黃文舟, 王麗麗, 殷嫦嫦, 李 健, 敖 鵬, 程細(xì)高△
(1南昌大學(xué)第二附屬醫(yī)院骨科,江西 南昌330006; 2九江學(xué)院/九江市轉(zhuǎn)化醫(yī)學(xué)重點(diǎn)實(shí)驗(yàn)室,江西 九江 332000)
?
晚期糖基化終末產(chǎn)物通過氧化應(yīng)激誘導(dǎo)大鼠軟骨細(xì)胞損傷*
黃文舟1, 王麗麗2, 殷嫦嫦2, 李 健1, 敖 鵬1, 程細(xì)高1△
(1南昌大學(xué)第二附屬醫(yī)院骨科,江西 南昌330006;2九江學(xué)院/九江市轉(zhuǎn)化醫(yī)學(xué)重點(diǎn)實(shí)驗(yàn)室,江西 九江 332000)
目的:探討晚期糖基化終末產(chǎn)物(advanced glycation end products,AGEs)能否通過氧化應(yīng)激引起大鼠軟骨細(xì)胞損傷。方法:原代培養(yǎng)SD大鼠軟骨細(xì)胞,對細(xì)胞表型進(jìn)行鑒定;應(yīng)用CCK-8法檢測軟骨細(xì)胞生存率;DCFH-DA染色熒光顯微鏡下檢測胞內(nèi)活性氧簇(reactive oxygen species,ROS)的水平;Hoechst 33342 核染色法及Annexin V-FITC/PI流式細(xì)胞法測定軟骨細(xì)胞的凋亡率;RT-PCR法檢測軟骨細(xì)胞中Bax、Bcl-2、caspase-3、MMP3、MMP13和COL2的mRNA水平;Western blotting法檢測軟骨細(xì)胞中cleaved caspase-3、MMP3、MMP13和COL2的蛋白水平。結(jié)果:與對照組相比,AGEs可顯著上調(diào)胞內(nèi)ROS水平(P<0.05),但經(jīng)抗氧化劑N-乙酰半胱氨酸(NAC)抑制后ROS的生成明顯減少(P<0.05);另外,NAC可抑制AGEs引起的軟骨細(xì)胞凋亡相關(guān)分子Bax/Bcl-2和caspase-3水平的上調(diào),并減少M(fèi)MP3和MMP13表達(dá)及COL2的丟失(P<0.05)。結(jié)論:AGEs可通過氧化應(yīng)激誘導(dǎo)大鼠軟骨細(xì)胞損傷。
晚期糖基化終末產(chǎn)物; 骨性關(guān)節(jié)炎; 氧化應(yīng)激; 基質(zhì)金屬蛋白酶; 細(xì)胞凋亡
骨性關(guān)節(jié)炎(osteoarthritis,OA)是一種以關(guān)節(jié)軟骨退行性變?yōu)橹饕±硖卣鞯耐诵行约膊?。關(guān)節(jié)軟骨主要由軟骨細(xì)胞(chondrocyte)和軟骨基質(zhì)(extracellular matrix,ECM)組成,其中軟骨細(xì)胞對維持細(xì)胞外基質(zhì)的完整性具有重要作用[1]。正常情況下,軟骨細(xì)胞對細(xì)胞外基質(zhì)的合成和降解一直處于動態(tài)平衡。OA中,軟骨細(xì)胞凋亡是導(dǎo)致OA的直接原因。此外,軟骨細(xì)胞分泌蛋白水解酶增加,通過對Ⅱ型膠原、蛋白聚糖等細(xì)胞外基質(zhì)的降解作用,打破了這種動態(tài)平衡,引起關(guān)節(jié)軟骨完整性的破壞,最終促進(jìn)骨性關(guān)節(jié)炎的形成[2]。 OA是一個(gè)多因素、多環(huán)節(jié)共同作用的結(jié)果,其主要與衰老、肥胖程度、機(jī)械因素及基因表達(dá)遺傳因素等有關(guān),其中衰老是導(dǎo)致OA的主要原因[3]。 氧化應(yīng)激與衰老所致的骨性關(guān)節(jié)炎密切相關(guān)[4]。然而,衰老引起氧化應(yīng)激所導(dǎo)致OA發(fā)病的原因尚不明確。近來,晚期糖基化終末產(chǎn)物(advanced glycation end products,AGEs)被認(rèn)為是衰老致OA患病的分子學(xué)基礎(chǔ)[5]。AGEs主要通過引起軟骨基質(zhì)降解與軟骨細(xì)胞凋亡[6-7]、促進(jìn)軟骨組織的炎癥反應(yīng)等[8]方式在OA發(fā)病中發(fā)揮重要作用。本研究通過研究AGEs 促進(jìn)氧化應(yīng)激對大鼠關(guān)節(jié)軟骨細(xì)胞損傷的作用,探討AGEs在骨性關(guān)節(jié)炎發(fā)病過程中的作用,對早期預(yù)防及治療OA提供實(shí)驗(yàn)依據(jù)。
