国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

先心病中microRNA對DNA甲基化的調(diào)控及其應(yīng)用前景*

2016-12-26 07:03:02桂永浩
中國病理生理雜志 2016年11期
關(guān)鍵詞:先心病甲基化心肌細胞

楊 倩, 桂永浩, 李 強

(復旦大學附屬兒科醫(yī)院兒科研究所,上海 201102)

?

先心病中microRNA對DNA甲基化的調(diào)控及其應(yīng)用前景*

楊 倩, 桂永浩△, 李 強△

(復旦大學附屬兒科醫(yī)院兒科研究所,上海 201102)

先天性心臟??; 微小RNA; DNA甲基化

先天性心臟病是最常見的出生缺陷,在活產(chǎn)嬰兒中的總體發(fā)病率為0.8%[1],居非感染原因死亡率第1位。先心病發(fā)病機制至今仍未完全闡明,目前認為主要是由于遺產(chǎn)因素、環(huán)境因素單獨或者共同作用導致的。近年來,表觀遺傳學在先心病中的作用越來越被人們所認識。表觀遺傳學是指在DNA序列不變的情況下,可決定基因表達與否并可穩(wěn)定遺傳下去的調(diào)控方式,包括 DNA甲基化、非編碼RNA、基因組印記、染色質(zhì)組蛋白修飾等。DNA甲基化和微小RNA(microRNA,miRNA)是最重要的表觀遺傳調(diào)控機制之一,不僅調(diào)節(jié)機體正常生長發(fā)育,而且可以介導環(huán)境因素影響疾病的發(fā)生發(fā)展。除此以外,miRNA還可作用于DNA甲基化,形成調(diào)控網(wǎng)絡(luò),影響先心病發(fā)生發(fā)展。

1 miRNA對心臟發(fā)育起著重要作用

miRNA是一類廣泛存在于真核細胞中并且高度保守的約22個核苷酸組成的內(nèi)源性非編碼單鏈小分子RNA。成熟miRNA選擇性整合入RNA誘導沉默復合物(RNA-induced silencing complex,RISC)后,靶向結(jié)合于mRNA,進而抑制翻譯甚至引發(fā)mRNA降解。它們廣泛參與器官發(fā)育、細胞增殖分化、腫瘤發(fā)生及心血管疾病等生理和病理過程,近年來其在心臟發(fā)育及致病中越來越得到重視。

許多miRNA在心臟發(fā)育中起著重要作用。miR-1靶向作用于組蛋白脫乙酰酶4(histone deacetylase 4,HDAC4)、心臟和神經(jīng)嵴衍生物表達的蛋白2(heart- and neural crest derivatives-expressed protein 2,Hand2)、縫隙連接α1蛋白(gap junction alpha-1 protein, GJA1;又稱connexin 43,Cx43)、鉀電壓門控通道亞家族J成員2(potassium voltage-gated channel subfamily J member 2,KCNJ2)等心臟發(fā)育相關(guān)基因,促進胚胎干細胞向心肌細胞分化,而miR-133起著相反作用。Zhao等[2]在胚胎鼠心臟過表達miR-1,胚胎于13.5 d死于心肌細胞缺失。Liu 等[3]聯(lián)合敲除小鼠miR-133a-1 與miR-133a-2,約半數(shù)在胚胎期或出生早期發(fā)生致死性室間隔缺損(ventricular septal defect,VSD),存活至成年的小鼠也易進展為擴張型心肌病和心力衰竭,進一步實驗證實其致病可能與miR-133a靶基因血清反應(yīng)因子(serum response factor,SRF)和cyclin D2表達增加相關(guān)。Myo-miRNAs包括miR-208a、miR-208b和miR-499,它們分別位于Myh7、Myh7b和Myh6的內(nèi)含子中。在心臟發(fā)育過程中,其表達水平與宿主基因表達水平相一致,出生后miR-208a/Myh7表達水平迅速降低,miR-208b/Myh7b和miR-499/Myh6表達水平增加。此外miR-17~92簇、miR-138、miR-218、miR-15家族等對心臟發(fā)育都有重要作用。

