劉子奇, 高文志, 李廣華,2, 何王波
(1.天津大學(xué) 內(nèi)燃機(jī)燃燒學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室,天津 300072; 2.大連海洋大學(xué) 機(jī)械與動(dòng)力工程學(xué)院,大連 116023)
?
汽油機(jī)余熱回收單閥膨脹機(jī)模擬試驗(yàn)
劉子奇1, 高文志1, 李廣華1,2, 何王波1
(1.天津大學(xué) 內(nèi)燃機(jī)燃燒學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室,天津 300072; 2.大連海洋大學(xué) 機(jī)械與動(dòng)力工程學(xué)院,大連 116023)
發(fā)動(dòng)機(jī)尾氣能量占燃料燃燒放熱總量的35%左右,為回收這部分能量,針對(duì)以水為工質(zhì)的單閥膨脹機(jī)的工作特點(diǎn),建立基于Matlab/Simulink的單閥膨脹機(jī)模型.分析該模型的性能,并進(jìn)行試驗(yàn)驗(yàn)證模型的正確性.模擬結(jié)果表明,進(jìn)氣壓力和進(jìn)氣閥升程的增加會(huì)導(dǎo)致單閥膨脹機(jī)輸出功率和質(zhì)量流量的增大,同時(shí)導(dǎo)致膨脹機(jī)效率的降低.隨著轉(zhuǎn)速的增大,膨脹機(jī)輸出功率和質(zhì)量流量先增大后趨于平穩(wěn);進(jìn)氣溫度升高會(huì)導(dǎo)致質(zhì)量流量的下降,對(duì)膨脹機(jī)輸出功率和效率的影響不大.膨脹機(jī)試驗(yàn)結(jié)果表明,當(dāng)汽油機(jī)功率為61 kW時(shí),膨脹機(jī)回收的功率可達(dá)3 kW,使聯(lián)合循環(huán)系統(tǒng)總輸出功率增加5%.
單閥膨脹機(jī);汽油機(jī);余熱回收;朗肯循環(huán)
隨著能源與環(huán)境問題的日趨凸顯,汽車行業(yè)的節(jié)能減排越來(lái)越受到社會(huì)的關(guān)注和重視.研究表明,汽車尾氣帶走的熱量約占燃燒總熱量的35%[1-4].基于朗肯循環(huán)的發(fā)動(dòng)機(jī)尾氣能量回收利用是實(shí)現(xiàn)汽車發(fā)動(dòng)機(jī)節(jié)能的一種有效途徑[5-9].膨脹機(jī)是朗肯循環(huán)中熱功轉(zhuǎn)換的核心部件,直接影響余熱回收的效率,對(duì)膨脹機(jī)進(jìn)行研究有重要意義.
國(guó)內(nèi)外學(xué)者在發(fā)動(dòng)機(jī)尾氣余熱回收系統(tǒng)中的膨脹機(jī)方面做了許多相關(guān)研究.廣泛應(yīng)用于工業(yè)發(fā)電的透平膨脹機(jī)不適合應(yīng)用到小流量的場(chǎng)合,透平膨脹機(jī)的小型化會(huì)導(dǎo)致效率的降低和成本的增加[10].在小流量的小型膨脹機(jī)中,活塞膨脹機(jī)仍占主要地位[11].Glavatskaya等[12]提出了一種用于研究活塞式膨脹機(jī)性能的穩(wěn)態(tài)半經(jīng)驗(yàn)?zāi)P?膨脹機(jī)的性能計(jì)算結(jié)果表明活塞式膨脹機(jī)具有相對(duì)高的等熵效率和機(jī)械效率,適合應(yīng)用到發(fā)動(dòng)機(jī)余熱回收系統(tǒng).Bao等[13-14]研究了應(yīng)用于混合動(dòng)力汽車的排氣余熱回收朗肯系統(tǒng)中的活塞膨脹機(jī),通過實(shí)驗(yàn)研究,使總效率從28.9%增加到32.7%.
