龐毅恒, 桂 春, 陳力銓
(廣西醫(yī)科大學(xué)第一附屬醫(yī)院西院心血管內(nèi)科, 廣西 南寧 530021)
?
神經(jīng)調(diào)節(jié)蛋白1對(duì)冠狀動(dòng)脈平滑肌細(xì)胞表達(dá)血管生成因子的影響*
龐毅恒, 桂 春△, 陳力銓
(廣西醫(yī)科大學(xué)第一附屬醫(yī)院西院心血管內(nèi)科, 廣西 南寧 530021)
目的: 探討神經(jīng)調(diào)節(jié)蛋白1(neuregulin-1,NRG-1)對(duì)人冠狀動(dòng)脈平滑肌細(xì)胞(HCASMCs)表達(dá)血管生成因子的影響。方法:培養(yǎng)HCASMCs,實(shí)驗(yàn)使用第3代細(xì)胞。用Western blot法檢測(cè)細(xì)胞ErbB的表達(dá)和磷酸化。在正常、缺氧缺血清或NRG-1(100 μg/L)處理?xiàng)l件下,用Western blot法檢測(cè)血管內(nèi)皮生長(zhǎng)因子(VEGF)、血管生成素1(Ang-1)和血管生成素2(Ang-2)表達(dá)的改變。結(jié)果:ErbB2、ErbB3和ErbB4均能在HCASMCs中表達(dá),加入NRG-1后,這3種ErbB的磷酸化水平均增加。與對(duì)照組比較,在缺氧缺血清組HCASMCs中VEGF和Ang-1的表達(dá)明顯增加(P<0.05),而Ang-2的表達(dá)差異無(wú)統(tǒng)計(jì)學(xué)顯著性。與缺氧缺血清組比較,NRG-1處理組的HCASMCs表達(dá)VEGF和Ang-1進(jìn)一步顯著增加(P<0.05),而Ang-2的表達(dá)差異無(wú)統(tǒng)計(jì)學(xué)顯著性。結(jié)論:HCASMCs能表達(dá)ErbB2、ErbB3和ErbB4,加入NRG-1增強(qiáng)ErbB2、ErbB3 和ErbB4 的磷酸化。缺氧缺血清和NRG-1處理均能增加VEGF和Ang-1在HCASMCs中的表達(dá)。
神經(jīng)調(diào)節(jié)蛋白1; 人冠脈平滑肌細(xì)胞; 血管內(nèi)皮生長(zhǎng)因子; 血管生成素
神經(jīng)調(diào)節(jié)蛋白(neuregulins,NRGs)是一個(gè)與表皮生長(zhǎng)因子(epidermal growth factor,EGF)相關(guān)的生長(zhǎng)和分化因子家族,目前研究較多的為NRG-1,其對(duì)胚胎心臟的發(fā)育和成年心臟功能的維護(hù)起著非常重要的作用[1]。NRG-1對(duì)血管生成的作用也有些研究報(bào)道。Hedhli等[2]研究發(fā)現(xiàn)在內(nèi)皮細(xì)胞NRG-1敲除的小鼠中結(jié)扎股動(dòng)脈,內(nèi)皮NRG-1缺乏顯著減慢腿部血流的恢復(fù)、降低毛細(xì)血管密度和減少動(dòng)脈發(fā)生,外源性給予NRG-1能加速血流的恢復(fù),提示內(nèi)皮產(chǎn)生的NRG-1是缺血誘導(dǎo)的血管生成和動(dòng)脈發(fā)生所必需的。Xiao等[3]研究顯示,在心肌梗死中高表達(dá)NRG-1能增加缺血心肌的微血管數(shù)量。Nakaoka等[4]研究發(fā)現(xiàn),NRG-1處理小鼠后,小鼠心臟中血管生成素1(angiopoietin-1,Ang-1)表達(dá)明顯增加。我們前期研究顯示,給予NRG-1治療可顯著提高糖尿病大鼠心肌組織的血管內(nèi)皮生長(zhǎng)因子(vascular endothelial growth factor,VEGF)的表達(dá)、增加Flk和Tie-2受體磷酸化。我們研究還發(fā)現(xiàn),在糖尿病和不穩(wěn)定型心絞痛患者中,血清NRG-1濃度與VEGF和Ang-1濃度呈正相關(guān)[5]。以上研究提示NRG-1與其它血管生成因子可能存在某些相互作用和調(diào)控,在心肌血管生成中起著一定的作用。
