液處理后可出現(xiàn)肝細(xì)胞的形態(tài)和功能,再將預(yù)處理的MSCs給予肝移植術(shù)后免疫抑制或者缺陷的受體,這種肝細(xì)胞樣細(xì)胞仍有肝細(xì)胞的相關(guān)功能,如糖原儲存、尿素合成、表達(dá)磷酸烯醇式丙酮酸羧激酶(phosphoenolpyruvate carboxykinase,PCK1)、合成白蛋白等[60]。在肝移植中,MSCs可分化為有功能的肝細(xì)胞樣細(xì)胞,這在體內(nèi)實(shí)驗(yàn)和體外均可證明[61-62]。因此,MSCs可能通過直接分化來替代受損細(xì)胞并改善受體移植物的功能。

另一方面,有學(xué)者認(rèn)為MSCs的旁分泌效應(yīng)或許才是修復(fù)的主要原因。MSCs可分泌許多種可溶性營養(yǎng)細(xì)胞因子和生長因子、含mRNA和miRNA的微泡和招募受損區(qū)域的祖細(xì)胞而發(fā)揮修復(fù)作用[63-66]。MSCs在很多疾病模型中幾乎僅在急性期才有明顯療效,直接分化的證據(jù)也十分有限,這表明MSCs的治療效果在很大程度上可能依賴于本身改善受損組織微環(huán)境的能力[10]。在減體積大鼠肝移植實(shí)驗(yàn)中,MSCs保護(hù)肝臟功能可能是通過分泌VGEF等許多營養(yǎng)因子實(shí)現(xiàn),而非直接分化[67]。胰島移植中,MSCs共移植后的移植物功能改善與周圍血管再生率升高有關(guān),而與MSCs可能分化為極少量的胰島β細(xì)胞無關(guān)[68]。

MSCs的旁分泌效應(yīng)可保護(hù)移植物,除了上述免疫調(diào)節(jié)作用外,還主要表現(xiàn)在促血管生成、抗凋亡、抗炎、內(nèi)生修復(fù)、抗纖維化等方面[69]。①M(fèi)SCs促進(jìn)內(nèi)皮細(xì)胞的增殖,改善組織血運(yùn),提高組織修復(fù)能力。MSCs能分泌VEGF,是最重要的營養(yǎng)性因子之一,能促進(jìn)血管再生、內(nèi)皮細(xì)胞的增殖和存活以及血運(yùn)重建,提高胰島移植物的生存[70-73]。除了VEGF,MSCs還可分泌TGF-β、MMP-2、MMP-14作用于內(nèi)皮細(xì)胞,增加周圍組織血管密度,改善血供[74-75]。②MSCs分泌營養(yǎng)因子,調(diào)節(jié)炎癥分子,增加抗凋亡蛋白,促進(jìn)細(xì)胞增殖保護(hù)移植物。在小體積肝移植中,MSCs上調(diào)HGF、IL-10、Bcl-2,并增加c-Jun N端激酶(c-Jun N-terminal Kinase,JNK/c-Jun)、細(xì)胞周期蛋白D1(Cyclin D1,CyD1)和NF-κB的表達(dá),促進(jìn)肝細(xì)胞增殖[76]。③MSCs在各種器官移植中具有抗纖維化的作用,如心、肺、肝、腎移植[77-80],而這可能與多種旁分泌細(xì)胞因子有關(guān),如:BMP-7,肝細(xì)胞生長因子(hepatocyte growth factor,HGF)和TGF-β[81-83]。MSCs通過旁分泌效應(yīng)改變微環(huán)境,修復(fù)損傷的作用已被廣泛接受。

