周舒暢, 夏黎明, 王玉錦, 吳 維
華中科技大學(xué)同濟(jì)醫(yī)學(xué)院附屬同濟(jì)醫(yī)院放射科,武漢 430030
?
彌散加權(quán)成像單指數(shù)模型和體素內(nèi)不相干運(yùn)動(IVIM)模型對肺結(jié)節(jié)的診斷初探
周舒暢, 夏黎明△, 王玉錦, 吳 維
華中科技大學(xué)同濟(jì)醫(yī)學(xué)院附屬同濟(jì)醫(yī)院放射科,武漢 430030
目的 研究彌散加權(quán)成像(diffusion-weighted imaging,DWI)單指數(shù)模型和基于體素內(nèi)不相干運(yùn)動(intravoxel incoherent motion,IVIM)模型對肺結(jié)節(jié)的診斷價值。方法 2013年9月~2015年8月同濟(jì)醫(yī)院收治的66例肺部結(jié)節(jié)患者,其中49例男性,17例女性,平均年齡53.1歲(27~76歲),行多b值(0、20、50、100、150、200、400、600、1 000 s/mm2)DWI掃描,利用DWI單指數(shù)模型計算綜合表觀擴(kuò)散系數(shù)值(standard ADC),IVIM模型計算慢速表觀擴(kuò)散系數(shù)(slow ADC)、快速表觀擴(kuò)散系數(shù)(fast ADC)、快速擴(kuò)散所占容積分?jǐn)?shù)(F),比較這些參數(shù)在肺部良惡性病變和肺癌不同病理類型之間的差異。并應(yīng)用ROC曲線評價各參數(shù)的診斷效能。結(jié)果 肺部惡性腫瘤的standard ADC值為1.290(1.040~1.440)×10-3mm2/s,slow ADC值為0.988(0.661~1.139)×10-3mm2/s,良性結(jié)節(jié)standard ADC和slow ADC值分別為2.000(1.737~2.246)×10-3mm2/s和1.453(1.054~1.668)×10-3mm2/s,惡性腫瘤明顯低于良性(P<0.01);fast ADC值變異大,惡性腫瘤的fast ADC值為44.167(7.385~87.050)×10-3mm2/s,良性結(jié)節(jié)的fast ADC值為7.704(4.861~72.375)×10-3mm2/s,惡性腫瘤明顯高于良性(P=0.025);惡性腫瘤的F值為(34.1±16.8)%,良性結(jié)節(jié)為(51.3±31.8)%,二者差異無統(tǒng)計學(xué)意義(P=0.05)。standard ADC閾值取1.569×10-3mm2/s時,鑒別診斷的敏感度、特異度和準(zhǔn)確率分別為87.5%、75.0%、83.9%,slow ADC閥值取1.250×10-3mm2/s時,鑒別診斷的敏感度、特異度和準(zhǔn)確率分別為95.0%、56.3%和84.4%,聯(lián)合應(yīng)用standard ADC與slow ADC診斷的敏感度、特異度與準(zhǔn)確率達(dá)到97.4%、75.0%和92.2%。鱗癌slow ADC值明顯高于小細(xì)胞癌。結(jié)論 DWI單指數(shù)模型和IVIM模型對于肺部良惡性病變均具有鑒別診斷價值,可利用多個不同參數(shù)對肺部病變彌散和灌注進(jìn)行獨(dú)立評估,standard ADC、slow ADC這兩個指標(biāo)最具診斷價值,聯(lián)合應(yīng)用可為鑒別診斷提供重要的定量依據(jù),slow ADC能更為準(zhǔn)確地反映腫瘤的實(shí)際彌散,對肺癌亞型鑒別有一定意義,而fast ADC由于變異較大故診斷價值有限。
肺結(jié)節(jié); 彌散加權(quán)成像; 單指數(shù)模型; 體素內(nèi)不相干運(yùn)動; 表觀擴(kuò)散系數(shù)