所以本研究通過(guò)體外培養(yǎng)的人冠狀動(dòng)脈平滑肌細(xì)胞(human coronary artery smooth muscle cells,HCASMCs),檢測(cè)HCASMCs是否表達(dá)NRG-1及其受體,以及NRG-1處理后,HCASMCs VEGF、Ang-1和Ang-2表達(dá)的變化,為探索NRG-1在心肌血管生成中的作用提供基礎(chǔ)。
1 試劑與材料
HCASMCs原代細(xì)胞FC-0031、平滑肌細(xì)胞專(zhuān)用培養(yǎng)基、抗壞血酸、L-谷氨酰胺(L-glutamine)和胎牛血清(fetal bovine serum,F(xiàn)BS)購(gòu)自Lifeline;抗NRG-1抗體為RD產(chǎn)品;抗VEGF、Ang-1和Ang-2抗體購(gòu)自Santa Cruz;NRG-1、酪氨酸磷酸化抑制劑AG1478、兔抗ErbB2、ErbB3、ErbB4 多克隆抗體以及兔抗磷酸化的ErbB2、ErbB3、ErbB4 多克隆抗體購(gòu)自Cell Signaling Technology;內(nèi)參照GAPDH抗體為中國(guó)中杉金橋公司產(chǎn)品。
2 HCASMCs的復(fù)蘇和培養(yǎng)
從液氮中取出原代人冠脈平滑肌細(xì)胞凍存管,37 ℃水浴完全溶解,經(jīng)過(guò)清洗,轉(zhuǎn)移至25 cm2透氣培養(yǎng)瓶?jī)?nèi)于37 ℃、5% CO2培養(yǎng)箱進(jìn)行培養(yǎng)。當(dāng)細(xì)胞生長(zhǎng)成單層達(dá)80%~90%的培養(yǎng)面積,用0.25%胰酶消化,然后傳代,實(shí)驗(yàn)選用第3次傳代的HCASMCs進(jìn)行。
3 不同干預(yù)與分組
取第3次傳代的HCASMCs進(jìn)行培養(yǎng),當(dāng)長(zhǎng)至鋪滿(mǎn)瓶底90%時(shí),用2瓶按1∶3的比例傳代6瓶,待長(zhǎng)至鋪滿(mǎn)瓶底90%左右,將細(xì)胞原有培養(yǎng)基吸棄,按分組要求加入含不同成分的培養(yǎng)基并置于不同要求條件下培養(yǎng)24 h后進(jìn)行Western blot法檢測(cè)。實(shí)驗(yàn)分為4組:空白對(duì)照組:培養(yǎng)基含血清不含NRG-1,該組細(xì)胞在37 ℃、5% CO2培養(yǎng)箱進(jìn)行培養(yǎng);缺氧缺血清組:培養(yǎng)基不含血清、不含NRG-1,在95%氮?dú)狻?% CO2厭氧培養(yǎng)箱,37 ℃進(jìn)行培養(yǎng);NRG-1組:培養(yǎng)基不含血清,含100 μg/L NRG-1,在95%氮?dú)狻?% CO2厭氧培養(yǎng)箱,37 ℃進(jìn)行培養(yǎng);NRG-1+抑制劑組:培養(yǎng)基不含血清,含NRG-1(100 μg/L)和抑制劑AG1478(10 μmol/L),在95%氮?dú)狻?% CO2厭氧培養(yǎng)箱,37 ℃進(jìn)行培養(yǎng)。