單閥膨脹機(jī)由于具有結(jié)構(gòu)簡(jiǎn)單、壓比高、工作可靠等優(yōu)點(diǎn),廣泛應(yīng)用于壓縮空氣儲(chǔ)能系統(tǒng)及小型制冷設(shè)備中[11],但目前沒有在內(nèi)燃機(jī)余熱回收系統(tǒng)中的應(yīng)用研究.因此,本文開展用于汽油機(jī)余熱回收的單閥活塞式膨脹機(jī)的工作過程研究,通過建立膨脹機(jī)性能計(jì)算模型,計(jì)算并分析主要參數(shù)對(duì)膨脹機(jī)輸出功率、效率及質(zhì)量流量的影響規(guī)律,并進(jìn)行膨脹機(jī)運(yùn)轉(zhuǎn)試驗(yàn),驗(yàn)證模型的正確性.
單閥膨脹機(jī)的結(jié)構(gòu)如圖1所示,其工作原理如下:當(dāng)活塞接近上止點(diǎn)時(shí),頂桿5將球閥3頂開,氣缸中開始進(jìn)氣,活塞到達(dá)上止點(diǎn)時(shí),進(jìn)氣閥完全打開.活塞向下止點(diǎn)運(yùn)動(dòng)后,進(jìn)氣閥進(jìn)入關(guān)閉階段,直至上止點(diǎn)附近某個(gè)位置進(jìn)氣閥完全關(guān)閉.蒸汽進(jìn)入氣缸后,開始膨脹,推動(dòng)活塞做功.當(dāng)活塞接近下止點(diǎn)時(shí),氣缸壁上的排氣口打開,膨脹后的氣體通過排氣口排入低壓管道;隨后活塞上行,壓縮缸內(nèi)殘余的氣體,直至進(jìn)氣閥再次被打開,開始下一個(gè)循環(huán)[15].
圖1 單閥膨脹機(jī)結(jié)構(gòu)示意圖Fig.1 Structure diagram of single valve expander
圖2 活塞式膨脹機(jī)示功圖Fig.2 Indicator diagram of reciprocating piston expander
理想的活塞膨脹機(jī)是以絕熱和沒有余隙容積為假設(shè)條件的.如圖2所示為活塞膨脹機(jī)的工作過程,工質(zhì)經(jīng)過等壓進(jìn)氣(C-E)、絕熱膨脹(E-F)、等壓排氣(F-D)、絕熱壓縮(D-C)4個(gè)過程完成一個(gè)循環(huán).與理論循環(huán)C-E-F-D相比,實(shí)際循環(huán)存在不完全膨脹損失、進(jìn)排氣損失和傳熱損失[15-16].定義膨脹機(jī)效率為膨脹機(jī)指示功與理想膨脹機(jī)輸出功的比值為
(1)
式中:Wi為膨脹機(jī)的指示功,q為工質(zhì)的流量,hE、hF分別為絕熱過程起止位置E、F對(duì)應(yīng)的比焓.
指示功Wi、指示功率Pi和輸出功率P可以表示為
(2)
式中:V為膨脹機(jī)的氣缸體積,n為膨脹機(jī)的轉(zhuǎn)速,ηm為膨脹機(jī)的機(jī)械效率.因?yàn)榕蛎洐C(jī)實(shí)際工作過程中存在摩擦損失和驅(qū)動(dòng)泵帶來(lái)的功率損失,ηm一般取0.75~0.95[15],根據(jù)試驗(yàn)設(shè)備的特點(diǎn),ηm的估計(jì)值為0.92[12].
參照內(nèi)燃機(jī)熱力計(jì)算方法,在Matlab/Simulink中建立了單閥膨脹機(jī)計(jì)算模型,模型主要由能量守恒方程、質(zhì)量守恒方程及傳熱方程[17-18]等組成.系統(tǒng)中循環(huán)工質(zhì)的狀態(tài)參數(shù),通過調(diào)用REFPROP工質(zhì)物性計(jì)算軟件的子函數(shù)來(lái)獲得.
模型的能量守恒方程為
(3)
式中:u為缸內(nèi)工質(zhì)內(nèi)能,m為缸內(nèi)工質(zhì)質(zhì)量,Qj為傳熱量,hin和hout分別為進(jìn)入和流出氣缸的工質(zhì)比焓,min和mout分別為進(jìn)入和流出氣缸的工質(zhì)質(zhì)量.
模型的質(zhì)量守恒方程為
(4)
模型的傳熱方程為
(5)
式中:hcon為傳熱系數(shù);i取值1、2、3,分別表示缸蓋底面、活塞頂面和氣缸表面;Ai為對(duì)應(yīng)面?zhèn)鳠崦娣e;ti為壁面溫度.