彌散加權(quán)成像(diffusion weighted imaging,DWI))是一種對分子運(yùn)動或彌散進(jìn)行成像的技術(shù),能無創(chuàng)地顯示人體組織中水分子擴(kuò)散,已被廣泛地應(yīng)用于多個系統(tǒng)器官疾病的診斷和鑒別診斷,亦有肺部相關(guān)的研究,但大部分研究均是利用單指數(shù)模型計算表觀擴(kuò)散系數(shù)(apparent diffusion coefficient,ADC)來診斷和鑒別診斷。然而,ADC值主要是由2種類型的分子運(yùn)動確定:在實(shí)體組織中擴(kuò)散(即彌散)和微循環(huán)血管中擴(kuò)散(即灌注)[1]。單指數(shù)模型計算ADC值同時包括灌注和彌散的成分,不能完全準(zhǔn)確評估水分子在組織內(nèi)的彌散。而體素內(nèi)不相干運(yùn)動理論(intravoxel incoherent motion,IVIM)模型是一種通過分析多b值DWI圖像的信號衰減,能同時評估灌注和純分子擴(kuò)散運(yùn)動的MRI成像技術(shù)[2],現(xiàn)已有不同系統(tǒng)器官病變IVIM模型的研究,如中樞系統(tǒng)[3]、乳腺[4]、肝臟[5]、前列腺[6],但I(xiàn)VIM模型應(yīng)用于肺部病變診斷極少。本研究利用IVIM模型對66例肺結(jié)節(jié)進(jìn)行分析,旨在探討IVIM模型對于肺結(jié)節(jié)的診斷價值。
1.1 研究對象
2013年9月~2015年8月在我院行MSCT檢出肺結(jié)節(jié)或腫塊的患者,所有病例均經(jīng)手術(shù)或活檢得到病理證實(shí),且患者均簽署知情同意書。納入標(biāo)準(zhǔn):①結(jié)節(jié)直徑≥1 cm;②混雜密度病灶者,空洞或鈣化面積小于50%,呈磨玻璃表現(xiàn)者,磨玻璃成分不超過50%[7];③無MRI檢查禁忌證;④患者掃描前未經(jīng)過放化療。排除標(biāo)準(zhǔn):呼吸運(yùn)動偽影大或病灶明顯變形。
1.2 MRI檢查方法
1.2.1 成像設(shè)備 GE signa HDxt 1.5T磁共振掃描儀和8通道相控陣心臟線圈。
1.2.2 常規(guī)MR平掃 ①軸位SE/T1WI:心電門控(R波激發(fā)),TR/TE 800 ms/8.0 ms,層厚/層間距5.0 mm/1.0 mm,NEX 2,F(xiàn)OV 41 cm×41 cm,矩陣320×160,帶寬62.5 kHz,掃描時間6 min。②軸位FRFSE/T2WI:呼吸觸發(fā),TR/TE(7 100~9 236)ms/(90~110)ms,層厚/層間距5.0 mm/1.0 mm,NEX 2,ETL 18,F(xiàn)OV 41 cm×41 cm,矩陣320×224,掃描時間3.6 min,施加預(yù)飽和脂肪抑制技術(shù)得到軸位壓脂T2WI。③冠狀位SSFSE/T2WI:屏氣,TR/TE 823 ms/(70~75)ms,采集次數(shù)2,層厚/層間距5.0 mm/1.0 mm,F(xiàn)OV 41 cm×41 cm,掃描時間21 s。
1.2.3 多b值DWI 掃描前先行ASSET校準(zhǔn),再采用單次激發(fā)自旋回波-回波平面成像序列(spin echo-echo planar imaging,SE-EPI)行軸位DWI掃描,呼吸觸發(fā),F(xiàn)OV 41 cm×41 cm,矩陣256×128,層厚/層間距5.0 mm/1.0 mm,b值取0、20、50、100、150、200、400、600、1 000 s/mm2,NEX最高為6,同時在X、Y、Z軸3個方向上施加彌散敏感梯度脈沖。
1.3 圖像后處理與數(shù)據(jù)測量
應(yīng)用GE Advantage 4.4工作站的Function tool工具包的MADC軟件,結(jié)合軸位T2WI在DWI圖像上手工勾畫感興趣區(qū)(ROI)。ROI選取原則為,所選ROI盡可能包括最大的信號均勻區(qū),避開肉眼可辨的壞死和空洞區(qū)。由2位分別有7年和8年磁共振診斷經(jīng)驗(yàn)的醫(yī)師在不知道病例臨床資料和診斷的基礎(chǔ)上獨(dú)立手工勾畫ROI,并利用軟件通過DWI單指數(shù)和IVIM模型計算綜合表觀擴(kuò)散系數(shù)值(standard ADC)、慢速表觀擴(kuò)散系數(shù)(slow ADC)、快速表觀擴(kuò)散系數(shù)(fast ADC)及快速擴(kuò)散所占容積分?jǐn)?shù)(F),所有數(shù)據(jù)均測量3次取平均值。