3 調(diào)節(jié)內(nèi)質(zhì)網(wǎng)應(yīng)激作用

內(nèi)質(zhì)網(wǎng)應(yīng)激(endoplasmic reticulum stress,ERS)可以嚴(yán)重影響各種移植物的存活和功能。胰島移植物早期大量凋亡、功能失活僅僅用免疫排斥的原因來解釋是不夠的[84-85]。移植物遭受受體高血糖毒性和移植后的“非正常環(huán)境”也是非常重要的因素[86]。在移植后早期,移植物處于缺血、缺氧、缺血再灌等“非正常環(huán)境”中,這會引起嚴(yán)重的內(nèi)質(zhì)網(wǎng)應(yīng)激[85]。而持久或嚴(yán)重的內(nèi)質(zhì)網(wǎng)應(yīng)激是引起早期移植物凋亡、功能失活的重要原因[87]。此外,內(nèi)質(zhì)網(wǎng)應(yīng)激能影響移植肝術(shù)后移植物的質(zhì)量,內(nèi)質(zhì)網(wǎng)應(yīng)激阻滯劑腹腔注射后,大鼠肝移植術(shù)成功率明顯提高,術(shù)后肝損害有所減輕[88-89]。內(nèi)質(zhì)網(wǎng)應(yīng)激在胰島移植、心臟移植、腎臟移植和其他實(shí)體器官移植中同樣影響著術(shù)后移植物的存活率和存活時(shí)間[90-93]。而MSCs可減弱內(nèi)質(zhì)網(wǎng)應(yīng)激,改善移植物的存活和功能[94-95]。

MSCs減輕內(nèi)質(zhì)網(wǎng)應(yīng)激的機(jī)制尚未完全闡明。在嚴(yán)重內(nèi)質(zhì)網(wǎng)應(yīng)激中,PI3K/Akt可調(diào)節(jié)內(nèi)質(zhì)網(wǎng)應(yīng)激PERK-eIF2α/CHOP通路[96],并調(diào)節(jié)細(xì)胞的凋亡;而MSCs可調(diào)節(jié)PI3K/Akt通路[97-98]。因此PI3K/Akt可能是MSCs調(diào)節(jié)ERS保護(hù)移植物的橋梁。

MSCs減弱內(nèi)質(zhì)網(wǎng)應(yīng)激的效應(yīng)可能與MSCs直接接觸作用有關(guān)[94]。經(jīng)毒胡蘿卜素(thapsigargin)處理的腎小管細(xì)胞處于內(nèi)質(zhì)網(wǎng)應(yīng)激狀態(tài),內(nèi)質(zhì)網(wǎng)應(yīng)激相關(guān)分子CHOP和Caspase-3明顯高表達(dá);而與MSCs共培養(yǎng)的實(shí)驗(yàn)組腎小管細(xì)胞的CHOP和Caspase-3表達(dá)相對低,腎小管細(xì)胞的凋亡也顯著減少;使用插入式細(xì)胞培養(yǎng)皿(transwell)隔絕MSCs和腎小管細(xì)胞的接觸,盡管培養(yǎng)液共用,內(nèi)質(zhì)網(wǎng)應(yīng)激的相關(guān)指標(biāo)無明顯減少。也有研究表明MSCs減輕內(nèi)質(zhì)網(wǎng)應(yīng)激的作用可能和MSCs的旁分泌有關(guān)[95]。對經(jīng)高濃度衣霉素(Tunicamycin)誘導(dǎo)后處于強(qiáng)內(nèi)質(zhì)網(wǎng)應(yīng)激狀態(tài)下的大鼠視網(wǎng)膜神經(jīng)節(jié)細(xì)胞系(RGC-5),再使用臍帶間充質(zhì)干細(xì)胞(hUC-MSCs)條件培養(yǎng)液可對其有一定的保護(hù)作用。相比使用普通培養(yǎng)液的RGC-5,細(xì)胞內(nèi)CHOP和PERK的表達(dá)明顯下降,而生長速度、細(xì)胞的粘附能力以及存活情況等都有提高。

4 問題與展望

本文將目前關(guān)于MSCs對移植物的保護(hù)作用機(jī)制進(jìn)行了綜述,并歸納于圖1。雖然針對此機(jī)制已有許多研究,但仍有許多亟需解決的問題。目前關(guān)于免疫調(diào)節(jié)的研究集中在體外細(xì)胞實(shí)驗(yàn)上,體內(nèi)的調(diào)節(jié)效果仍不穩(wěn)定。MSCs在基礎(chǔ)研究和臨床應(yīng)用中的主要問題包括:①M(fèi)SCs的免疫調(diào)節(jié)效應(yīng)和機(jī)制在各種動(dòng)物模型中并不一致。②MSCs與微環(huán)境的關(guān)系不詳。MSCs可調(diào)節(jié)微環(huán)境,微環(huán)境也可以影響MSCs的功能發(fā)揮,因此需要進(jìn)一步確定和掌控MSCs在適當(dāng)范圍內(nèi)調(diào)節(jié)宿主排斥反應(yīng)[44]。③MSCs輸液輸注可能引起的急性移植物相關(guān)功能障礙(植入綜合征)。④臨床器官移植術(shù)后,如何確定MSCs的輸注時(shí)機(jī)、劑量以及途徑[99]。⑤MSCs與免疫抑制劑如何聯(lián)用,以減少免疫抑制劑的副作用。MSCs在器官移植中的應(yīng)用,今后仍是重要的研究方向。