假設(shè)工質(zhì)通過進(jìn)、排氣門的流動(dòng)過程為準(zhǔn)維等熵絕熱,實(shí)際流量等于理論流量乘以流量系數(shù)α,可得出模型的流量方程,流動(dòng)函數(shù)ψ由下式確定:
(6)
當(dāng)氣體為亞臨界狀態(tài)時(shí),
當(dāng)氣體為超臨界狀態(tài)時(shí),
式中:A為流通面積,pbef和paft分別為節(jié)流位置前和節(jié)流位置后的氣體壓力,ρ為氣體密度,ψ為流動(dòng)函數(shù),k為絕熱指數(shù).
根據(jù)以上基本方程建立單閥膨脹機(jī)工作過程的Matlab/Simulink模型.通過State flow控制邏輯識(shí)別曲軸轉(zhuǎn)角來(lái)調(diào)用進(jìn)氣、膨脹、排氣、壓縮子模塊.單閥膨脹機(jī)的Matlab/Simulink模型如圖3所示.
圖3 單閥膨脹機(jī)Matlab/Simulink模型示意圖Fig.3 Diagram of Mallab/Simulink model of single valve expander
單膨脹機(jī)的基本結(jié)構(gòu)參數(shù)如下:缸徑50.0 mm,行程50.0 mm,進(jìn)氣閥升程 4.3 mm,連桿長(zhǎng)度100.0 mm,余隙高度4.5 mm,排氣口高度15.0 mm,排氣口寬度20.0 mm.單閥膨脹機(jī)的基本運(yùn)行參數(shù)為:進(jìn)氣壓力5.00 MPa,進(jìn)氣溫度500 ℃,轉(zhuǎn)速1 400 r/min,排氣壓力0.10 MPa.通過在程序中輸入上述參數(shù),運(yùn)行Simulink模型,得到單閥膨脹機(jī)缸內(nèi)壓力與溫度隨曲軸轉(zhuǎn)角的變化曲線如圖4所示.
圖4 單閥膨脹機(jī)缸壓與溫度隨曲軸轉(zhuǎn)角的變化Fig.4 Cylinder pressure and temperature of single valve expander vary with crank angle
利用Matlab/Simulink單閥膨脹機(jī)模型,采用控制變量法,研究輸出功率P、質(zhì)量流量m、膨脹機(jī)效率η隨膨脹機(jī)運(yùn)行參數(shù)(如:進(jìn)氣壓力p、進(jìn)氣溫度t、轉(zhuǎn)速n以及配氣相位)的變化規(guī)律.
圖5 輸出功率、質(zhì)量流量和膨脹機(jī)效率隨進(jìn)氣壓力變化規(guī)律Fig.5 Output power, mass flow rate and efficiency of expander vary with inlet pressure
進(jìn)氣壓力對(duì)膨脹機(jī)工作過程的影響如圖5所示.可以看出,質(zhì)量流量和輸出功率都隨進(jìn)氣壓力的增大而增大.但是,膨脹機(jī)效率卻隨進(jìn)氣壓力的升高而降低,這主要是由于進(jìn)氣壓力越高,膨脹做功越不完全,不完全膨脹損失越大.
圖6 輸出功率、質(zhì)量流量和膨脹機(jī)效率隨進(jìn)氣溫度變化規(guī)律Fig.6 Output power, mass flow rate and efficiency of expander vary with inlet temperature
膨脹機(jī)的進(jìn)氣溫度由蒸發(fā)器決定,其值隨著汽油機(jī)的工況而變化.進(jìn)氣溫度對(duì)膨脹機(jī)工作過程的影響如圖6所示.從圖中可以看出,質(zhì)量流量隨進(jìn)氣溫度的升高而降低,膨脹機(jī)效率和輸出功率受溫度影響不大.這是由于隨著進(jìn)氣溫度的增加,工質(zhì)的焓值變大,而質(zhì)量流量減小,兩者對(duì)輸出功率的影響相互抵消,使輸出功率隨溫度的變化不大.單閥膨脹機(jī)的這種性能對(duì)維系系統(tǒng)穩(wěn)定運(yùn)行有重要意義.