1.4 統(tǒng)計學(xué)分析
對2位觀察者分別測量所得的10例患者的standard ADC、slow ADC、fast ADC及F值,采用組內(nèi)相關(guān)系數(shù)(intra-class correlation coefficient,ICC)評估觀察者間的一致性,得出各參數(shù)ICC值分別為0.904、0.970、0.980和0.930,均呈良好相關(guān),故在后續(xù)統(tǒng)計學(xué)分析中僅采用觀察者1測量的數(shù)據(jù)。數(shù)據(jù)分析采用SPSS 19.0軟件,對良惡性病變組間的F值采用t檢驗(yàn),standard ADC、slow ADC和fast ADC采用Mann-Whitney U檢驗(yàn)。對于肺癌不同病理類型之間的各指標(biāo),服從正態(tài)分布和方差齊性者,采用單因素方差分析,方差分析有意義者進(jìn)行LSD兩兩比較,差異無統(tǒng)計學(xué)意義,則不再進(jìn)行后續(xù)的分析;資料不服從多組正態(tài)分布的,采用非參數(shù)Kruskal-Wallis H檢驗(yàn)。以P<0.05為差異有統(tǒng)計學(xué)意義。
2.1 病例臨床資料
66例患者納入研究,49例男性,17例女性,平均年齡53.1歲(27~76歲)。按照病理檢查結(jié)果分為2組:①良性病變組,19例,其中肺隔離癥1例,錯構(gòu)瘤1例,硬化性血管瘤2例,炎性肉芽腫3例,結(jié)核6例,機(jī)化性肺炎6例;②惡性腫瘤組,47例,其中鱗癌12例,腺癌16例,小細(xì)胞癌6例,肉瘤樣癌3例,大細(xì)胞癌2例,典型類癌1例,絨毛膜癌肺轉(zhuǎn)移1例,未能確定病理類型的肺癌6例。
2.2 肺部良惡性病變之間各組參數(shù)比較
standard ADC、slow ADC、fast ADC值在良惡性病變之間均有顯著性差異,惡性腫瘤的standard ADC和slow ADC明顯低于良性,惡性腫瘤的fast ADC明顯高于良性,F(xiàn)值在良惡性病變之間的差異則無統(tǒng)計學(xué)意義。具體見表1、圖1。
用ROC曲線分析各參數(shù)的診斷效能,standard ADC、slow ADC、fast ADC的曲線下面積(AUC)分別為0.727、0.709和0.675,差異均有統(tǒng)計學(xué)意義(均P<0.05),F(xiàn)值的AUC無明顯統(tǒng)計學(xué)意義(P=0.05)。根據(jù)約登指數(shù)得出診斷閾值,并計算各指標(biāo)敏感度、特異度、準(zhǔn)確率,可見slow ADC具有最高的敏感度(95.0%)和準(zhǔn)確率(84.4%),而standard ADC具有最高的特異度(75.0%),見表2、圖2。當(dāng)聯(lián)合應(yīng)用standard ADC與slow ADC(即取standard ADC≤1.569×10-3mm2/s且slow ADC≤1.250×10-3mm2/s診斷為惡性)時,診斷的敏感度、特異度與準(zhǔn)確率達(dá)到97.4%、75.0%和92.2%。典型病例MRI影像圖見圖3。
表1 肺部良惡性病變各參數(shù)比較
Table 1 Comparison of ADC and IVIM parameters between malignant and benign nodules
分組standardADC(×10-3mm2/s)slowADC(×10-3mm2/s)fastADC*(×10-3mm2/s)F(%)惡性1.290(1.040~1.440)0.988(0.661~1.139)44.167(7.385~87.050)34.1±16.8良性2.000(1.737~2.246)1.453(1.054~1.668)7.704(4.861~72.375)51.3±31.8統(tǒng)計量-3.679-3.636-2.2471.950P值<0.001<0.0010.0250.050