在法洛四聯(lián)癥(tetralogy of Fallot,TOF)患兒中,Zhang等[4]發(fā)現(xiàn)47個表達顯著變化的miRNAs,他們認為表達異常的miRNAs可能通過靶向結(jié)合有絲分裂活化蛋白激酶(mitogen-activated protein kinase,MAPK)通路基因,導致心室肥厚。在綜合征性先心病中,21三體綜合征中21號染色體上5種miRNAs在心臟中過表達[5];DiGeorge綜合征中,22號染色體部分缺失導致RISC的組分表達缺失[6]。綜上所述,散發(fā)性先心病和綜合征性先心病的發(fā)生發(fā)展都與miRNAs異常表達有著密切關(guān)系。本文總結(jié)了與心肌細胞增殖、凋亡,心臟發(fā)育和致病相關(guān)miRNA,見表1[2,7-25]。

表1 心臟發(fā)育相關(guān)miRNA

目前研究表明血漿中 miRNAs水平與心臟疾病密切相關(guān),根據(jù)其表達特異性,臨床上可以將miRNAs作為分子標記物早期診斷或者鑒別診斷疾病[26]。通過擬miRNA技術(shù)和抗miRNA反義寡核苷酸(anti-miRNA antisense oligonucleotides,AMO)技術(shù),外源性補充或者抑制miRNA,可在一定程度上發(fā)揮治療作用[27]。

2 DNA甲基化異常導致先心病發(fā)生

DNA甲基化是在DNA甲基轉(zhuǎn)移酶(DNA me-thyltransferase,DNMT)的催化下,以S-腺苷蛋氨酸為供體,將甲基轉(zhuǎn)移到胞嘧啶的5位碳原子上。DNA甲基化修飾主要發(fā)生在富含CpG島的啟動子區(qū),其高甲基化會阻礙轉(zhuǎn)錄激活因子與序列的結(jié)合,直接抑制基因表達,而去甲基化則使沉默的基因重新激活,出現(xiàn)高表達甚至基因組的不穩(wěn)定。DNA甲基化參與動物胚胎發(fā)育、基因印跡和X染色體失活等生理過程,也在疾病發(fā)生中起重要作用。

許多研究表明,心臟發(fā)育與疾病和DNA甲基化密切相關(guān)。心肌細胞發(fā)育、成熟和疾病過程中DNA甲基化呈動態(tài)變化。大鼠出生后心肌細胞DNA甲基化水平開始增高,DNA甲基轉(zhuǎn)移酶1(DNA methyltransferase 1,DNMT1)、甲基化CpG結(jié)合結(jié)構(gòu)域蛋白1~3(methyl-CpG-binding domain 1~3,MBD1~3)和甲基化CpG結(jié)合蛋白2(methyl-CpG-binding protein 2,MeCP2)的表達也隨之增高[28]。用5-氮雜胞苷處理胚胎干細胞,可誘導心肌細胞分化,并增加其DNA合成[29]。與成人相比,新生兒心肌細胞去甲基化程度更明顯,其去甲基化區(qū)域主要位于心臟轉(zhuǎn)錄因子肌細胞增強因子2C(myocyte enhancer factor 2C,MEF2C)、GATA結(jié)合蛋白1~4(GATA-binding protein 1~4,GATA1~4)等的結(jié)合位點和心肌細胞基因體內(nèi)。慢骨骼肌肌鈣蛋白I(slow skeletal troponin I,ssTnI)基因啟動子上游100 bp至2 000 bp間存在CpG島,其甲基化水平調(diào)控ssTnI的表達[30]。Chamberlain等[31]發(fā)現(xiàn)DNA甲基轉(zhuǎn)移酶3b調(diào)控透明質(zhì)酸合成酶2(hyaluronan synthase 2,Has2)的表達,從而影響心臟瓣膜的形成。DNA甲基化水平隨著心臟發(fā)育的階段、細胞種類和基因的不同,呈現(xiàn)不同的表達模式,其在心臟發(fā)育中的作用還需要進一步探索。