1 動物及材料
SPF級雄性SD大鼠,4周齡,體重約40 g,購自湖南斯萊克景達(dá)實(shí)驗(yàn)動物有限公司,許可證號為SCXK(湘)2014-0004。AGE-BSA(Calbiochem);胰蛋白酶、胎牛血清及DMEM/F12培養(yǎng)基(Gibco);Ⅱ型膠原酶、蘇木素染液、甲苯胺藍(lán)染液和Alcian Blue 8GX(Solarbio);Hoechst 33342染色液、活性氧檢測試劑盒和N-乙酰半胱氨酸(N-acetyl-L-cysteine,NAC)購自Beyotime;小鼠IgG免疫組化試劑盒和DAB顯色液(Boster);Annexin V-FITC/PI凋亡檢測試劑盒(MultiSciences Biotech);蛋白提取試劑盒(Applygen);CCK-8試劑盒和GREENspin細(xì)胞RNA 快速提取試劑盒(Zomanbio);HiFiScript 快速去基因組cDNA 第1鏈合成試劑盒、DNA Ladder2000及高靈敏度化學(xué)發(fā)光檢測試劑盒(Cwbio);2× Taq Master Mix(Sinobio);抗cleaved caspase-3抗體(CST);抗MMP3和抗MMP13抗體(Novus);抗Ⅱ型膠原和抗GAPDH抗體(Abcam);山羊抗兔IgG和山羊抗小鼠IgG(Proteintech);所用引物由上海生工合成,見表1。
2 方法
2.1 大鼠關(guān)節(jié)軟骨細(xì)胞的分離培養(yǎng)及形態(tài)學(xué)鑒定 取4周齡SPF級大鼠,頸椎脫臼法處死,75%乙醇浸泡30 min,消毒后無菌操作分離股骨頸、股骨踝和脛骨平臺,取關(guān)節(jié)軟骨并剪碎收集于離心管中,加入0.25%胰蛋白酶37 ℃水浴消化30 min,離心去除液體,加入0.2% II型膠原酶37 ℃水浴振蕩消化3 h,離心收集細(xì)胞,含10% 胎牛血清的DMEM培養(yǎng)液吹打重懸混勻后移入25 cm2培養(yǎng)瓶中,置于37 ℃、5% CO2、飽和濕度的培養(yǎng)箱內(nèi)培養(yǎng),以后每3~4 d更換培養(yǎng)基,待細(xì)胞鋪滿瓶底80% 以上,使用0.25%胰酶消化細(xì)胞,按1∶2培養(yǎng)傳代。取第3代細(xì)胞接種于24孔板中,待細(xì)胞貼壁以后進(jìn)行Ⅱ型膠原免疫細(xì)胞化學(xué)染色、甲苯胺藍(lán)染色和阿爾新藍(lán)染色。
表1 引物序列
2.2 AGEs對大鼠軟骨細(xì)胞生存率的影響 取第3代軟骨細(xì)胞,以每孔5×103接種于96孔培養(yǎng)板,將培養(yǎng)板置于培養(yǎng)箱培養(yǎng)24 h;吸除培養(yǎng)基,分別加入含不同濃度AGEs的DMEM培養(yǎng)基(不含胎牛血清)100 μL,藥物濃度分別為0、10、25、50、100、200 mg/L。每組設(shè)5個(gè)復(fù)孔,分別培養(yǎng)24 h及48 h后,每孔加入CCK-8溶液10 μL,在細(xì)胞培養(yǎng)箱中繼續(xù)孵育2 h后,用酶標(biāo)儀測定在450 nm處的吸光度。計(jì)算每組藥物濃度組吸光值的平均值,分別與空白對照組比較。