a:輸注在血管內(nèi)的MSCs遷徙至移植區(qū)域;b:MSCs通過細(xì)胞-細(xì)胞直接接觸或者旁分泌抑制各種免疫細(xì)胞的增殖和激活等;c:MSCs擴(kuò)增或激活調(diào)節(jié)性細(xì)胞群的活動(dòng);d:MSCs通過旁分泌各種細(xì)胞因子、營養(yǎng)因子修復(fù)受損組織,促進(jìn)血管生成,促進(jìn)區(qū)域組織祖細(xì)胞分化替代受損組織,直接分化替代受損組織;e:抑制嚴(yán)重的內(nèi)質(zhì)網(wǎng)應(yīng)激。(注:各細(xì)胞、組織大小比例不代表真實(shí)情況)圖1 間充質(zhì)干細(xì)胞(MSCs)在移植區(qū)域發(fā)揮保護(hù)作用Fig.1 Mesenchymal stem cells(MSCs)play a protective role in the transplant area

[1] Xu Y,Wang L,He J,et al.Prevalence and control of diabetes in Chinese adults[J].JAMA,2013,310(9):948-959.

[2] Prockop D J.Marrow stromal cells as stem cells for nonhematopoietic tissues[J].Science,1997,276(5309):71-74.

[3] Da Silva Meirelles L,Chagastelles P C,Nardi N B.Mesenchymal stem cells reside in virtually all post-natal organs and tissues[J].J Cell Sci,2006,119(11):2204-2213.

[4] Bartholomew A,Sturgeon C,Siatskas M,et al.Mesenchymal stem cells suppress lymphocyte proliferationinvitroand prolong skin graft survivalinvivo[J].Exp Hematol,2002,30(1):42-48.

[5] Ding Y,Xu D,F(xiàn)eng G,et al.Mesenchymal stem cells prevent the rejection of fully allogeneic islet grafts by the immunosuppressive activity of matrix metalloproteinase-2 and-9[J].Diabetes,2009,58(8):1797-1806.

[6] Xu D M,Yu X F,Zhang D,et al.Mesenchymal stem cells differentially mediate regulatory T cells and conventional effector T cells to protect fully allogeneic islet grafts in mice[J].Diabetologia,2012,55(4):1091-1102.

[7] Ge W,Jiang J,Arp J,et al.Regulatory T-cell generation and kidney allograft tolerance induced by mesenchymal stem cells associated with indoleamine 2,3-dioxygenase expression[J].Transplantation,2010,90(12):1312-1320.

[8] Wang Y,Zhang A,Ye Z,et al.Bone marrow-derived mesenchymal stem cells inhibit acute rejection of rat liver allografts in association with regulatory T-cell expansion[J].Transplant Proc,2009,41(10):4352-4356.

[9] Chabannes D,Hill M,Merieau E,et al.A role for heme oxygenase-1 in the immunosuppressive effect of adult rat and human mesenchymal stem cells[J].Blood,2007,110(10):3691-3694.

[10] Uccelli A,Moretta L,Pistoia V.Mesenchymal stem cells in health and disease[J].Nat Rev Immunol,2008,8(9):726-736.

[11] Jurewicz M,Yang S,Augello A,et al.Congenic mesenchymal stem cell therapy reverses hyperglycemia in experimental type 1 diabetes[J].Diabetes,2010,59(12):3139-3147.

[12] Augello A,Tasso R,Negrini S M,et al.Bone marrow mesenchymal progenitor cells inhibit lymphocyte proliferation by activation of the programmed death 1 pathway[J].Eur J Immunol,2005,35(5):1482-1490.

[13] Fiorina P,Jurewicz M,Augello A,et al.Immunomodulatory function of bone marrow-derived mesenchymal stem cells in experimental autoimmune type 1 diabetes[J].J Immunol,2009,183(2):993-1004.

[14] Ren G,Zhao X,Zhang L,et al.Inflammatory cytokine-induced intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 in mesenchymal stem cells are critical for immunosuppression[J].J Immunol,2010,184(5):2321-2328.