4 Western blot檢測(cè)
將各組細(xì)胞收集到1.5 mL EP管,加入裂解液和PMSF提取細(xì)胞總蛋白,Bradford法檢測(cè)蛋白濃度,根據(jù)蛋白分子量,選取適宜濃度的分離膠進(jìn)行聚丙烯酰胺凝膠電泳。電泳結(jié)束后根據(jù)marker和目的條帶分子量大小進(jìn)行切膠。因?yàn)镋rbB2、ErbB3和ErbB4這3個(gè)蛋白表達(dá)于心肌組織,所以用大鼠心肌作為陽(yáng)性對(duì)照。然后將蛋白轉(zhuǎn)至硝酸纖維素膜上,分步與適當(dāng)濃度的 I 抗和辣根過(guò)氧化物酶標(biāo)記的 II 抗結(jié)合。顯影后,計(jì)算機(jī)掃描膠片,用ImageJ成像系統(tǒng)對(duì)掃描膠片上對(duì)應(yīng)的蛋白條帶的灰度進(jìn)行分析,以目的條帶與內(nèi)參照GAPDH 條帶的灰度比值來(lái)代表目標(biāo)蛋白的相對(duì)表達(dá)量。
5 統(tǒng)計(jì)學(xué)處理
用SPSS 16.0統(tǒng)計(jì)軟件分析,數(shù)據(jù)用均數(shù)±標(biāo)準(zhǔn)差(mean±SD)表示,組間多重比較采用單因素方差分析,組間兩兩比較采用SNK-q檢驗(yàn),以P<0.05為差異有統(tǒng)計(jì)學(xué)意義。
1 NRG-1及ErbB在HCASMCs中的表達(dá)
HCASMCs經(jīng)體外培養(yǎng)后,進(jìn)行Western blot檢測(cè),發(fā)現(xiàn)有NRG-1的受體ErbB2、ErbB3和ErbB4的表達(dá),但HCASMCs不表達(dá)NRG-1。將受體的表達(dá)量與大鼠心肌組織比較,發(fā)現(xiàn)ErbB2和ErbB3表達(dá)豐度比心肌組織強(qiáng),ErbB4表達(dá)豐度比心肌組織弱,見(jiàn)圖1。
2 NRG-1處理增加HCASMCs的ErbB磷酸化
經(jīng)NRG-1干預(yù)后, HCASMCs的ErbB2、ErbB3和ErbB4磷酸化較空白對(duì)照組明顯增強(qiáng)(P<0.05);
Figure 1. The expression of NRG-1 and ErbBs in the HCASMCs. A: the HCASMCs under microscope (×100); B: the expression of ErbB2, ErbB3 and ErbB4 in the HCASMCs and cardiac muscle (CM) detected by Western blot; C: the expression of NRG-1 and GAPDH in HCASMCs and CM detected by Western blot.
圖1 NRG-1及ErbBs在HCASMCs中的表達(dá)
然而在同時(shí)含有NRG-1和酪氨酸磷酸化抑制劑AG1478的HCASMCs中,ErbB2、ErbB3和ErbB4的磷酸化水平較僅經(jīng)NRG-1處理的HCASMCs明顯降低,見(jiàn)圖2。
Figure 2. The phosphorylation levels of ErbB2, ErbB3 and ErbB4 in the HCASMCs with NRG-1 treatment. Mean±SD.n=3.*P<0.05vscontrol group;#P<0.05vsNRG-1 group.