*非參數(shù)檢驗(yàn)值用p50(p75~p25)表示
表2 肺部良惡性病變各參數(shù)診斷效能
Table 2 Comparison of diagnostic efficacy of parameters between malignant and benign nodules
參數(shù)AUC閾值敏感度(%)特異度(%)準(zhǔn)確率(%)standardADC0.7271.569×10-3mm2/s87.575.083.9slowADC0.7091.250×10-3mm2/s95.056.384.4fastADC0.67513.288×10-3mm2/s65.068.883.9F0.6690.40372.556.367.9
圖1 肺部良惡性病變standard ADC、slow ADC、fast ADC和F值箱式圖Fig.1 Box plots of standard ADC,slow ADC,fast ADC and F of malignant and benign nodules
A:standard ADC、slow ADC和F值ROC曲線;B:fast ADC的ROC曲線圖2 肺部良惡性病變各指標(biāo)ROC曲線圖Fig.2 Receiver operating characteristic(ROC)curves for ADC and IVIM parameters
A:軸位平掃DWI圖(b=600);B~E:DWI單指數(shù)模型和IVIM模型參數(shù)偽彩圖,分別示standard ADC=1.111×10-3 mm2/s,slow ADC=0.861×10-3 mm2/s,fast ADC=57.4×10-3 mm2/s,F(xiàn)=28.0%圖3 某63歲女性左肺上葉腺癌患者的MRI彌散參數(shù)圖Fig.3 Representative MRI of a lung cancer case (The patient was a 63-year-old woman with adenocarcinoma in the left upper lobe)
2.3 肺癌不同病理類型之間各參數(shù)比較
將肺癌不同病理類型的各參數(shù)進(jìn)行比較,發(fā)現(xiàn)小細(xì)胞癌與非小細(xì)胞癌之間各參數(shù)差異均無統(tǒng)計學(xué)意義。而在肺癌各亞型之間,僅發(fā)現(xiàn)鱗癌slow ADC值高于小細(xì)胞癌,差異有統(tǒng)計學(xué)意義;其他組之間各參數(shù)無明顯差異,見表3。
表3 肺癌不同病理類型各參數(shù)比較
Table 3 Comparison of parameters in different pathological types of lung cancer
分組standardADC(×10-3mm2/s)slowADC(×10-3mm2/s)fastADC(×10-3mm2/s)F(%)鱗癌1.207(0.920~1.423)1.093(0.904~1.140)56.619(8.348~83.494)27.23(17.43~59.84)腺癌1.400(1.105~1.469)1.000(0.811~1.160)45.950(8.113~120.250)26.35(17.68~42.55)小細(xì)胞癌1.008(0.768~1.350)0.664(0.454~1.048)35.234(6.491~62.544)31.93(20.14~44.45)其他1.240(0.982~1.377)0.698(0.570~0.865)7.235(5.739~59.735)38.83(34.34~43.30)統(tǒng)計量3.7629.2653.7982.652P值0.2880.0260.2840.448
3.1 DWI單指數(shù)模型和IVIM模型