[15] Xue Q,Luan X Y,Gu Y Z,et al.The negative co-signaling molecule b7-h4 is expressed by human bone marrow-derived mesenchymal stem cells and mediates its T-cell modulatory activity[J].Stem Cells Dev,2010,19(1):27-38.

[16] Ryan J M,Barry F,Murphy J M,et al.Interferon-γ does not break,but promotes the immunosuppressive capacity of adult human mesenchymal stem cells[J].Clin Exp Immunol,2007,149(2):353-363.

[17] Zhao W,Wang Y,Wang D,et al.TGF-beta expression by allogeneic bone marrow stromal cells ameliorates diabetesm in NOD mice through modulating the distribution of CD4+T cell subsets[J].Cell Immunol,2008,253(1/2):23-30.

[18] Cuerquis J,Romieu-Mourez R,F(xiàn)ran?ois M,et al.Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli[J].Blood,2002,99(10):3838-3843.

[19] Yanez R,Oviedo A,Aldea M,et al.Prostaglandin E2 plays a key role in the immunosuppressive properties of adipose and bone marrow tissue-derived mesenchymal stromal cells[J].Exp Cell Res,2010,316(19):3109-3123.

[20] English K,Ryan J M,Tobin L,et al.Cell contact,prostaglandin E(2)and transforming growth factor beta 1 play nonredundant roles in human mesenchymal stem cell induction of CD4+CD25(High)forkhead box P3+ regulatory T cells[J].Clin Exp Immunol,2009,156(1):149-160.

[21] Jarvinen L,Badri L,Wettlaufer S,et al.Lung resident mesenchymal stem cells isolated from human lung allografts inhibit T cell proliferation via a soluble mediator[J].J Immunol,2008,181(6):4389-4396.

[22] Ding Y C,Xu D,F(xiàn)eng G,et al.Mesenchymal stem cells prevent the rejection of fully allogenic islet grafts by the immunosuppressive activity of matrix metalloproteinase-2 and-9[J].Diabetes,2009,58(8):1797-1806.

[23] Perillo N L,Pace K E,Seilhamer J J,et al.Apoptosis of T cells mediated by galectin-1[J].Nature,1995,378(6558):736-739.

[24] Curciarello R,Steele A,Cooper D,et al.The role of Galectin-1 and Galectin-3 in the mucosal immune response to citrobacter rodentium infection[J].PLoS One,2014,9(9):e107933.

[25] Norambuena A,Metz C,Vicua L,et al.Galectin-8 induces apoptosis in Jurkat T cells by phosphatidic acid-mediated ERK1/2 activation supported by protein kinase A down-regulation[J].J Biol Chem,2009,284(19):12670-12679.

[26] Sioud M,Mobergslien A,Boudabous A,et al.Mesenchymal stem cell-mediated T cell suppression occurs through secreted galectins[J].Int J Oncol,2011,38(2):385-390.

[27] Jiang X X,Zhang Y,Liu B,et al.Human mesenchymal stem cells inhibit differentiation and function of monocyte-derived dendritic cells[J].Blood,2005,105(10):4120-4126.

[28] Nauta A J,Kruisselbrink A B,Lurvink E,et al.Mesenchymal stem cells inhibit generation and function of both CD34(+)-derived and monocyte-derived dendritic cells[J].J Immunol,2006,177(4):2080-2087.

[29] Jurewicz M,Yang S,Augello A,et al.Congenic mesenchymal stem cell therapy reverses hyperglycemia in experimental type 1 diabetes[J].Diabetes,2010,59(12):3139-3147.

[30] Djouad F,Charbonnier L M,Bouffi C,et al.Mesenchymal stem cells inhibit the differentiation of dendritic cells through an interleukin-6-dependent mechanism[J].Stem Cells,2007,25(8):2025-2032.

[31] Deng Y,Yi S,Wang G,et al.Umbilical cord-derived mesenchymal stem cells instruct dendritic cells to acquire tolerogenic phenotypes through the IL-6-mediated upregulation of SOSCS1[J].Stem Cells Dev,2014,23(17):2080-2092.

[32] Liu X,Qu X,Chen Y,et al.Mesenchymal stem/stromal cells induce the generation of novel IL-10-dependent regulatory dendritic cells by SOSC3 activtion[J].J Immunol,2012,189(3):1182-1192.