2.3 細(xì)胞分組及處理 取第3代軟骨細(xì)胞進(jìn)行實(shí)驗(yàn),分組如下:空白對照(control)組:只加DMEM培養(yǎng)基培養(yǎng)軟骨細(xì)胞24 h;AGEs組:含AGEs的DMEM培養(yǎng)基培養(yǎng)細(xì)胞24 h;AGEs+NAC組:先用含5 mmol/L NAC的DMEM培養(yǎng)基預(yù)處理軟骨細(xì)胞2 h,再換用含5 mmol/L NAC的AGEs的DMEM培養(yǎng)基培養(yǎng)細(xì)胞24 h;NAC組:用含5 mmol/L NAC的DMEM培養(yǎng)基處理軟骨細(xì)胞24 h。
2.4 DCFH-DA染色測定細(xì)胞內(nèi)活性氧簇(reactive oxygen species,ROS)的水平 將軟骨細(xì)胞接種于24孔板,按不同濃度(0、25、50、100、200 mg/L)AGEs、AGEs+NAC和NAC分組,去培養(yǎng)基,用PBS沖洗3次,再用10 μmol /L DCFH-DA染液于37 ℃培養(yǎng)箱中避光孵育20 min,然后用PBS沖洗3次。在熒光顯微鏡下觀察,并隨機(jī)選取5個(gè)不重復(fù)區(qū)攝片。
2.5 Hoechst 33342染色檢測細(xì)胞凋亡 將軟骨細(xì)胞接種于24孔板,按上述分組進(jìn)行處理后,去培養(yǎng)基,用PBS沖洗3次,加入Hoechst 33342試劑,于37 ℃培養(yǎng)箱中避光孵育10 min,后用PBS洗3次,在熒光顯微鏡下觀察細(xì)胞,鑒別正常與凋亡的軟骨細(xì)胞并攝片,隨機(jī)取不同視野計(jì)算細(xì)胞凋亡率,重復(fù)5次。
2.6 流式細(xì)胞術(shù)檢測軟骨細(xì)胞凋亡率 將軟骨細(xì)胞接種于6孔板中,按上述分組進(jìn)行處理后,常規(guī)消化離心收集各組細(xì)胞;調(diào)整細(xì)胞濃度為5×105個(gè)細(xì)胞,PBS漂洗后將細(xì)胞重懸于500 μL 1×binding buffer中; 加入5 μL Annexin V-FITC和10 μL 碘化丙啶(propidium iodide,PI);輕柔混勻后,室溫避光孵育5 min;應(yīng)用BD 流式細(xì)胞儀上機(jī)檢測。
2.7 RT-PCR檢測Bax、Bcl-2、caspase-3、基質(zhì)金屬蛋白酶3(matrix metalloproteinase 3, MMP3)、MMP13和COL2的mRNA表達(dá)量 將軟骨細(xì)胞接種于6孔板中,按上述分組進(jìn)行處理后,使用GREENspin細(xì)胞RNA快速提取試劑盒提取細(xì)胞總RNA。按照逆轉(zhuǎn)錄試劑盒說明將RNA 逆轉(zhuǎn)錄成 cDNA。按2×Taq Master Mix說明進(jìn)行擴(kuò)增。PCR擴(kuò)增反應(yīng)體系為2×Master Mix 12.5 μL,ddH2O 8.5 μL,上游引物1 μL,下游引物 1 μL,模板cDNA 2 μL。PCR反應(yīng)條件為:94 ℃ 90 s; 94 ℃ 30 s, 60 ℃ 30 s, 72 ℃ 1 min,32個(gè)循環(huán); 72 ℃ 5 min。擴(kuò)增產(chǎn)物在1%瓊脂糖凝膠電泳15 min左右,SIM凝膠成像系統(tǒng)拍照并用ImageJ軟件分析條帶灰度值。以GAPDH作內(nèi)參照。
2.8 Western blotting法檢測cleaved caspase-3、MMP3、MMP13及COL2的蛋白水平 將軟骨細(xì)胞接種于6孔板中,按上述分組進(jìn)行處理后,按總蛋白提取試劑盒說明提取細(xì)胞蛋白。BCA 法檢測蛋白濃度。加入4×蛋白質(zhì)上樣緩沖液95 ℃水浴5 min 變性。每組蛋白上樣量為30 μg,在SDS-聚丙烯酰胺凝膠中電泳;然后用濕轉(zhuǎn)法將凝膠中的蛋白轉(zhuǎn)至PVDF 膜上;將PVDF 膜置于含5%脫脂奶粉的TBST 中室溫封閉2 h;分別加入GAPDH(1∶5 000)、cleaved caspase-3(1∶1 000)、MMP3(1∶1 000)、MMP13(1∶4 000)和COL2(1∶1 000)的I抗工作液室溫孵育2 h,1×TBST漂洗 5 min 3次;用辣根過氧化物酶標(biāo)記的II 抗(1∶5 000) 室溫孵育2 h;漂洗后ECL發(fā)光液顯色。試劑盒進(jìn)行曝光、顯影。以GAPDH為內(nèi)參照,用ImageJ軟件進(jìn)行灰度分析。