目前國內(nèi)外[7-8]關(guān)于肺部病變的DWI研究主要是基于傳統(tǒng)單指數(shù)模型的,單指數(shù)模型是采用兩點(diǎn)法反映兩點(diǎn)之間的線性關(guān)系,其擬合公式為Sb/S0= Exp(-bD),其中,Sb為相應(yīng)b值時的DWI信號強(qiáng)度,S0為b=0 s/mm2時DWI信號強(qiáng)度。而各種病變從微觀結(jié)構(gòu)上看是由細(xì)胞及細(xì)胞周圍結(jié)構(gòu)所組成,由于體素內(nèi)包含了細(xì)胞內(nèi)外成分,所以水分子所在的微環(huán)境不同時其彌散也不同。因此,有的學(xué)者認(rèn)為基于單指數(shù)模型計算出的ADC值其影響因素較多,不足以表征體素內(nèi)全部水分子的彌散情況,而人體組織的DWI信號衰減也并非簡單的線性關(guān)系,故通過單指數(shù)模型計算得到的ADC與實(shí)際存在偏差[9]。而基于體素內(nèi)不相干運(yùn)動理論(IVIM)的DWI雙指數(shù)模型,是在對活體組織彌散研究優(yōu)化后的處理模型,該假設(shè)指出,組織的彌散由兩部分組成,一部分是分子的布朗運(yùn)動,即細(xì)胞內(nèi)彌散(慢速成分,slow ADC),代表了組織內(nèi)彌散成分,另一部分為壓力梯度所致血液流動的快速擴(kuò)散成分,即細(xì)胞外彌散(快速成分,fast ADC),代表了組織的微循環(huán)灌注,其擬合公式為Sb/S0= F Exp[-b(Dfast+Dslow)]+(1-F)Exp(-bDslow)[10],其中Sb為相應(yīng)b值的DWI信號強(qiáng)度,S0為b值為0時的DWI信號強(qiáng)度,Dfast、Dslow分別是快慢兩種成分的彌散系數(shù),即前述的fast ADC和slow ADC,F(xiàn)為快速成分所占的百分比,Exp為指數(shù)函數(shù)。DWI的雙指數(shù)模型將水分子彌散和組織微循環(huán)灌注分開,使得模型模擬的情況更接近真實(shí)活體組織,可以得到更準(zhǔn)確的實(shí)際ADC值,更好反映生物組織的彌散特征[11]。
3.2 DWI單指數(shù)模型和IVIM模型在肺部良惡性病變中的診斷價值
目前,已有IVIM在全身不同系統(tǒng)器官應(yīng)用的研究,如肝纖維化[12]、鼻咽癌[13]、腦梗死[14]、腎臟病變[15]、胎盤功能[16]、乳腺癌[17]等,但此類研究尚少,在本研究測算的4個參數(shù),單指數(shù)模型參數(shù)standard ADC值表示為綜合ADC值(同時受彌散和灌注影響),IVIM模型參數(shù)slow ADC為彌散相關(guān)參數(shù),fast ADC及F為灌注相關(guān)參數(shù)。我們的研究顯示,肺癌的standard ADC和slow ADC明顯低于良性結(jié)節(jié),這符合多個研究報道得出的由于肺癌細(xì)胞密度明顯增加、細(xì)胞外間隙減小、核質(zhì)比增大等改變,導(dǎo)致腫瘤內(nèi)彌散明顯較正常及良性病變減低的結(jié)論,且slow ADC值在良性病變和惡性病變中均比standard ADC值低,表明IVIM模型剔除了血流灌注因素,更準(zhǔn)確地反映了腫瘤細(xì)胞內(nèi)水分子彌散程度。
有研究報道,fast ADC可以反映腫瘤的血流速度,在肝纖維化中fast ADC明顯降低,與硬化的肝臟灌注減低相關(guān)[18],同樣在頭頸部纖維化的組織中該參數(shù)也明顯減低,提示與頭頸部腫瘤的血管生成直接相關(guān)[19],本研究中肺部惡性腫瘤的fast ADC明顯較良性病變高(P=0.025),可能反映了肺部惡性腫瘤新生血管形成及供血血管血流速度較快、血供增加。但在本研究中此參數(shù)變異極大,在肺癌中,fast ADC為44.167(7.385~87.050)×10-3mm2/s,良性結(jié)節(jié)的fast ADC值為7.704(4.861~72.375)×10-3mm2/s,提示可能此指標(biāo)并不適用于IVIM模型,且可靠性不高,這點(diǎn)與早前的研究結(jié)果[20-21]一致,這些研究指出,fast ADC的測量可重復(fù)性不高,穩(wěn)定性不如slow ADC和F。fast ADC值的不穩(wěn)定性,可能與DWI圖形畸形變、心臟大血管搏動偽影和fast ADC圖噪聲較高有關(guān)。關(guān)于這個參數(shù)對于肺部病變是否是一個潛在有意義的指標(biāo),仍需進(jìn)一步擴(kuò)大樣本、重復(fù)及優(yōu)化實(shí)驗(yàn)條件后進(jìn)行。