圖2 NRG-1作用下HCASMCs ErbB2/3/4磷酸化水平
3 NRG-1處理對(duì)HCASMCs血管生成因子表達(dá)的影響
與對(duì)照組相比,缺氧缺血清條件下HCASMCs的VEGF和Ang-1表達(dá)水平明顯增加(P<0.05);NRG-1干預(yù)下,VEGF和Ang-1的表達(dá)量與僅缺氧缺血清時(shí)相比較進(jìn)一步增強(qiáng)(P<0.05)。但加入酪氨酸磷酸化抑制劑AG1478后,酪氨酸磷酸化受到抑制,VEGF和Ang-1的表達(dá)明顯減少。而Ang-2的表達(dá)量不受缺氧缺血清和NRG-1處理的影響,見(jiàn)圖3。
本研究首次發(fā)現(xiàn)HCASMCs能表達(dá)ErbB2、ErbB3和ErbB4,但不能表達(dá)NRG-1;NRG-1處理能增加ErbB2、ErbB3和ErbB4的磷酸化,提示NRG-1可能通過(guò)激活受體而產(chǎn)生生理作用;缺氧缺血清及NRG-1處理能增強(qiáng)VEGF和Ang-1的表達(dá),但Ang-2因子的表達(dá)量未受影響。
Figure 3. The protein expression of VEGF, Ang-1 and Ang-2 in the HCASMCs with NRG-1 treatment. Mean±SD.n=3.*P<0.05vscontrol group;#P<0.05vshypoxia and serum deprivation group;△P<0.05vsNRG-1 group.
圖3 NRG-1影響HCASMCs表達(dá)VEGF、Ang-1、Ang-2蛋白
不同的血管平滑肌細(xì)胞ErbBs的表達(dá)種類(lèi)不盡相同。有研究報(bào)道,胸主動(dòng)脈血管平滑肌細(xì)胞表達(dá)3個(gè)ErbB[6],但還有研究結(jié)果相反,人主動(dòng)脈平滑肌細(xì)胞僅表達(dá)ErbB1和ErbB2,不表達(dá)ErbB3和ErbB4[7]。近期研究人員表明大鼠主動(dòng)脈平滑肌細(xì)胞能表達(dá)ErbB2/3/4的mRNA和ErbBs蛋白[8]。本研究結(jié)果表明,HCASMCs體外培養(yǎng)可表達(dá)NRG-1的3種特異受體——ErbB2、ErbB3和ErbB4。雖然我們的實(shí)驗(yàn)結(jié)果表明HCASMCs其本身在體外培養(yǎng)時(shí)檢測(cè)不到NRG-1的表達(dá),但這并不意味著HCASMCs不受NRG-1因子的調(diào)控,因?yàn)闊o(wú)論是在靠近心肌細(xì)胞的心肌微血管內(nèi)皮細(xì)胞[9-10],還是冠脈粥樣斑塊內(nèi)的巨噬泡沫細(xì)胞都有高表達(dá)的NRG-1[11]。因此研究NRG-1對(duì)HCASMCs的影響具有現(xiàn)實(shí)意義。
前期研究發(fā)現(xiàn),在多種組織和細(xì)胞發(fā)現(xiàn)存在一種缺氧誘導(dǎo)調(diào)控,適度的缺氧缺血清會(huì)使得缺氧誘導(dǎo)因子1表達(dá)升高,進(jìn)而調(diào)控下游諸如VEGF、Ang-1、內(nèi)皮素等多種血管生成因子的增加[12-13]。在本研究中,我們證實(shí)HCASMCs也會(huì)受缺氧缺血清誘導(dǎo)調(diào)控,上調(diào)血管生成因子VEGF和Ang-1的表達(dá),但對(duì)Ang-2沒(méi)有顯著影響。在缺氧缺血清條件下,經(jīng)NRG-1處理誘導(dǎo),HCASMCs表達(dá)VEGF和Ang-1的水平還會(huì)進(jìn)一步升高,提示NRG-1與缺氧缺血清協(xié)同對(duì)HCASMCs表達(dá)VEGF和Ang-1起正調(diào)控增強(qiáng)作用。NRG-1能促進(jìn)HCASMCs VEGF和Ang-1的表達(dá),推測(cè)與NRG-1/ErbB信號(hào)傳導(dǎo)有關(guān)。先前在心臟發(fā)育、成熟心臟[14-15]及癌細(xì)胞的血管生成[16]研究中發(fā)現(xiàn),NRG-1可通過(guò)激活受體酪氨酸激酶的磷酸化進(jìn)行系列的信號(hào)轉(zhuǎn)導(dǎo)發(fā)揮其生物學(xué)效應(yīng),使得VEGF因子表達(dá)增強(qiáng)。我們的研究發(fā)現(xiàn),雖然HCASMCs不表達(dá)NRG-1,但受體ErbB2、ErbB3和ErbB4得到表達(dá)。在外源的NRG-1處理下,ErbB2、ErbB3和ErbB4磷酸化增強(qiáng),說(shuō)明NRG-1觸發(fā)了NRG-1/ErbB信號(hào)傳導(dǎo),進(jìn)而使得血管生成因子VEGF和Ang-1的表達(dá)量也隨之增加。這一結(jié)論可以由加入NRG-1的競(jìng)爭(zhēng)性抑制劑AG1478獲得反證。當(dāng)加入AG1478后,AG1478和ErbB結(jié)合,阻礙了NRG-1/ErbB傳導(dǎo),從實(shí)驗(yàn)檢測(cè)結(jié)果可以看到HCASMCs的ErbB2、ErbB3和ErbB4磷酸化受到抑制,血管生成因子VEGF和Ang-1的表達(dá)量也隨之回落。