3 統(tǒng)計(jì)學(xué)處理
采用SPSS 19.0軟件進(jìn)行實(shí)驗(yàn)數(shù)據(jù)分析,數(shù)據(jù)均采用均數(shù)±標(biāo)準(zhǔn)差(mean±SD)表示,多組間比較采用單因素方差分析(one-way ANOVA),組間兩兩比較采用Bonferroni校正t檢驗(yàn),以P<0.05為差異有統(tǒng)計(jì)學(xué)意義。
1 軟骨細(xì)胞的鑒定
分離培養(yǎng)的SD大鼠軟骨細(xì)胞貼壁生長,外觀呈三角形或多角形。甲苯胺藍(lán)染色使正常軟骨細(xì)胞胞漿呈藍(lán)色,細(xì)胞核呈紫藍(lán)色。軟骨細(xì)胞經(jīng)阿爾新藍(lán)染色后,可見細(xì)胞質(zhì)染成淡藍(lán)色。Ⅱ型膠原免疫細(xì)胞化學(xué)染色可見細(xì)胞質(zhì)呈黃色,細(xì)胞核周圍散在棕黃色的顆粒,見圖1。
Figure 1. The morphological presentation of rat chondrocytes (×100). A: under phase-contrast microscope; B: toluidine blue staining; C: Alcian blue staining; D: immunocytochemical staining for type II collagen.
圖1 軟骨細(xì)胞的形態(tài)學(xué)表現(xiàn)
2 CCK-8法測定軟骨細(xì)胞的存活率
AGEs(0、10、25 mg/L)處理軟骨細(xì)胞24 h及48 h后均不影響細(xì)胞存活率,但AGEs(50、100、200 mg/L)處理軟骨細(xì)胞24 h或48 h后均能顯著降低軟骨細(xì)胞存活率(P<0.05)。根據(jù)上述結(jié)果,后續(xù)采用100 mg/L AGEs處理軟骨細(xì)胞24 h進(jìn)行研究,見圖2。
Figure 2. Dose- and time-dependent effects of AGEs on the cell viability of rat chondrocytes detected by CCK-8 assay. Mean±SD.n=5.*P<0.05vs0 mg/L group.
圖2 AGEs引起軟骨細(xì)胞毒性
3 AGEs引起的軟骨細(xì)胞的氧化應(yīng)激
不同濃度AGEs處理軟骨細(xì)胞24 h,可見25、50、100、200 mg/L濃度的AGEs均能使細(xì)胞內(nèi)DCF的平均熒光強(qiáng)度(mean fluorescence intensity,MFI)明顯增強(qiáng),與對照組相比,差異有統(tǒng)計(jì)學(xué)顯著性(P<0.05)。此外,NAC與100 mg/L AGEs 共培養(yǎng)的軟骨細(xì)胞與100 mg/L AGEs組相比,MFI明顯降低(P<0.05),見圖3。
Figure 3. AGEs induced accumulation of intracellular reactive oxygen species (ROS) in the chondrocytes (×200). MFI: mean fluorescence intensity.Mean±SD.n=5.*P<0.05vscontrol group;#P<0.05vsNAC group;△P<0.05vsAGEs 100 mg/L group.