[33] Liu W H,Liu J J,Wu J.et al.Novel mechanism of inhibition of dendritic cells maturation by mesenchymal stem cells via interleukin-10 and the JAK1/STAT3 signaling pathyway[J].PLoS One,2013,8(1):55487.

[34] Chen L,Zhang W,Yue H,et al.Effects of human mesenchymal stem cells on the differentiation of dendritic cells from CD34+cells[J].Stem Cells Dev,2007,16(5):719-731.

[35] Beyth S,Borovsky Z,Mevorach D,et al.Human mesenchymal stem cells alter antigen-presenting cell maturation and induce T-cell unresponsiveness[J].Blood,2005,105(5):2214-2219.

[36] English K,Barry F P,Mahon B P.Murine mesenchymal stem cells suppress dendritic cell migration,maturation and antigen presentation[J].Immunol Lett,2008,115(1):50-58.

[37] Mannon R B.Macrophages:contributors to allograft dysfunction,repair,or innocent bystanders?[J].Curr Opin Organ Transplant,2012,17(1):20-25.

[38] Francois M,Romieu-Mourez R,Li M,et al.Human MSC suppression correlates with cytokine induction of indoleamine 2,3-dioxygenase and bystander M2 macrophage differentiation[J].Mol Ther,2012,20(1):187-195.

[39] Nakajima H,Uchida K,Rodriguez Guerrero A,et al.Transplantation of mesenchymal stem cells promotes the alternative pathway of macrophage activation and functional recovery after spinal cord injury[J].J Neurotrauma,2012,29(8):1614-1625.

[40] Sotiropoulou P A,Perez S A,Gritzapis A D,et al.Interactions between human mesenchymal stem cells and natural killer cells[J].Stem Cells(Dayton,Ohio),2006,24(1):74-85.

[41] Spaggiari G M,Capobianco A,Abdelrazik H,et al.Mesenchymal stem cells inhibit natural killer-cell proliferation,cytotoxicity,and cytokine production:role of indoleamine 2,3-dioxygenase and prostaglandin E2[J].Blood,2008,111(3):1327-1333.

[42] Corcione A,Benvenuto F,F(xiàn)erretti E,et al.Human mesenchymal stem cells modulate B-cell functions[J].Blood,2006,107(1):367-372.

[43] Hoogduijn M J,Popp F C,Grohnert A,et al.Advancement of mesenchymal stem cell therapy in solid organ transplantation(MISOT)[J].Transplantation,2010,90(2):124-126.

[44] Casiraghi F,Perico N,and Remuzzi G.Mesenchymal stromal cells to promote solid organ transplantation tolerance[J].Curr Opin Orgin Transplant,2013,18(1):51-58.

[45] Cortinovis M,Casiraghi F,Remuzzi G,et al.Mesenchymal stromal cells to control donor-specific memory T cells in solid organ transplantation[J].Curr Opin Organ Transplant,2015,20(1):79-85.

[46] Franquesa M,Hoogduijn M J,Baan C C.The impact of mesenchymal stem cell therapy in transplant rejection and tolerance[J].Curr Opin Organ Transplant,2012,17(4):355-361.

[47] English K,Ryan J M,Tobin L,et al.Cell contact,prostaglandin E(2)and transforming growth factor beta 1 play nonredundant roles in human mesenchymal stem cell induction of CD4+CD25hiforkhead box P3+regulatory T cells[J].Clin Exp Immunol,2009,156(1):149-160.

[48] Croitoru-Lamoury J,Lamoury F M,Caristo M,et al.Interferon-gamma regulates the proliferation and differentiation of mesenchymal stem cells via activation of indoleamine 2,3 dioxygenase(IDO)[J].PLoS One,2011,6(2):e14698.

[49] Hutchinson J A,Riquelme P,Sawitzki B,et al.Cutting edge:immunological consequences and trafcking of human regulatory macrophages administered to renal transplant recipients[J].J Immunol,2011,187(5):2072-2078.

[50] Nemeth K,Leelahavanichkul A,Yuen P S,et al.Bone marrow stromal cells attenuate sepsis via prostaglandin E2-dependent reprogramming of host macrophages to increase their interleukin-10 production[J].Nat Med,2009,15(1):42-49.

[51] Maggini J,Mirkin G,Bognanni I,et al.Mouse bone marrow-derived mesenchymal stromal cells turn activated macrophages into a regulatory-like pro-le[J].PLoS One,2010,5(2):e9252.