單閥膨脹機(jī)的轉(zhuǎn)速對(duì)工作過程的影響如圖7所示.在低轉(zhuǎn)速時(shí),質(zhì)量流量和輸出功率隨轉(zhuǎn)速升高幾乎呈線性增長(zhǎng),這是由于單閥膨脹機(jī)在進(jìn)、出口參數(shù)一定且進(jìn)排氣充分的條件下,每循環(huán)的進(jìn)氣質(zhì)量為定值.因此,質(zhì)量流量、輸出功率與單位時(shí)間內(nèi)的循環(huán)次數(shù)成正比,即與轉(zhuǎn)速成正比.在高轉(zhuǎn)速時(shí),每次循環(huán)的進(jìn)、排氣時(shí)間很短,因此進(jìn)、排氣不充分,導(dǎo)致質(zhì)量流量和輸出功率曲線趨于平緩,說(shuō)明當(dāng)轉(zhuǎn)速增高到一定程度后,配氣相位成為流量增加的瓶頸.膨脹機(jī)效率在轉(zhuǎn)速增高后有下降趨勢(shì),主要是由于進(jìn)氣不充分導(dǎo)致進(jìn)氣損失增加.另外,由圖7可以看出,質(zhì)量流量與膨脹機(jī)輸出功變化趨勢(shì)一致,因此可以考慮將膨脹機(jī)的曲軸與工質(zhì)泵同軸相連,由膨脹機(jī)帶動(dòng)工質(zhì)泵工作.對(duì)于工質(zhì)泵來(lái)說(shuō),每轉(zhuǎn)流量是定值,總流量由膨脹機(jī)轉(zhuǎn)速?zèng)Q定,實(shí)現(xiàn)工質(zhì)流量的自動(dòng)調(diào)節(jié).
圖7 輸出功率、質(zhì)量流量和膨脹機(jī)效率隨轉(zhuǎn)速的變化規(guī)律Fig.7 Output power, mass flow rate and efficiency of expander vary with rotation speed
配氣相位包括進(jìn)氣相位與排氣相位,由于單閥膨脹機(jī)的排氣過程通過排氣口進(jìn)行,其相位難以改變,僅對(duì)進(jìn)氣相位進(jìn)行分析.
單閥膨脹機(jī)的進(jìn)氣相位是指進(jìn)氣閥開啟與關(guān)閉的時(shí)刻,進(jìn)氣閥升程L由頂桿的高度和球閥的安裝位置決定.進(jìn)氣閥升程對(duì)膨脹機(jī)缸內(nèi)工質(zhì)的質(zhì)量流量、功率及效率的影響規(guī)律如圖8所示.輸出功率和質(zhì)量流量隨進(jìn)氣閥升程的增加而增大,膨脹機(jī)效率隨進(jìn)氣閥升程的增加而減小.這是因?yàn)檫M(jìn)氣閥升程越大,球閥開啟的時(shí)刻越早,落座時(shí)刻越晚,進(jìn)氣持續(xù)角越大,進(jìn)入氣缸的工質(zhì)越多,也就是工質(zhì)質(zhì)量流量越大,隨之帶來(lái)的是輸出功的增大.同時(shí)進(jìn)氣閥升程的增加導(dǎo)致更明顯的倒流現(xiàn)象,從而導(dǎo)致膨脹機(jī)效率的降低.不同進(jìn)氣閥升程下進(jìn)入氣缸的工質(zhì)質(zhì)量隨曲軸轉(zhuǎn)角的變化如圖9所示.因此,不能一味地增加進(jìn)氣閥升程,在滿足蒸發(fā)器設(shè)計(jì)的質(zhì)量流量的前提下,應(yīng)當(dāng)選擇合適的進(jìn)氣閥升程.
圖8 輸出功率、質(zhì)量流量、膨脹機(jī)效率隨進(jìn)氣閥升程的變化Fig.8 Output power, mass flow rate and efficiency of expander vary with intake valve lift
圖9 不同進(jìn)氣閥升程下缸內(nèi)工質(zhì)質(zhì)量隨曲軸轉(zhuǎn)角變化規(guī)律Fig.9 Working fluid mass varies crank angle under different intake valve lifts
4.1 朗肯循環(huán)系統(tǒng)
為了進(jìn)一步研究單閥膨脹機(jī)的性能,驗(yàn)證所建立的模型與分析結(jié)果,開發(fā)一套用于回收汽油機(jī)尾氣余熱的朗肯循環(huán)系統(tǒng).該試驗(yàn)系統(tǒng)的布置如圖10、11所示,試驗(yàn)系統(tǒng)主要設(shè)備參數(shù)如下.