圖3 AGEs引起軟骨細(xì)胞的氧化應(yīng)激反應(yīng)
4 AGEs通過氧化應(yīng)激引起軟骨細(xì)胞凋亡
熒光顯微鏡下可見Hoechst染色空白對照組、NAC組中軟骨細(xì)胞核染色分布均勻,呈彌散均勻的低密度熒光。AGEs組中細(xì)胞核呈致密濃染的凋亡特征的軟骨細(xì)胞數(shù)量增多,與control、NAC組比較,差異有統(tǒng)計(jì)學(xué)顯著性(P<0.05)。而AGEs+NAC組中,抗氧化劑NAC與AGEs共培養(yǎng)24 h的軟骨細(xì)胞凋亡較AGEs組明顯減少(P<0.05),見圖4A。
此外,通過Annexin V-FITC/PI流式細(xì)胞術(shù)檢測結(jié)果顯示,AGEs處理軟骨細(xì)胞24 h后凋亡率增至(18.90±2.82)%,差異有統(tǒng)計(jì)學(xué)顯著性(P<0.01)。而NAC與AGEs共培養(yǎng)軟骨細(xì)胞24 h時(shí),軟骨細(xì)胞凋亡率下降至(8.23±1.66)%,與單獨(dú)AGEs處理軟骨細(xì)胞組相比,差異有統(tǒng)計(jì)學(xué)顯著性(P<0.05),見圖4B。
AGEs處理軟骨細(xì)胞24 h 可顯著增加Bax/Bcl-2 及caspase-3的mRNA表達(dá)量(P<0.05),而NAC與AGEs共培養(yǎng)軟骨細(xì)胞24 h 能抑制AGEs引起的Bax/Bcl-2及caspase-3的mRNA表達(dá)量上調(diào)(P<0.05),見圖4C。
Western blotting實(shí)驗(yàn)檢測cleaved caspase-3的蛋白表達(dá)量, AGEs可促進(jìn)凋亡相關(guān)蛋白cleaved caspase-3的增加(P<0.05),而NAC可抑制AGEs引起的cleaved caspase-3的蛋白水平上調(diào)(P<0.05),見圖4D。
5 AGEs通過氧化應(yīng)激對軟骨細(xì)胞基質(zhì)金屬蛋白酶及Ⅱ型膠原的影響
AGEs作用下,與對照組相比,MMP3及MMP13的mRNA表達(dá)顯著增加(P<0.05),而COL2的mRNA表達(dá)顯著下降(P<0.05)。NAC預(yù)處理后與AGEs共培養(yǎng)軟骨細(xì)胞,能顯著抑制MMP3和MMP13的mRNA表達(dá)量并提高COL2的mRNA表達(dá)量(P<0.05),見圖5A。Western blotting實(shí)驗(yàn)結(jié)果可見,AGEs可促進(jìn)軟骨細(xì)胞表達(dá)MMP3及MMP13,并降低COL2的蛋白水平(P<0.05),而NAC可抑制MMP3、MMP13的蛋白水平并提高COL2的蛋白水平(P<0.05),見圖5B。
Figure 4.NAC reduced AGEs-induced apoptosis of chondrocytes. A: the changes of apoptotic cells detected by Hoechst 33342 nuclear staining (×400); B: flow cytometry analysis of the apoptosis in chondrocytes; C: the mRNA levels of Bax, Bcl-2 and caspase-3 measured by RT-PCR; D: the protein level of cleaved caspase-3 measured by Western blotting. Mean±SD.n=5.*P<0.05vscontrol group;#P<0.05vsNAC group;△P<0.05vsAGEs group.
圖4 AGEs通過氧化應(yīng)激引起軟骨細(xì)胞凋亡
Figure 5.The effects of NAC on the expression of MMP3, MMP13 and COL2 in the chondrocytes induced by AGEs. A: the mRNA levels of MMP3, MMP13 and COL2 measured by RT-PCR; B: the protein levels of MMP3, MMP13 and COL2 measured by Western blotting. Mean±SD.n=5.*P<0.05vscontrol group;#P<0.05vsNAC group;△P<0.05vsAGEs group.