葉酸代謝關(guān)鍵酶甲硫氨酸合成酶(methionine synthase,MTR)和胱硫醚β-合酶(cystathionine beta-synthase,CBS)的基因多態(tài)性與先心病易感性有關(guān),它們的轉(zhuǎn)錄受到甲基化調(diào)控,其本身又在甲基代謝中起著關(guān)鍵作用[32]。在TOF患者心臟組織中,心臟相關(guān)轉(zhuǎn)錄因子NKX2.5和HAND1甲基化狀態(tài)異常,全基因組甲基化水平相對正常心臟組織下降,DNMT1/3B表達降低,這可能是TOF發(fā)病機制之一[33]。在另一項研究中,Yuan等[34]發(fā)現(xiàn)TOF患者VANGEL2基因啟動子區(qū)域甲基化水平顯著高于健康對照組,VANGEL2的mRNA表達下降。Serra-Juhe等[35]在2015年發(fā)現(xiàn)先心病患者不同組織DNA甲基化有差異,在血標本中,其異常富集于免疫反應(yīng)相關(guān)通路;在心臟組織中,異常富集于肌肉收縮與心肌疾病相關(guān)通路。以上研究表明DNA甲基化模式在先心病發(fā)病中起著重要作用,異常甲基化可能導致心臟發(fā)育畸形。

3 內(nèi)源性miRNA表達異常影響DNA甲基化水平,導致疾病發(fā)生

隨著研究的不斷深入,人們發(fā)現(xiàn)miRNA作為表觀遺傳的重要內(nèi)容,參與了DNA甲基化的調(diào)控。2007年,F(xiàn)abbri等[36]首次在腫瘤中發(fā)現(xiàn)miR-29a和miR-29b表達下降,相反地,DNMT3a和DNMT3b表達增高,經(jīng)證實,miR-29與DNMT3a/b的3’-UTR端高度互補,直接導致其表達減少。Garzon等[37]進一步證實在急性髓細胞白血病(acute myelocytic leukemia,AML)細胞系中miR-29b表達增加,直接抑制DNMT3a和DNMT3b,間接抑制DNMT1,誘導基因組DNA低甲基化及抑癌基因p15和雌激素受體1(estrogen receptor 1,ESR1)的表達。

Qin等[38]在系統(tǒng)性紅斑狼瘡(systemic lupus erythematosus,SLE)患者CD4+T細胞中也證實了miR-29b可通過作用于轉(zhuǎn)錄因子Sp1,間接抑制DNMT1的表達。SLE患者CD4+T細胞miR-126表達也升高。miR-148和miR-126都作用于DNMT1,其抑制劑可恢復CD4+T細胞DNMT表達。在SLE患者中miR-126啟動子區(qū)域低甲基化,表達升高,說明miR-126與DNMT1之間存在反饋機制[39]。

不僅如此,miRNA對DNA甲基化的調(diào)控在心血管疾病中也得到證實。在高同型半胱氨酸血癥中,miR-133a和miR-499表達下降。用同型半胱氨酸處理心肌細胞HL-1,過表達miR-133a時,DNMT1表達下降;抑制miR-133a時,DNMT1表達升高[40]。Chavali等[41]在糖尿病性心肌病中發(fā)現(xiàn),miR-133a表達減少,DNMT1和DNMT3b表達增加,DNMT3a表達降低。在正常心肌細胞中過表達miR-133a,DNMT1/3a/3b表達都降低。在25 mmol/L葡萄糖培養(yǎng)的心肌細胞中,DNMT1表達增高;轉(zhuǎn)染miR-133a進入細胞,DNMT1表達趨于正常,表明在糖尿病性心肌病中,miR-133調(diào)節(jié)DNA甲基化的作用。影響心臟發(fā)育的miRNA很多,通過TargetScanHuman、PicTar等網(wǎng)站進行預測,發(fā)現(xiàn)數(shù)種可調(diào)控DNMTs表達的miRNA,詳見表2。

表2 調(diào)控DNMTs的心臟發(fā)育相關(guān)miRNA

Table 2.DNMTs-modulating miRNAs with relevance to heart development

miRNADNMT1DNMT3ADNMT3BmiR-133a+miR-30+miR-19b+miR-22+miR-34a+miR-101+miR-125b+miR-206+miR-487-3P+miR-29++