[1] Odiete O, Hill MF, Sawyer DB. Neuregulin in cardiovascular development and disease[J]. Circ Res, 2012, 111(10):1376-1385.
[2] Hedhli N, Dobrucki LW, Kalinowski A, et al. Endothe-lial-derived neuregulin is an important mediator of ischaemia-induced angiogenesis and arteriogenesis[J]. Cardiovasc Res, 2012, 93(3):516-524.
[3] Xiao J, Li B, Zheng Z, et al.Therapeutic effects of neuregulin-1 gene transduction in rats with myocardial infarction[J]. Coron Artery Dis, 2012, 23(7):460-468.
[4] Nakaoka Y, Nishida K, Narimatsu M, et al. Gab family proteins are essential for postnatal maintenance of cardiac function via neuregulin-1/ErbB signaling[J]. J Clin Invest, 2007, 117(7):1771-1781.
[5] Zeng Z, Gui C, Nong Q, et al. Serum neuregulin-1β le-vels are positively correlated with VEGF and angiopoietin-1 levels in patients with diabetes and unstable angina pectoris[J]. Int J Cardiol, 2013, 168(3): 3077-3079.
[6] Shin HS, Lee HJ, Nishida M, et al. Betacellulin and amphiregulin induce upregulation of cyclin D1 and DNA synthesis activity through differential signaling pathways in vascular smooth muscle cells[J]. Circ Res, 2003, 93(4):302-310.
[7] Livanainen E, Nelimarkka L, Elenius V, et al. Angio-poietin-regulated recruitment of vascular smooth muscle cells by endothelial-derived heparin binding EGF-like growth factor[J]. FASEB J, 2003, 17(12):1609-1621.
[8] Kyotani Y, Ota H, Itaya-Hironaka A, et al. Intermittent hypoxia induces the proliferation of rat vascular smooth muscle cell with the increases in epidermal growth factor family and erbB2 receptor[J]. Exp Cell Res, 2013, 319 (19):3042-3050.
[9] Lemmens K, Segers VF, Demolder M, et al. Role of neuregulin-1/ErbB2 signaling in endothelium-cardiomyocyte cross-talk[J]. J Biol Chem, 2006, 281(28):19469-19477.
[10]Cote GM, Miller TA, LeBrasseur NK, et al. Neuregulin-1α and β isoform expression in cardiac microvascular endothelial cells and function in cardiac myocytesinvitro[J]. Exp Cell Res, 2005, 311(1):135-146.