圖5 AGEs通過氧化應(yīng)激上調(diào)軟骨細(xì)胞中MMP3和MMP13表達(dá),下調(diào)COL-2表達(dá)
AGEs是還原糖(葡萄糖)與蛋白、脂質(zhì)經(jīng)過一系列非酶糖基化反應(yīng)(即Maillard 反應(yīng))形成的不可逆性終末期產(chǎn)物[5],常沉積于關(guān)節(jié)軟骨、皮膚膠原組織及心包液中[9]。正常情況下,體內(nèi)AGEs的水平維持在一個(gè)較為平衡的狀態(tài),糖尿病、衰老或飲食攝入高溫處理的食物都將引起體內(nèi)AGEs水平明顯升高,后產(chǎn)生一系列病理生理改變。軟骨細(xì)胞外基質(zhì)主要由Ⅱ型膠原及蛋白聚糖組成,其生物半衰期較長,更易發(fā)生非酶糖基化。AGEs形成使得膠原分子間相互交聯(lián)增多,導(dǎo)致膠原彈性下降,引起軟骨結(jié)構(gòu)及功能的改變[10]。研究表明,關(guān)節(jié)軟骨退變病人的正常軟骨中AGEs含量明顯升高[11]。動物實(shí)驗(yàn)研究同樣發(fā)現(xiàn),15個(gè)月小鼠膝關(guān)節(jié)軟骨中的AGEs含量明顯高于2個(gè)月的小鼠[12]。
軟骨細(xì)胞在維持軟骨形態(tài)和功能方面發(fā)揮重要作用,軟骨基質(zhì)的合成與更新主要依靠軟骨細(xì)胞[13]。軟骨細(xì)胞凋亡引起的細(xì)胞數(shù)量進(jìn)行性減少,使細(xì)胞外基質(zhì)合成減少、破壞增加是導(dǎo)致OA的重要原因。因此,軟骨細(xì)胞凋亡數(shù)量與OA的程度密切相關(guān)。衰老引起的線粒體功能損害導(dǎo)致軟骨細(xì)胞凋亡在OA發(fā)病中起關(guān)鍵作用[14]。 而線粒體功能障礙與氧化應(yīng)激密切相關(guān)。氧化應(yīng)激可誘導(dǎo)細(xì)胞內(nèi)ROS及活性氮簇(reactive nitrogen species,RNS)大量產(chǎn)生[15]。線粒體功能損害時(shí),線粒體Ca2+內(nèi)流增加一方面可促進(jìn)ROS的形成,另一方面可降低線粒體膜電位引起 ATP合成的功能障礙,這樣又導(dǎo)致Ca2+內(nèi)流及ROS的進(jìn)一步增加。線粒體途徑引起的細(xì)胞凋亡可引起線粒體膜上多種凋亡相關(guān)蛋白因子表達(dá)。Bcl-2 是抗細(xì)胞凋亡因子,Bax 是促細(xì)胞凋亡因子,Bax/Bcl-2這對作用相反的細(xì)胞凋亡因子共同激活其下游的一系列凋亡因子,引發(fā)細(xì)胞凋亡[16]。此外,caspase-3是引起細(xì)胞凋亡過程的核心效應(yīng)器,無活性前體的procaspase-3被激活生成活性片段cleaved caspase-3被看作是細(xì)胞發(fā)生凋亡的標(biāo)志之一[17]。在本項(xiàng)研究中,我們發(fā)現(xiàn)AGEs可通過氧化應(yīng)激導(dǎo)致軟骨細(xì)胞凋亡,這與Yang等[7]研究結(jié)果一致。
正常軟骨基質(zhì)合成及降解處于動態(tài)平衡,當(dāng)軟骨受損后,基質(zhì)金屬蛋白酶的增多對Ⅱ型膠原、蛋白聚糖等細(xì)胞外基質(zhì)的降解作用,打破了這種平衡,細(xì)胞外基質(zhì)大量降解可引起關(guān)節(jié)軟骨完整性的破壞。研究顯示,髖關(guān)節(jié)退變患者血清MMP3的濃度比正常人升高[18]。此外, MMP13被認(rèn)為是骨性關(guān)節(jié)炎發(fā)展中最重要的膠原蛋白酶。因?yàn)椋琈MP13對Ⅱ型膠原蛋白的水解能力是其他MMPs的5~10倍,并且在OA發(fā)病時(shí),MMP13可表達(dá)于更深層的軟骨中[19]。研究發(fā)現(xiàn),線粒體功能損害時(shí)可通過ROS上調(diào)引起MMPs增加[20],尤其可導(dǎo)致軟骨細(xì)胞MMP3和MMP13的表達(dá)上調(diào)[21]。 此前,已有學(xué)者對AGEs引起軟骨細(xì)胞MMPs表達(dá)上調(diào)作出研究發(fā)現(xiàn),AGEs可顯著提高軟骨細(xì)胞中MMP-1、-3、-13的表達(dá)量[22]。本次研究通過RT-PCR及Western blotting技術(shù)檢測發(fā)現(xiàn)AGEs可引起MMP3和MMP13表達(dá)上調(diào),繼而影響Ⅱ型膠原的表達(dá)下降。而將抗氧化劑NAC作用于AGEs誘導(dǎo)的軟骨細(xì)胞時(shí)可逆轉(zhuǎn)上述現(xiàn)象,證明AGEs誘導(dǎo)軟骨細(xì)胞MMP3和MMP13上調(diào)與氧化應(yīng)激有關(guān)。
[1] Caramés B, Kiosses WB, Akasaki Y, et al. Glucosamine activates autophagyinvitroandinvivo[J]. Arthritis Rheum, 2013, 65(7):1843-1852.