大量體內(nèi)外實驗表明,miRNA可通過3種方式調(diào)節(jié)DNA甲基化狀態(tài)。(1) miRNA直接結(jié)合于DNMTs的3’-UTR影響DNMTs的表達,如miR-29[42]、miR-152[43]等。(2) miRNA直接結(jié)合于DNMTs的編碼區(qū),影響DNA甲基化水平。在HeLa細胞中,miR-148結(jié)合于DNMT3B編碼區(qū),而非通常的3’-UTR。表明miR-148在調(diào)節(jié)DNMT3B剪接變異體的多樣性起著調(diào)控作用。(3) miRNAs還可通過調(diào)節(jié)與DNMTs相關(guān)的轉(zhuǎn)錄因子,間接影響DNA甲基化水平。Dicer缺陷小鼠胚胎干細胞DNMT1表達下降,造成DNA甲基化水平降低。其可能機制為DNMT抑制物RBL2上調(diào),而RBL2為miR-290的靶點。用miR-290轉(zhuǎn)染Dicer敲除的胚胎干細胞,DNMT1表達恢復正常,DNA甲基化水平亦恢復正常,表明在胚胎干細胞miR-290通過間接調(diào)節(jié)DNMT1表達來調(diào)控DNA甲基化[44]。

4 外源性調(diào)控miRNA表達,使靶基因異常甲基化狀態(tài)恢復正常,可干預先心病發(fā)生發(fā)展

miRNAs與許多疾病的發(fā)生發(fā)展具有密切聯(lián)系,它不僅可以直接作用于靶基因,還可以通過影響DNA甲基化水平間接改變靶基因表達水平。miRNA作為藥物研發(fā)的重要靶點,可設(shè)計相應(yīng)的藥物,通過上調(diào)或者下調(diào)miRNA使靶基因的表達恢復正常。

目前,基于microRNA的分子藥物設(shè)計尚處于起步階段,研究主要集中于模擬miRNA(如miRNA mimics)增強其對靶基因的作用效能和拮抗miRNA的小分子物質(zhì)(如AMO和antagomir)。microRNAs參與DNMTs轉(zhuǎn)錄后修飾,也可能通過調(diào)節(jié)與DNMTs相關(guān)的轉(zhuǎn)錄因子直接或間接影響DNMTs的表達,從而影響疾病發(fā)生發(fā)展。在先心病動物模型與病人中已經(jīng)發(fā)現(xiàn)DNMTs表達紊亂導致心臟發(fā)育關(guān)鍵轉(zhuǎn)錄因子GATA-4、NKX2.5和HAND1甲基化狀態(tài)異常[33],可通過尋找特異性作用于DNMTs的miRNA,外源性過表達或者低表達miRNA,降低DNMTs導致的甲基化效應(yīng),使DNA甲基化維持于正常水平,促使其下游基因表達恢復正常,可能達到治療疾病和改善預后的目的。

miRNA廣泛表達于全身,其靶基因有多個,且其靶基因可受到多個miRNA的調(diào)控,miRNA如何靶向改變DNMTs的表達還存在困難。此外,miRNA在體內(nèi)容易降解,外源性給藥后很難維持較好的血藥濃度,如何富集于靶器官也需要解決,其有效性和安全性均需進一步證實。

5 miRNA作為藥物治療先心病具有廣闊前景,需深入研究探索

綜上所述,miRNA對DNA甲基化的調(diào)節(jié)在先心病致病中起著重要作用。通過外源性調(diào)節(jié)miRNAs,改變體內(nèi)致病基因甲基化狀態(tài),探索治療先心病的新路徑將成為未來研究的熱點?;趍iRNA的治療方法還處在探索階段,深入研究 miRNA 在先心病中復雜的調(diào)控機制,顯得尤為重要。隨著干預 miRNA 表達技術(shù)不斷進步,基于 miRNA 的治療策略將成為先心病治療的一個重要方向,將其應(yīng)用于臨床具有廣闊的前景。

[1] Reller MD, Strickland MJ, Riehle-Colarusso T, et al. Prevalence of congenital heart defects in metropolitan Atlanta, 1998-2005[J]. J Pediatr, 2008, 153(6):807-813.