本研究中,肺惡性腫瘤的F值低于良性,但差異無統(tǒng)計學(xué)意義。F和fast ADC均是灌注相關(guān)參數(shù),理論上來說,由于腫瘤新生血管生成,F(xiàn)值應(yīng)該高于良性病變,但某些研究報道也不盡如此,如Lai等[22]發(fā)現(xiàn)鼻咽癌相對于治療后纖維化組織的F值低,Shinmoto等[23]發(fā)現(xiàn)前列腺癌比周圍正常組織的F值低。產(chǎn)生這樣的現(xiàn)象,可能與Sumi等[24]提到的F值同時受到灌注和純分子彌散的T2貢獻(xiàn)的影響有關(guān),理論上來說,IVIM模型中F值定義為毛細(xì)血管和腫瘤組織的信號強(qiáng)度比,在這種設(shè)定之下,所有的弛豫效應(yīng)都被忽略了,當(dāng)腫瘤和毛細(xì)血管的弛豫時間相似,這種假設(shè)是成立的,但有時腫瘤和毛細(xì)血管的T2貢獻(xiàn)相差巨大,因而F值是兩者的綜合作用結(jié)果,此外,肺癌和良性病變供血血管的差異亦可能對F值的變異性產(chǎn)生影響。在本研究中,良性病變主要由炎性肉芽腫、感染、機(jī)化性肺炎、硬化血管瘤等病變構(gòu)成,這些病變的血供也較為豐富,因而導(dǎo)致良性F值數(shù)值上更高的結(jié)果。今后,應(yīng)該考慮通過校正T2弛豫時間來分析F這個參數(shù),且在病例選擇上,選擇更多數(shù)量的同類型良性病變對比,可能對F值的分析更具科學(xué)性。
通過對DWI單指數(shù)模型和IVIM模型參數(shù)對肺部良惡性結(jié)節(jié)鑒別診斷的診斷效能分析,我們發(fā)現(xiàn),IVIM模型參數(shù)slow ADC具有最高的敏感度(95.0%)和準(zhǔn)確率(84.4%),特異度不佳(56.3%),而單指數(shù)模型參數(shù)standard ADC具有最高的特異度(75.0%),敏感度(87.5%)和準(zhǔn)確率(83.9%)稍遜于slow ADC。當(dāng)聯(lián)合應(yīng)用standard ADC與slow ADC(即取standard ADC≤1.569×10-3mm2/s且slow ADC≤1.250×10-3mm2/s診斷為惡性)時,診斷的敏感度、特異度與準(zhǔn)確率達(dá)到97.4%、75.0%和92.2%,具有良好的鑒別診斷意義。
此外,本研究發(fā)現(xiàn),在不同肺癌病理類型之間,鱗癌slow ADC值高于小細(xì)胞癌,提示小細(xì)胞癌較鱗癌有更高的細(xì)胞密度,這符合小細(xì)胞癌的病理學(xué)特征。然而,由于樣本量較小,此結(jié)論仍需大樣本試驗(yàn)進(jìn)一步證實(shí)。
DWI單指數(shù)模型和IVIM模型對于肺部良惡性病變均具有鑒別診斷價值,可利用多個不同參數(shù)對肺部病變彌散和灌注進(jìn)行獨(dú)立評估,standard ADC、slow ADC這2個指標(biāo)最具診斷價值,聯(lián)合兩者可明顯提高鑒別診斷能力,slow ADC能更為準(zhǔn)確地反映腫瘤的實(shí)際彌散,對肺癌亞型鑒別有一定意義,而fast ADC由于變異較大而診斷價值有限。
[1] Le Bihan D.Diffusion,confusion and functional MRI[J].Neuro Image,2012,62(2):1131-1136.
[2] Le Bihan D.Intravoxel incoherent motion perfusion MR imaging:a wake-up call[J].Radiology,2008,249(3):748-752.