[2] Billinghurst RC, Dahlberg L, Ionescu M, et al. Enhanced cleavage of type II collagen by collagenases in osteoarthri-tic articular cartilage [J]. J Clin Invest, 1997, 99(7): 1534-1545.
[3] Shane Anderson A, Loeser RF. Why is osteoarthritis an age-related disease? [J]. Best Pract Res Clin Rheumatol, 2010, 24(1):15-26.
[4] Yin W, Park JI, Loeser RF. Oxidative stress inhibits insulin-like growth factor-I induction of chondrocyte proteoglycan synthesis through differential regulation of phosphatidylinositol 3-kinase-Akt and MEK-ERK MAPK signaling pathways [J]. J Biol Chem, 2009, 284(46): 31972-31981.
[5] Prasad C, Imrhan V, Marotta F, et al. Lifestyle and advanced glycation end products (AGEs) burden: its relevance to healthy aging [J]. Aging Dis, 2014, 5(3): 212-217.
[6] Huang CY, Lai KY, Hung LF, et al. Advanced glycation end products cause collagen II reduction by activating Janus kinase/signal transducer and activator of transcription 3 pathway in porcine chondrocytes [J]. Rheumatology (Oxford), 2011, 50(8): 1379-1389.
[7] Yang Q, Guo S, Wang S, et al. Advanced glycation end products-induced chondrocyte apoptosis through mitochondrial dysfunction in cultured rabbit chondrocyte [J]. Fundam Clin Pharmacol, 2015, 29(1): 54-61.
[8] Nah SS, Choi IY, Lee CK, et al. Effects of advanced glycation end products on the expression of COX-2, PGE2 and NO in human osteoarthritic chondrocytes [J]. Rheumatology, 2008, 47(4): 425-431.
[9] Singh VP, Bali A, Singh N, et al. Advanced glycation end products and diabetic complications [J]. Korean J Physiol Pharmacol, 2014, 18(1): 1-14.
[10]Bonet ML, Granados N, Palou A. Molecular players at the intersection of obesity and osteoarthritis [J]. Curr Drug Targets, 2011, 12(14): 2103-2128.
[11]Steenvoorden MM, Huizinga TW, Verzijl N, et al. Activation of receptor for advanced glycation end products in osteoarthritis leads to increased stimulation of chondrocytes and synoviocytes[J]. Arthritis Rheum, 2006, 54(1):253-263.
[12]Kim JH, Lee G, Won Y, et al. Matrix cross-linking-mediated mechanotransduction promotes posttraumatic osteoarthritis [J]. Proc Natl Acad Sci U S A, 2015, 112(30): 9424-9429.
[13]Tian J, Zhang FJ, Lei GH. Role of integrins and their ligands in osteoarthritic cartilage [J]. Rheumatol Int, 2015, 35(5):787-798.
[14]Blanco FJ, Rego I, Ruiz-Romero C. The role of mitochondria in osteoarthritis [J]. Nat Rev Rheumatol, 2011, 7(3): 161-169.
[15]Di Meo S, Reed TT, Venditti P, et al. Role of ROS and RNS sources in physiological and pathological conditions [J]. Oxid Med Cell Longev, 2016, 2016:1245049.