[52] Asari S,Itakura S,F(xiàn)erreri K,et al.Mesenchymal stem cells suppress B-cell terminal differentiation[J].Exp Hematol,2009,37(5):604-615.

[53] Krampera M,Pasini A,Pizzolo G,et al.Regenerative and immunomodulatory potential of mesenchymal stem cells[J].Curr Opin Pharmacol,2006,6(4):435-441.

[54] Rasmusson I,Le Blanc K,Sundberg B,et al.Mesenchymal stem cells stimulate antibody secretion in human B cells[J].Scand J Immunol,2007,65(4):336-343.

[55] Mougiakakos D,Jitschin R,Johansson C C,et al.The impact of inammatory licensing on heme oxygenase-1-mediated induction of regulatory T cells by human mesenchymal stem cells[J].Blood,2011,117(18):4826-4835.

[56] Ren G,Chen X,Dong F,et al.Concise review:mesenchymal stem cells and translational medicine:emerging issues[J].Stem Cells Transl Med,2012,1(1):51-58.

[57] Devine S M,Cobbs C,Jennings M,et al.Mesenchymal stem cells distribute to a wide range of tissues following systemic infusion into non-human primates[J].Blood,2003,101(8):2999-3001.

[58] Ianus A,Holz G G,Theise N D,et al.Invivoderivation of glucose-competent pancreatic endocrine cells from bone marrow without evidence of cell fusion[J].J Clin Invest,2003,111(6):843-850.

[59] Hess D,Li L,Martin M,et al.Bone marrow-derived stem cells initiate pancreatic regeneration[J].Nat Biotechnol,2003,21(7):763-770.

[60] Aurich I,Mueller L P,Aurich H,et al.Functional integration of hepatocytes derived from human mesenchymal stem cells into mouse livers[J].Gut,2007,56(3):405-415.

[61] Stock P,Brückner S,Ebensing S,et al.The generation of hepatocytes from mesenchymal stem cells and engraftment into murine liver[J].Nat Protoc,2010,5(4):617-627.

[62] Puglisi M A,Tesori V,Lattanzi W,et al.Therapeutic implications of mesenchymal stem cells in liver injury[J].J Biomed Biotechnol,2011,2011:860578.

[63] Wang Y,Chen X,Cao W,et al.Plasticity of mesenchymal stem cells in immunomodulation:pathological and therapeutic implications[J].Nat Immunol,2014,15(11):1009-1016.

[64] Quesenberry P J,Aliotta J M.Cellular phenotype switching and microvesicles[J].Adv Drug Deliv Rev,2010,62(12):1141-1148.

[65] Li Y,Chen X,Chen X G,et al.Human marrow stromal cell therapy for stroke in rat:neurotrophins and functional recovery[J].Neurology,2002,59(4):514-523.

[66] Munoz J R,Stoutenger B R,Robinson A P,et al.Human stem/progenitor cells from bone marrow promote neurogenesis of endogenous neural stem cells in the hippocampus of mice[J].Proc Natl Acad Sci USA,2005,102(50):18171-18176.

[67] Du Z,Wei C,Cheng K,et al.Mesenchymal stem celleconditioned medium reduces liver injury and enhances regeneration in reduced-size rat liver transplantation[J].J Surg Res,2013,183(2):907-915.

[68] Borg D J,Weigelt M,Wilhelm C,et al.Mesenchymal stromal cells improve transplanted islet survival and islet function in a syngeneic mouse model[J].Diabetologia,2014,57(3):522-531.

[69] Nesselmann C,Ma N,Bieback K,et al.Mesenchymal stem cells and cardiac repair[J].J Cell Mol Med,2008,12(5B):1795-1810.

[70] Ito T,Itakura S,Todorov I,et al.Mesenchymal stem cell and islet co-transplantation promotes graft revascularization and function[J].Transplantation,2010,89(12):1438-1445.

[71] Figliuzzi M,Bonandrini B,Silvani S,et al.Mesenchymal stem cells help pancreatic islet transplantation to control type 1 diabetes[J].World J Stem Cells,2014,6(2):163-172.

[72] Kinnaird T,Stabile E,Burnett M S,et al.Local delivery of marrow-derived stromal cells augments collateral perfusion through paracrine mechanisms[J].Circulation,2004,109(12):1543-1549.

[73] Haynesworth S E,Baber M A,Caplan A I.Cytokine expression by human marrow-derived mesenchymal progenitor cellsinvitro:effects of dexamethasone and IL-1 alpha[J].J Cell Physiol,1996,166(3):585-592.