圖10 汽油機(jī)余熱回收朗肯循環(huán)試驗(yàn)原理圖Fig.10 Schematic diagram of Rankine cycle test system for waste heat recovery of gasoline engine
圖11 汽油機(jī)與朗肯循環(huán)試驗(yàn)系統(tǒng)Fig.11 Gasoline engine and Rankine cycle test system
1)汽油機(jī),型號(hào)GAC2.0 L,額定轉(zhuǎn)速6 300 r/min,額定功率101 kW.
2)膨脹機(jī),單閥活塞式膨脹機(jī).
3)蒸發(fā)器,螺旋管式蒸發(fā)器,管外徑6.50 mm,管長(zhǎng)40 m.
4)發(fā)電機(jī),型號(hào)8SC3238VC,定壓直流發(fā)電,電壓28 V,最大電流150 A.
5)泵,柱塞泵,流量0~0.19 L/s.
6)負(fù)載,6個(gè)瓷盤變阻器,每個(gè)最大功率500 W.
工質(zhì)泵將工質(zhì)水加壓至所需的壓力;工質(zhì)在蒸發(fā)器中與汽油機(jī)尾氣進(jìn)行熱量交換,工質(zhì)水被加熱成蒸汽,高溫高壓的水蒸汽進(jìn)入單閥膨脹機(jī),推動(dòng)活塞輸出機(jī)械功,帶動(dòng)發(fā)電機(jī)轉(zhuǎn)動(dòng),轉(zhuǎn)化為電能;而膨脹后的乏氣進(jìn)入冷凝器與冷卻水進(jìn)行熱量交換,被冷凝的液態(tài)水最終回到水箱,進(jìn)行下一輪的循環(huán).單閥膨脹機(jī)與發(fā)電機(jī)同軸相連.冷凝器與水箱合為一體.
朗肯循環(huán)試驗(yàn)系統(tǒng)共有4個(gè)溫度傳感器,測(cè)量尾氣進(jìn)入蒸發(fā)器前的溫度,經(jīng)過余熱回收系統(tǒng)后的尾氣溫度,膨脹機(jī)內(nèi)工質(zhì)的溫度和冷凝器之后的工質(zhì)溫度.為了更清楚地了解膨脹機(jī)的工作過程,還對(duì)膨脹機(jī)內(nèi)缸壓進(jìn)行實(shí)時(shí)監(jiān)測(cè).
4.2 試驗(yàn)與模擬結(jié)果對(duì)比
試驗(yàn)選取汽油機(jī)轉(zhuǎn)速為4 000 r/min,負(fù)荷分別為50%、70%、90%的3個(gè)工況,如表1所示.當(dāng)發(fā)動(dòng)機(jī)工況穩(wěn)定后,啟動(dòng)朗肯系統(tǒng),得到的試驗(yàn)結(jié)果數(shù)據(jù)如表2所示.其中膨脹機(jī)的輸出功率是通過測(cè)量發(fā)電機(jī)發(fā)出的電功率,利用發(fā)電機(jī)的效率曲線得到.汽油機(jī)各參數(shù)下角標(biāo)為g,以區(qū)別于膨脹機(jī)參數(shù),其中tg1、tg2表示蒸發(fā)器前后的尾氣溫度,qg表示尾氣流量.Pi為膨脹機(jī)的指示功率.
表1 不同負(fù)荷下朗肯循環(huán)試驗(yàn)的汽油機(jī)工況
Tab.1 Gasoline engine working conditions of Rankine cycle test under different loads
負(fù)荷/%ng/(r·min-1)Pg/kWtg11/℃tg22/℃qg/(kg·s-1)50400032.66975200.045070400046.77305000.058090400061.07404140.0690
表2 不同負(fù)荷下朗肯循環(huán)試驗(yàn)膨脹機(jī)工況
Tab.2 Expander working conditions of Rankine cycle test under different loads
負(fù)荷/%ng/(r·min-1)t/℃p/MPan/(r·min-1)q/(kg·s-1)P/kWPi/kWη/%P/Pg5040004904.012960.00461.61.859.10.0497040004965.414060.00452.42.666.90.0509040005006.315140.00533.03.366.50.049
進(jìn)氣壓力4.00 MPa、排氣壓力0.11 MPa時(shí)測(cè)得的膨脹機(jī)示功圖與模擬示功圖的對(duì)比如圖12所示.試驗(yàn)測(cè)得的示功圖在區(qū)域A出現(xiàn)異常的原因是,當(dāng)活塞在上止點(diǎn)附近時(shí),缸內(nèi)壓力最大,進(jìn)氣結(jié)構(gòu)和缸蓋連接處出現(xiàn)漏氣現(xiàn)象,導(dǎo)致膨脹初期缸壓迅速下降.后期試驗(yàn)應(yīng)完善系統(tǒng)密封性.區(qū)域B出現(xiàn)異常的原因是在排氣口打開后,工質(zhì)很快排盡,缸內(nèi)壓力小于出口管道內(nèi)壓力,出現(xiàn)負(fù)功.