[2] Zhao Y, Ransom JF, Li A, et al. Dysregulation of cardiogenesis, cardiac conduction, and cell cycle in mice lacking miRNA-1-2[J]. Cell, 2007, 129(2):303-317.

[3] Liu N, Bezprozvannaya S, Williams AH, et al. microRNA-133a regulates cardiomyocyte proliferation and suppresses smooth muscle gene expression in the heart[J]. Genes Dev, 2008, 22(23):3242-3254.

[4] Zhang HS, Wu QY, Xu M, et al. Mitogen-activated protein kinase signal pathways play an important role in right ventricular hypertrophy of tetralogy of Fallot[J]. Chin Med J (Engl), 2012, 125(13):2243-2249.

[5] Kuhn DE, Nuovo GJ, Martin MM, et al. Human chromosome 21-derived miRNAs are overexpressed in down syndrome brains and hearts[J]. Biochem Biophys Res Commun, 2008, 370(3):473-477.

[6] Latronico MV, Catalucci D, Condorelli G. MicroRNA and cardiac pathologies[J]. Physiol Genomics, 2008, 34(3):239-242.

[7] Li X, Wang J, Jia Z, et al. MiR-499 regulates cell proliferation and apoptosis during late-stage cardiac differentiation via Sox6 and cyclin D1[J]. PLoS One, 2013, 8(9):e74504.

[8] Zhang Y, Matsushita N, Eigler T, et al. Targeted microRNA interference promotes postnatal cardiac cell cycle re-entry[J]. J Regen Med, 2013, 2:2.

[9] Mollova M, Bersell K, Walsh S, et al. Cardiomyocyte proliferation contributes to heart growth in young humans[J]. Proc Natl Acad Sci U S A, 2013, 110(4):1446-1451.

[10]Li J, Li Y, Jiao J, et al. Mitofusin 1 is negatively regulated by microRNA 140 in cardiomyocyte apoptosis[J]. Mol Cell Biol, 2014, 34(10):1788-1799.

[11]Liu J, van Mil A, Vrijsen K, et al. MicroRNA-155 prevents necrotic cell death in human cardiomyocyte progenitor cells via targeting RIP1[J]. J Cell Mol Med, 2011, 15(7):1474-1482.

[12]王 玨, 黃偉聰, 鄭亮承,等. MicroRNA-24對心肌梗死后心肌細胞凋亡的調(diào)控作用[J].中國病理生理雜志,2013,29(4):590-596.

[13]Yamakuchi M, Ferlito M, Lowenstein CJ. miR-34a repression of SIRT1 regulates apoptosis[J]. Proc Natl Acad Sci U S A, 2008, 105(36):13421-13426.

[14]Frank D, Gantenberg J, Boomgaarden I, et al. Micro-RNA-20a inhibits stress-induced cardiomyocyte apoptosis involving its novel target Egln3/PHD3[J]. J Mol Cell Cardiol, 2012, 52(3):711-717.

[15]Du W, Pan Z, Chen X, et al. By targeting Stat3 microRNA-17-5p promotes cardiomyocyte apoptosis in response to ischemia followed by reperfusion[J]. Cell Physiol Biochem, 2014, 34(3):955-965.

[16]Forini F, Kusmic C, Nicolini G, et al. Triiodothyronine prevents cardiac ischemia/reperfusion mitochondrial impairment and cell loss by regulating miR30a/p53 axis[J]. Endocrinology, 2014, 155(11):4581-4590.

[17]Xu C, Hu Y, Hou L, et al. β-Blocker carvedilol protects cardiomyocytes against oxidative stress-induced apoptosis by up-regulating miR-133 expression[J]. J Mol Cell Cardiol, 2014, 75:111-121.

[18]Chiavacci E, Dolfi L, Verduci L, et al. MicroRNA 218 mediates the effects of Tbx5a over-expression on zebrafish heart development[J]. PLoS One, 2012, 7(11):e50536.

[19]Morton SU, Scherz PJ, Cordes KR, et al. microRNA-138 modulates cardiac patterning during embryonic development[J]. Proc Natl Acad Sci U S A, 2008, 105(46):17830-17835.