[3] Wu W C,Yang S C,Chen Y F,et al.Simultaneous assessment of cerebral blood volume and diffusion heterogeneity using hybrid IVIM and DK MR imaging:initial experience with brain tumors[J].Eur Radiol,2016.[Epub ahead of print]
[4] Liu C,Wang K,Chan Q,et al.Intravoxel incoherent motion MR imaging for breast lesions:comparison and correlation with pharmacokinetic evaluation from dynamic contrast-enhanced MR imaging[J].Eur Radiol,2016.[Epub ahead of print]
[5] Ichikawa S,Motosugi U,Morisaka H,et al.MRI-based staging of hepatic fibrosis:Comparison of intravoxel incoherent motion diffusion-weighted imaging with magnetic resonance elastography[J].J Magn Reson Imaging,2015,42(1):204-210.
[6] Merisaari H,Movahedi P,Perez I M,et al.Fitting methods for intravoxel incoherent motion imaging of prostate cancer on region of interest level:Repeatability and gleason score prediction[J].Magn Reson Med,2016.doi:10.1002/mrm.26169.[Epub ahead of print]
[7] Matoba M,Tonami H,Kondou T,et al.Lung carcinoma:diffusion-weighted mr imaging--preliminary evaluation with apparent diffusion coefficient[J].Radiology,2007,243(2):570-577.
[8] Liu H,Liu Y,Yu T,et al.Usefulness of diffusion-weighted MR imaging in the evaluation of pulmonary lesions[J].Eur Radiol,2010,20(4):807-815.
[9] Gruber S,Debski B K,Pinker K,et al.Three-dimensional proton MR spectroscopic imaging at 3T for the differentiation of benign and malignant breast lesions[J].Radiology,2011,261(3):752-761.
[10] Federau C,Maeder P,O’Brien K,et al.Quantitative measurement of brain perfusion with intravoxel incoherent motion MR imaging[J].Radiology,2012,265(3):874-881.
[11] Nilsen L B,F(xiàn)angberget A,Geier O,et al.Quantitative analysis of diffusion-weighted magnetic resonance imaging in malignant breast lesions using different b value combinations[J].Eur Radiol,2013,23(4):1027-1033.
[12] Patel J,Sigmund E E,Rusinek H,et al.Diagnosis of cirrhosis with intravoxel incoherent motion diffusion MRI and dynamic contrast-enhanced MRI alone and in combination:preliminary experience[J].J Magn Reson Imaging,2010,31(3):589-600.
[13] Jia Q J,Zhang S X,Chen W B,et al.Initial experience of correlating parameters of intravoxel incoherent motion and dynamic contrast-enhanced magnetic resonance imaging at 3.0T in nasopharyngeal carcinoma[J].Eur Radiol,2014,24(12):3076-3087.
[14] Federau C,Sumer S,Becce F,et al.Intravoxel incoherent motion perfusion imaging in acute stroke:initial clinical experience[J].Neuroradiology,2014,56(8):629-635.
[15] Rheinheimer S,Stieltjes B,Schneider F,et al.Investigation of renal lesions by diffusion-weighted magnetic resonance imaging applying intravoxel incoherent motion-derived parameters--initial experience[J].Eur J Radiol,2012,81(3):e310-e316.
[16] Moore R J,Issa B,Tokarczuk P,et al.Invivointravoxel incoherent motion measurements in the human placenta using echo-planar imaging at 0.5 T[J].Magn Reson Med,2000,43(2):295-302.
[17] Sigmund E E,Cho G Y,Kim S,et al.Intravoxel incoherent motion imaging of tumor microenvironment in locally advanced breast cancer[J].Magn Reson Med,2011,65(5):1437-1447.
[18] Luciani A,Vignaud A,Cavet M,et al.Liver cirrhosis:intravoxel incoherent motion MR imaging--pilot study[J].Radiology,2008,249(3):891-899.
[19] Malayeri A A,El Khouli R H,Zaheer A,et al.Principles and applications of diffusion-weighted imaging in cancer detection,staging,and treatment follow-up[J].Radiographics,2011,31(6):1773-1791.
[20] Dyvorne H A,Galea N,Nevers T,et al.Diffusion-weighted imaging of the liver with multiple b values:effect of diffusion gradient polarity and breathing acquisition on image quality and intravoxel incoherent motion parameters--a pilot study[J].Radiology,2013,266(3):920-929.
[21] Woo S,Lee J M,Yoon J H,et al.Intravoxel incoherent motion diffusion-weighted MR imaging of hepatocellular carcinoma:correlation with enhancement degree and histologic grade[J].Radiology,2014,270(3):758-767.