[74] Ahlborg H G,Johnell O,Turner C H,et al.Bone loss and bone size after menopause[J].N Engl J Med,2003,349(4):327-334.

[75] Beyth S,Borovsky Z,Mevorach D,et al.Human mesenchymal stem cells alter antigen-presenting cell maturation and induce T-cell unrespon-siveness[J].Blood,2005,105(5):2214-2219.

[76] Wang W,Du Z,Yan J,et al.Mesenchymal stem cells promote liver regeneration and prolong survival in small-for-size liver grafts:involvement of C-Jun N-terminal kinase,cyclin D1,and NF-κB[J].PLoS One,2014,9(12):e112532.

[77] Ohnishi S,Sumiyoshi H,Kitamura S,et al.Mesenchymal stem cells attenuate Diabetes,2005,54:100-106.cardiacbroblast proliferation and collagen synthesis through paracrine actions[J].FEBS Lett,2007,581(21):3961-3966.

[78] Ortiz L A,Gambelli F,McBride C,et al.Mesenchymal stem cell engraftment in lung is enhanced in response to bleomycin exposure and ameliorates itsbrotic effects[J].Proc Natl Acad Sci USA,2003,100(14):8407-8411.

[79] Abdel Aziz M T,Atta H M,Mahfouz S,et al.Therapeutic potential of bone marrow-derived mesenchymal stem cells on experimental liverbrosis[J].Clin Biochem,2007,40(12):893-899.

[80] Ninichuk V,Gross O,Segerer S,et al.Multipotent mesenchymal stem cells reduce interstitialbrosis but do not delay progression of chronic kidney disease in collagen 4A3-decient mice[J].Kidney Int,2006,70(1):121-129.

[81] Villanueva S,Ewertz E,Carrion F,et al.Mesenchymal stem cell injection ameliorates chronic renal failure in a rat model[J].Clin Sci(Lond),2011,121(11):489-499.

[82] Li L,Zhang Y,Li Y,et al.Mesenchymal stem cell transplantation attenuates cardiacbrosis associated with isoproterenol-induced global heart failure[J].Transpl Int,2008,21(12):1181-1189.

[83] Ueno T,Nakashima A,Doi S,et al.Mesenchymal stem cells ameliorate experimental peritonealbrosis by suppressing inammation and inhibiting TGF-beta1 signaling[J].Kidney Int,2013,84(2):297-307.

[84] Zhu M,Guo M,F(xiàn)ei L,et al.4-Phenylbutyric acid attenuates endoplasmic reticulum stress-mediated pancreatic β-cell apoptosis in rats with streptozotocin-induced diabetes[J].Endocrine,2014,47(1):129-137.

[85] Potter K J,Westwell-Roper C Y,Klimek-Abercrombie A M,et al.Death and dysfunction of transplanted beta-cells:lessons learned from type 2 diabetes?[J].Diabetes,2014,63(1):12-19.

[86] Rickels M R,Schutta M H,Markmann J F,et al.{beta}-Cell function following human islet transplantation for type 1 diabetes[J].Diabetes,2005,54(1):100-106.

[87] Negi S,Park S H,Jetha A,et al.Evidence of endoplasmic reticulum stress mediating cell death in transplanted human islets[J].Cell Transplant,2012,21(5):889-900.

[88] Pallet N,F(xiàn)ougeray S,Beaune P,et al.Endoplasmic reticulum stress:an unrecognized actor in solid organ transplantation[J].Transplantation,2009,88(5):605-613.

[89] Lu H,Lu L,Xu Z C,et al.Tauroursodeoxycholic acid and 4-phenyl butyric acid alleviate endoplasmic reticulum stress and improve prognosis of donation after cardiac death liver transplantation in rats[J].Hepatobiliary Pancreat Dis Int,2014,13(6):586-593.

[90] Mizukami H,Takahashi K,Inaba W,et al.Involvement of oxidative stress-induced DNA damage,endoplasmic reticulum stress,and autophagy deficits in the decline of β-cell mass in Japanese type 2 diabetic patients[J].Diabetes Care,2014,37(7):1966-1974.

[91] Xiang J,Gu X,Qian S,et al.Endoplasmic reticulum stress-mediated apoptosis involved in indirect recognition pathway blockade induces long-term heart allograft survival[J].J Biomed Biotechnol,2010,2010:705431.