[11]Xu G, Watanabe T, Iso Y, et al. Preventive effects of heregulin-β1on macrophage foam cell formation and athe-rosclerosis[J]. Circ Res, 2009, 105(5):500-510.
[12]Jian K, Jinge K, Bing P, et al. Insufficient radiofrequency ablation promotes angiogenesis of residual hepatocellular carcinoma via HIF-1α/VEGFA[J]. PLoS One, 2012, 7(5):e37266.
[13]Olave N, Nicola T, Zhang W, et al. Transforming growth factor-β regulates endothelin-1 signaling in the newborn mouse lung during hypoxia exposure[J]. Am J Physiol Lung Cell Mol Physiol, 2012, 302(9):L857-L865.
[14]Mendes-Ferreira P, De Keulenaer GW, Leite-Moreira AF, et al. Therapeutic potential of neuregulin-1 in cardiovascular disease[J]. Drug Discov Today, 2013, 18(17-18):836-842.
[15]Wadugu B, Kühn B. The role of neuregulin/ErbB2/ErbB4 signaling in the heart with special focus on effects on cardiomyocyte proliferation[J]. Am J Physiol Heart Circ Physiol, 2012, 302(11):H2143-H2147.
[16]Yonezawa M, Wada K, Tatsuguchi A, et al. Heregulin-induced VEGF expression via the ErbB3 signaling pathway in colon cancer[J]. Digestion, 2008, 80(4):215-225.
(責(zé)任編輯: 陳妙玲, 羅 森)
Neuregulin-1 induces expression of angiogenic factors in coronary artery smooth muscle cells
PANG Yi-heng, GUI Chun, CHEN Li-quan
(DepartmentofCardiology,TheFirstAffiliatedHospitalofGuangxiMedicalUniversity,Nanning530021,China.E-mail:gui_chun@126.com)
AIM: To investigate the effects of neuregulin-1 (NRG-1) on the expression of angiogenic factors in human coronary artery smooth muscle cells (HCASMCs). METHODS: HCASMCs were culturedinvitro, and the cells at the 3rd passage were collected to assess the expression and phosphorylation of ErbB by Western blot. After HCASMCs were cultured under normal condition, with hypoxia and serum deprivation, or with NRG-1 treatment, the expression of vascular endothelial growth factor (VEGF), angiopoietin-1 (Ang-1) and angiopoietin-2 (Ang-2) was determined by Western blot. RESULTS: The expression of ErbB2, ErbB3 and ErbB4 was observed in the HCASMCs, and the phosphorylation of these receptors was increased by NRG-1 treatment. Compared with control group, the expression of VEGF and Ang-1 in the HCASMCs was significantly increased in hypoxia and serum deprivation group (P<0.05), while no difference in the expression of Ang-2 between the 2 groups was found. Compared with hypoxia and serum deprivation group, the expression of VEGF and Ang-1 in the HCASMCs treated with NRG-1 was further increased (P<0.05), and no difference in the expression of Ang-2 between the 2 groups was observed. CONCLUSION: HCASMCs express ErbB2, ErbB3 and ErbB4, and the phosphorylation of the receptors is increased by NRG-1. Hypoxia, serum deprivation and NRG-1 treatment induce the increased expression of VEGF and Ang-1 significantly.
Neuregulin-1; Human coronary artery smooth muscle cells; Vascular endothelial growth factor; Angiopoietin
1000- 4718(2016)11- 1945- 04
2016- 03- 24
2016- 09- 09
國(guó)家自然科學(xué)基金資助項(xiàng)目(No. 81160021;No. 81460063);廣西自然科學(xué)基金重點(diǎn)課題 (No. 2014GXNSFDA118024)
R543.3; R363
A
10.3969/j.issn.1000- 4718.2016.11.005
雜志網(wǎng)址: http://www.cjpp.net
△通訊作者 Tel: 0771-3278737; E-mail: gui_chun@126.com