[16]趙泓翔, 郭 可, 崔亞迪, 等. 半枝蓮黃酮對復(fù)合Aβ25-35引起線粒體膜Bcl-2、Bax、Bcl-xL及Bak異常的干預(yù)作用[J]. 中國病理生理雜志, 2014, 30(12): 2262-2266.
[17]劉關(guān)羽, 何衛(wèi)陽, 朱 鑫, 等. 氧化應(yīng)激誘導(dǎo)自噬對骨髓間充質(zhì)干細(xì)胞增殖與凋亡的影響[J]. 中國病理生理雜志, 2015, 31(12):2176-2182.
[18]Kensaku M, Tsuyoshi N, Katsuyuki Y, et al. Significant increases in serum and plasma concentrations of matrix metalloproteinases 3 and 9 in patients with rapidly destructive osteoarthritis of the hip [J]. Arthritis Rheumatol, 2002, 46(10):2625-2631.
[19]Fernandes JC, Martel-Pelletier J, Lascau-Coman V, et al. Collagenase-1 and collagenase-3 synthesis in normal and early experimental osteoarthritic canine cartilage: an immunohistochemical study [J]. J Rheumatol, 1998, 25(8):1585-1594.
[20]Reed KN, Wilson G, Pearsall A, et al. The role of mitochondrial reactive oxygen species in cartilage matrix destruction [J]. Mol Cell Biochem, 2014, 397(1-2):195-201.
[21]Ye W, Zhong Z, Zhu S, et al. Advanced oxidation protein products induce catabolic effect through oxidant-dependent activation of NF-κB pathway in human chondrocyte [J]. Int Immunopharmacol, 2016, 39: 149-157.
[22]Nah SS, Choi IY, Yoo B, et al. Advanced glycation end products increases matrix metalloproteinase-1, -3, and -13, and TNF-alpha in human osteoarthritic chondrocytes [J]. FEBS Lett, 2007, 581(9):1928-1932.
(責(zé)任編輯: 盧 萍, 羅 森)
Advanced glycation end products induce rat chondrocyte injury by modulating oxidative stress
HUANG Wen-zhou1, WANG Li-li2, YIN Chang-chang2, LI Jian1, AO Peng1, CHENG Xi-gao1
(1DepartmentofOrthopedics,TheSecondAffiliatedHospitalofNanchangUniversity,Nanchang330006,China;2JiujiangUniversity,KeyLaboratoryofMedicalTransformationofJiujiang,Jiujiang332000,China.E-mail: 228206846@qq.com)
AIM: To explore the possibility that advanced glycation end products (AGEs) induces rat chondrocyte injury by modulating oxidative stress. METHODS: Primarily cultured rat chondrocytes were identified. The viability of the chondrocytes was measured by CCK-8 assay. The intracellular levels of reactive oxygen species (ROS) were detected by DCFH-DA staining. The number of apoptotic cells was determined by Hoechst 33342 nuclear staining and flow cytometry. RT-PCR was performed to measure the mRNA levels of Bax, Bcl-2, caspase-3, MMP3, MMP13 and COL2 in the chondrocytes. Western blotting was used to evaluate the protein levels of cleaved caspase-3, MMP3, MMP13 and COL2. RESULTS: Compared with control group, the intracellular levels of ROS in the chondrocytes treated with AGEs were significantly increased (P<0.05), and pretreatment withN-acetyl-L-cysteine (NAC) suppressed the formation of ROS (P<0.05). Besides, NAC inhibited AGEs-induced apoptosis of the chondrocytes, as indicated by reduceing the levels of Bax/Bcl-2 and caspase-3, decreased the expression of MMP3 and MMP13, and reduced the loss of COL2. CONCLUSION: AGEs induce chondrocyte injury by activating oxidative stress.
Advanced glycation end products; Osteoarthritis; Oxidative stress; Matrix metalloproteinases; Apoptosis
1000- 4718(2016)11- 2036- 07
2016- 05- 26
2016- 09- 13
國家自然科學(xué)基金資助項(xiàng)目(No. 81060147)
R363.2
A
10.3969/j.issn.1000- 4718.2016.11.020
雜志網(wǎng)址: http://www.cjpp.net
△通訊作者 Tel: 13870615428; E-mail: 228206846@qq.com