[92] Fougeray S,Loriot M A,Nicaud V,et al.Increased body mass index after kidney transplantation in activating transcription factor 6 single polymorphism gene carriers[J].Transplant Proc,2011,43(9):3418-3422.

[93] Palle N,Bouvier N,Beaune P,et al.Involvement of endoplasmic reticulum stress in solid organ transplantation[J].Med Sci(Paris),2010,26(4):397-403.

[94] Zhu X Y,Urbieta-Caceres V,Krier J D,et al.Mesenchymal stem cells and endothelial progenitor cells decrease renal injury in experimental swine renal artery stenosis through different mechanisms[J].Stem Cells,2013,31(1):117-125.

[95] 胡婕,江冰.干細(xì)胞條件培養(yǎng)液對RGCs內(nèi)質(zhì)網(wǎng)應(yīng)激的保護(hù)作用及機(jī)制[D].長沙:中南大學(xué),2013.

[96] Mounir Z,Krishnamoorthy J L,Wang S,et al.Akt determines cell fate through the negative regulation of the PERK-eIF2α phosphorylation pathway[J].Sci Signal,2011,4(192):ra62.

[97] Gnecchi M,He H,Liang O D,et al.Paracrine action accounts for marked protection of ischemic heart by Akt-modified mesenchymal stem cells[J].Nat Med,2005,11(4):367-368.

[98] Yulyana Y,Ho I A,Sia K C,et al.Paracrine factors of human fetal MSCs inhibit liver cancer growth through reduced activation of IGF-1 R/PI3K/Akt signaling[J].Mol Ther,2015,23(4):746-756.

[99] Casiraghi F,Azzollini N,Todeschini M,et al.Localization of mesenchymal stromal cells dictates their immune or proinammatory effects in kidney transplantation[J].Am J Transplant,2012,12(9):2373-2383.

(2015-12-03 收稿)

*國家自然科學(xué)基金資助項(xiàng)目(No.81570678);國家衛(wèi)生和計(jì)劃生育委員會公益性行業(yè)科研專項(xiàng)基金資助項(xiàng)目(No.201302009)

R392.4

10.3870/j.issn.1672-0741.2016.06.022

黃江鵬,男,1989年生,醫(yī)學(xué)碩士,E-mail:529664106@qq.com

△通訊作者,Corresponding author,E-mail:shijundoc@yahoo.com(時(shí)軍),nqgong@tjh.tjmu.edu.cn(宮念樵)

猜你喜歡
調(diào)節(jié)性移植物內(nèi)質(zhì)網(wǎng)
內(nèi)質(zhì)網(wǎng)自噬及其與疾病的關(guān)系研究進(jìn)展
本刊常用的不需要標(biāo)注中文的縮略語(二)
憤怒誘導(dǎo)大鼠肝損傷中內(nèi)質(zhì)網(wǎng)應(yīng)激相關(guān)蛋白的表達(dá)
調(diào)節(jié)性T細(xì)胞在急性白血病中的作用
LPS誘導(dǎo)大鼠肺泡上皮細(xì)胞RLE-6 TN內(nèi)質(zhì)網(wǎng)應(yīng)激及凋亡研究
表現(xiàn)為扁平苔蘚樣的慢性移植物抗宿主病一例
人及小鼠胰腺癌組織介導(dǎo)調(diào)節(jié)性T細(xì)胞聚集的趨化因子通路
部分調(diào)節(jié)性內(nèi)斜視遠(yuǎn)期療效分析
Caspase12在糖尿病大鼠逼尿肌細(xì)胞內(nèi)質(zhì)網(wǎng)應(yīng)激中的表達(dá)
探討CD4+CD25+Foxp3+調(diào)節(jié)性T淋巴細(xì)胞在HCV早期感染的作用
蓬安县| 安庆市| 犍为县| 白水县| 平舆县| 平度市| 论坛| 玉林市| 石台县| 砚山县| 五峰| 蓬安县| 甘孜| 通化县| 海盐县| 南昌市| 富源县| 通海县| 勐海县| 曲麻莱县| 沛县| 松原市| 乌拉特后旗| 南丰县| 新蔡县| 启东市| 新源县| 十堰市| 鄂托克前旗| 双鸭山市| 阿勒泰市| 潮安县| 集安市| 蓬莱市| 莫力| 天门市| 镇赉县| 北碚区| 石河子市| 平定县| 望江县|