圖12 膨脹機(jī)缸內(nèi)壓力的實(shí)驗(yàn)值與模擬值的對(duì)比Fig.12 Comparison between testing values and simulation values of pressure in expander
圖13 輸出功率、質(zhì)量流量、效率隨轉(zhuǎn)速變化的試驗(yàn)?zāi)M對(duì)比圖Fig.13 Comparison between testing values and simulation values of output power, mass flow rate and efficiency vary with rotation speed
膨脹機(jī)輸出功率、質(zhì)量流量、膨脹機(jī)效率隨轉(zhuǎn)速變化的模擬值和實(shí)驗(yàn)值對(duì)比如圖13所示,從圖中可以看出,膨脹機(jī)輸出功率的的模擬值與試驗(yàn)值的誤差小于6.0%,證明了模型的正確性.
(1) 單閥膨脹機(jī)體積小,結(jié)構(gòu)簡(jiǎn)單,膨脹比高,轉(zhuǎn)速高,適合小流量、小功率的場(chǎng)合,如發(fā)動(dòng)機(jī)余熱回收朗肯循環(huán)系統(tǒng).
(2) 進(jìn)氣壓力和進(jìn)氣閥升程的增加會(huì)導(dǎo)致單閥膨脹機(jī)輸出功和質(zhì)量流量的增大,同時(shí)導(dǎo)致膨脹機(jī)效率的降低.隨著轉(zhuǎn)速的增大,輸出功率和質(zhì)量流量先增大后趨于平穩(wěn);而進(jìn)氣溫度升高會(huì)導(dǎo)致質(zhì)量流量的下降,對(duì)輸出功率和膨脹機(jī)效率影響不大.因此不能一味地增大進(jìn)氣壓力和進(jìn)氣閥升程,而應(yīng)在滿足在質(zhì)量流量要求的情況下,選擇合適的進(jìn)氣壓力和進(jìn)氣閥升程,使膨脹機(jī)擁有最大的輸出功和效率.
(3)單閥膨脹機(jī)具有良好的性能,當(dāng)汽油機(jī)功率為61.0 kW時(shí),膨脹機(jī)回收的功率可達(dá)3.0 kW,使聯(lián)合循環(huán)系統(tǒng)總輸出功率增加5.0%,驗(yàn)證了單閥膨脹機(jī)模型的正確性,證明了單閥膨脹機(jī)在回收汽油機(jī)尾氣能量方面具有很大的潛力,具有良好的工程應(yīng)用前景.
[1] EDWARDS S,EITEL J,PANTOW E, et al.Waste heat recovery: the next challenge for commercial vehicle thermo management [J]. SAE International Journal of Commercial Vehicles, 2012, 5(1): 395-406.
[2] DOMINGUES A, SANTOS H, COSTA M. Analysis of vehicle exhaust waste heat recovery potential using a Rankine cycle [J]. Energy, 2013, 49: 71-85.
[3] FU J, LIU J, FENG R, et al. Energy and energy analysis on gasoline engine based on mapping characteristics experiment [J]. Applied Energy, 2013, 102: 622-30.
[4] WANG E, ZHANG H, FAN B, et al. Study of working fluid selection of organic Rankine cycle (ORC) for engine waste heat recovery [J]. Energy, 2011, 36(5): 3406-3418.
[5] WANG T,ZHANG Y,PENG Z,et al. A review of researches on thermal exhaust heat recovery with Rankine cycle [J]. Renewable and Sustainable Energy Reviews, 2011,15(6): 2862-2871. [6] BADAMI M, MURA M, CAMPANILE P, et al. Design and performance evaluation of an innovative small scale combined cycle cogeneration system [J]. Energy, 2008, 33(8): 1264-1276.
[7] MOTORTREND. BMW TurboSteamer [EB/OL]. (2006-05-19)[2015-10-13]. http:∥www.motortrend.com/news/technologue-hybrid-qa/2006-05-19.