[20]Wilson KD, Hu S, Venkatasubrahmanyam S, et al. Dynamic microRNA expression programs during cardiac differentiation of human embryonic stem cells: role for miR-499[J]. Circ Cardiovasc Genet, 2010, 3(5):426-435.

[21]Xin M, Small EM, Sutherland LB, et al. MicroRNAs miR-143 and miR-145 modulate cytoskeletal dynamics and responsiveness of smooth muscle cells to injury[J]. Genes Dev, 2009, 23(18):2166-2178.

[22]Kim GH, Samant SA, Earley JU, et al. Translational control of FOG-2 expression in cardiomyocytes by microRNA-130a[J]. PLoS One, 2009, 4(7):e6161.

[23]Latronico MV, Catalucci D, Condorelli G. MicroRNA and cardiac pathologies[J]. Physiol Genomics, 2008, 34(3):239-242.

[24]Li D, Ji L, Liu L, et al. Characterization of circulating microRNA expression in patients with a ventricular septal defect[J]. PLoS One, 2014, 9(8):e106318.

[25]Zhu S, Cao L, Zhu J, et al. Identification of maternal serum microRNAs as novel non-invasive biomarkers for prenatal detection of fetal congenital heart defects[J]. Clin Chim Acta, 2013, 424:66-72.

[26]Fang L, Ellims AH, Moore XL, et al. Circulating microRNAs as biomarkers for diffuse myocardial fibrosis in patients with hypertrophic cardiomyopathy[J]. J Transl Med, 2015, 13:314.

[27]郭 敏, 李育敏, 費 嘉, 等.以microRNA-21為靶標的反義寡核苷酸對人白血病K562細胞的抑制作用[J].中國病理生理雜志,2009,25(6):1127-1131.

[28]Kou CY, Lau SL, Au KW, et al. Epigenetic regulation of neonatal cardiomyocytes differentiation[J]. Biochem Biophys Res Commun, 2010, 400(2):278-283.

[29]Abbey D, Seshagiri PB. Aza-induced cardiomyocyte differentiation of P19 EC-cells by epigenetic co-regulation and ERK signaling[J]. Gene, 2013, 526(2):364-373.

[30]Xu Y, Liu L, Pan B, et al. DNA methylation regulates mouse cardiac myofibril gene expression during heart development[J]. J Biomed Sci, 2015, 22:88.

[31]Chamberlain AA, Lin M, Lister RL, et al. DNA methylation is developmentally regulated for genes essential for cardiogenesis[J]. J Am Heart Assoc, 2014, 3(3):e000976.

[32]Zhao JY, Qiao B, Duan WY, et al. Genetic variants reducingMTRgene expression increase the risk of congenital heart disease in Han Chinese populations[J]. Eur Heart J, 2014, 35(11):733-742.

[33]Sheng W, Qian Y, Wang H, et al. DNA methylation status of NKX2-5, GATA4 and HAND1 in patients with tetralogy of Fallot[J]. BMC Med Genomics, 2013, 6:46.

[34]Yuan Y, Gao Y, Wang H, et al. Promoter methylation and expression of theVANGL2 gene in the myocardium of pediatric patients with tetralogy of Fallot[J]. Birth Defects Res A Clin Mol Teratol, 2014, 100(12):973-984.

[35]Serra-Juhe C, Cusco I, Homs A, et al. DNA methylation abnormalities in congenital heart disease[J]. Epigene-tics, 2015, 10(2):167-177.

[36]Fabbri M, Garzon R, Cimmino A, et al. MicroRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B[J]. Proc Natl Acad Sci U S A, 2007, 104(40):15805-15810.

[37]Garzon R, Liu S, Fabbri M, et al. MicroRNA-29b induces global DNA hypomethylation and tumor suppressor gene reexpression in acute myeloid leukemia by targeting directly DNMT3A and 3B and indirectly DNMT1[J]. Blood, 2009, 113(25):6411-6418.

[38]Qin H, Zhu X, Liang J, et al. MicroRNA-29b contributes to DNA hypomethylation of CD4+T cells in systemic lupus erythematosus by indirectly targeting DNA methyltransferase 1[J]. J Dermatol Sci, 2013, 69(1):61-67.