[22] Lai V,Li X,Lee V H F,et al.Intravoxel incoherent motion MR imaging:comparison of diffusion and perfusion characteristics between nasopharyngeal carcinoma and post-chemoradiation fibrosis[J].Eur Radiol,2013,23(10):2793-2801.
[23] Shinmoto H,Oshio K,Tanimoto A,et al.Biexponential apparent diffusion coefficients in prostate cancer[J].Magn Reson Imaging,2009,27(3):355-359.
[24] Sumi M,Van C M,Sumi T,et al.Salivary gland tumors:use of intravoxel incoherent motion MR imaging for assessment of diffusion and perfusion for the differentiation of benign from malignant tumors[J].Radiology,2012,263(3):125-126.
(2016-09-07 收稿)
Monoexponential and IVIM Model of Diffusion Weighted Imaging in Pulmonary Nodules:A Preliminary Study
Zhou Shuchang,Xia Liming△,Wang Yujinetal
DepartmentofRadiology,TongjiHospital,TongjiMedicalCollege,HuazhongUniversityofScienceandTechnology,Wuhan430030,China
Objective To explore the effect of Mono-exponential and IVIM model of diffusion weighted imaging in the diagnosis of solitary pulmonary nodules.Methods A total of 66 patients with pulmonary nodules(49 men,17 women,mean age:53.1 years;age range 27-76 years)underwent multi-b-factor DWI(b values of 0,20,50,100,150,200,400,600,and 1 000 s/mm2).The biexponential model based on the intravoxel incoherent motion theory(IVIM)was used to calculate parameters as follows:total ADC(standard ADC),slow component apparent diffusion coefficient(slow ADC),fast component apparent diffusion coefficient(fast ADC),and fast diffusion percentage(F).These parameters were compared between benign and malignant lesions and between different pathological types of lung cancer.Receiver operating characteristic(ROC)curves were generated to evaluate the diagnostic performance of each parameter.Results Standard ADC value of malignant tumor and benignity was 1.290(1.040-1.440)×10-3mm2/s and 2.000(1.737-2.246)×10-3mm2/s,respectively.Slow ADC value of malignant tumor and benignity was 0.988(0.661-1.139)×10-3mm2/s and 1.453(1.054-1.668)×10-3mm2/s,respectively.These two parameters were significantly lower in malignant tumor than in benign lesions(P<0.01),fast ADC value of malignant tumor and benignity was 44.167(7.385-87.050)×10-3mm2/s and 7.704(4.861-72.375)×10-3mm2/s,respectively.Fast ADC value of malignant tumor was significantly higher than that of benign lesions(P=0.025).F value of malignant tumor(34.1±16.8)% was lower than that of benign lesions(51.3±31.8)%(P=0.05),with no significantly statistical difference.Taking 1.569×10-3mm2/s and 1.250 ×10-3mm2/s as cutoff values of standard ADC and slow ADC,the diagnostic sensitivity,specificity and accuracy were 87.5%,75.0% and 83.9%,and they were 95.0%,56.3% and 84.4%,respectively.The combined application of standard ADC and slow ADC increased the diagnostic sensitivity,specificity and accurate rate to 97.4%,75.0% and 92.2%.Slow ADC values of squamous cell carcinoma were significantly higher than those of small cell carcinoma. Conclusion Both mono-exponential and bi-exponential model DWI based on IVIM is useful for differentiating benign and malignant pulmonary nodules,and can provide quantitative diffusion and perfusion information independently by multiple parameters.Standard ADC and slow ADC are the most valuable parameters and are able to differentiate benign and malignant nodules.Slow ADC can reflect the actual diffusion of tumor more accurately and help to differentiate subtypes of lung cancer.Fast ADC has limited diagnostic value because of high variability.
pulmonary nodules; diffusion weighted imaging; monoexponential model; intravoxel incoherent motion;apparent diffusion coefficient
R814.4
10.3870/j.issn.1672-0741.2016.06.012
周舒暢,女,1983年生,主治醫(yī)師,博士研究生,E-mail:zhoushuchang@hust.edu.cn
△通訊作者,Corresponding author,E-mail:cjr.xialiming@vip.163.com