[39]Zhao S, Wang Y, Liang Y, et al. MicroRNA-126 regulates DNA methylation in CD4+T cells and contributes to systemic lupus erythematosus by targeting DNA methyltransferase 1[J]. Arthritis Rheum, 2011, 63(5):1376-1386.

[40]Chaturvedi P, Kalani A, Givvimani S, et al. Differential regulation of DNA methylation versus histone acetylation in cardiomyocytes during HHcyinvitroandinvivo: an epigenetic mechanism[J]. Physiol Genomics, 2014, 46(7):245-255.

[41]Chavali V, Tyagi SC, Mishra PK. MicroRNA-133a regulates DNA methylation in diabetic cardiomyocytes[J]. Biochem Biophys Res Commun, 2012, 425(3):668-672.

[42]Pandi G, Nakka VP, Dharap A, et al. MicroRNA miR-29c down-regulation leading to de-repression of its target DNA methyltransferase 3a promotes ischemic brain damage[J]. PLoS One, 2013, 8(3):e58039.

[43]Miao CG, Yang YY, He X, et al. MicroRNA-152 modulates the canonical Wnt pathway activation by targeting DNA methyltransferase 1 in arthritic rat model[J]. Biochimie,2014,106:149-156.

[44]Benetti R, Gonzalo S, Jaco I, et al. A mammalian microRNA cluster controls DNA methylation and telomere recombination via Rbl2-dependent regulation of DNA methyltransferases[J]. Nat Struct Mol Biol,2008,15(9):998.

(責任編輯: 陳妙玲, 羅 森)

Advances in modulation of microRNA and DNA methylation in congenital heart diseases

YANG Qian, GUI Yong-hao, LI Qiang

(InstituteofPediatrics,Children’sHospitalofFudanUniversity,Shanghai201102,China.E-mail:liq@fudan.edu.cn)

Aberrations in microRNA (miRNA) expression and DNA methylation are causal factors for congenital heart diseases (CHD), which belongs to epigenetic mechanisms. Complex modulation of miRNA on DNA methylation is a critical regulator of gene expression, leading to disease development. The aim of this review is to provide recent progress in the regulation of miRNA and DNA methylation in CHD.

Congenital heart diseases; MicroRNA; DNA methylation

1000- 4718(2016)11- 2101- 06

2016- 04- 18

2016- 08- 16

國家自然科學基金資助項目(No. 81470442)

R363

A

10.3969/j.issn.1000- 4718.2016.11.032

雜志網(wǎng)址: http://www.cjpp.net

△通訊作者 Tel: 021-64931066; E-mail: liq@fudan.edu.cn

猜你喜歡
先心病甲基化心肌細胞
11 366例新生兒先天性心臟病篩查和檢出情況分析▲
左歸降糖舒心方對糖尿病心肌病MKR鼠心肌細胞損傷和凋亡的影響
活血解毒方對缺氧/復氧所致心肌細胞凋亡的影響
先心病患兒營養(yǎng)評估及營養(yǎng)干預效果評價
早孕期超聲心動圖在胎兒嚴重先心病中的應(yīng)用
心肌細胞慢性缺氧適應(yīng)性反應(yīng)的研究進展
槲皮素通過抑制蛋白酶體活性減輕心肌細胞肥大
鼻咽癌組織中SYK基因啟動子區(qū)的甲基化分析
延吉市296例先心病分析
胃癌DNA甲基化研究進展
肃宁县| 沂南县| 紫云| 隆尧县| 台东市| 南平市| 米泉市| 常州市| 布拖县| 乌兰察布市| 怀柔区| 津市市| 固原市| 体育| 潜山县| 茶陵县| 南部县| 肃北| 伊吾县| 长武县| 彭山县| 昌邑市| 灌南县| 巍山| 剑川县| 商丘市| 阿巴嘎旗| 平安县| 原阳县| 喀喇沁旗| 丹凤县| 永城市| 永仁县| 阳泉市| 奉贤区| 上栗县| 项城市| 桃江县| 洞头县| 大港区| 宾川县|