[8] HE M, ZHANG X, ZENG K, et al. A combined thermodynamic cycle used for waste heat recovery of internal combustion engine [J]. Energy, 2011, 36(12): 6821-6829.
[9] HO T. Waste heat recovery concept to reduce fuel consumption and heat rejection from a diesel engine [J]. SAE International Journal of Commercial Vehicles, 2010, 3(1): 60-68.
[10] DEPCIK C. Review of organic Rankine cycles for internal combustion engine exhaust waste heat recovery [J]. Applied Thermal Engineering, 2013, 51(1/2): 711-722.
[11] 薛皓白. 多級(jí)單閥膨脹機(jī)的理論與實(shí)驗(yàn)研究[D]. 北京:中國(guó)科學(xué)院研究生院(工程熱物理研究所), 2014. XUE Hao-bai. Theoretical and experimental study of a multistage single valve reciprocating expander [D]. Beijing: Institute of Engineering Thermophysics, Chinese Academy of Sciences, 2014.
[12] GLAVATSKAYA Y, PODEVIN P, LEMORT V, et al. Reciprocating expander for an exhaust heat recovery rankine cycle for a passenger car application [J]. Energies, 2012, 5(6): 1751-1765.
[13] BAO J, ZHAO L. A review of working fluid and expander selections for organic Rankine cycle [J]. Renewable and Sustainable Energy Reviews, 2013, 24(10): 325-342.
[14] ZIVIANI D, BEYENE A, VENTURINI M. Advances and challenges in ORC systems modeling for low grade thermal energy recovery [J]. Applied Energy, 2014, 121(121): 79-95.
[15] 丑一鳴.活塞膨脹機(jī) [M].北京:機(jī)械工業(yè)出版社,1990: 13-15.
[16] 馮黎明,高文志,秦浩,等.用于發(fā)動(dòng)機(jī)余熱回收的往復(fù)活塞式膨脹機(jī)熱力學(xué)分析[J]. 天津大學(xué)學(xué)報(bào), 2011(8):665-670. FENG Li-ming, GAO Wen-zhi, QIN Hao, et al. Thermodynamic analysis of reciprocating piston expander used to recover waste heat of engine [J]. Journal of Tianjin University, 2011(8): 665-670.
[17] 周龍保,內(nèi)燃機(jī)學(xué) [M].北京:機(jī)械工業(yè)出版社,2011: 34-38.
[18] GRIMALDIC N, MILLO F. Internal combustion engine (ICE) fundamentals [M]∥Handbook of Clean Energy Systems. New York: John Wiley & Sons, Ltd, 2015: 34-38.
Simulation test on single valve expander for waste heat recovery of gasoline engine
LIU Zi-qi1, GAO Wen-zhi1, LI Guang-hua1,2, HE Wang-bo1
(1.StateKeyLaboratoryofEngines,TianjinUniversity,Tianjin300072,China;2.SchoolofMechanicalandPowerEngineering,DalianOceanUniversity,Dalian116023,China)
According to the working characteristics of expander with water as working fluid, the theoretical model of a single valve expander was established based on Matlab/Simulink software in order to recover the exhaust energy, which accounts for about 35% of the total fuel energy. The model’s performance was analyzed, and its validity was verified by test. The simulation results show that the increase of inlet pressure and intake valve lift can lead to an increase of power and mass flow rate of expander, while a decrease of expander efficiency. The output power and mass flow rate increase at first and then tend to be steady with the rise of the rotation speed. The increase of the work fluid temperature can lead to a lower mass flow rate, but has inconspicuous influence on output power and expander efficiency. The test results of the expander show that the expander output power can reach 3 kW and the efficiency of the combined cycle system is increased by 5% when the output power of gasoline engine is 61 kW.
single valve expander; gasoline engine; waste heat recovery; Rankine cycle
2015-10-13.
國(guó)家“973”重點(diǎn)基礎(chǔ)研究發(fā)展規(guī)劃資助項(xiàng)目.
劉子奇(1989—),女,碩士生,從事發(fā)動(dòng)機(jī)余熱回收研究.ORCID: 0000-0002-1971-4172. E-mail: 284334046@qq.com 通信聯(lián)系人:高文志,男,教授. ORCID: 0000-0002-3305-0448. E-mail: gaowenzhi@tju.edu.cn
10.3785/j.issn.1008-973X.2016.12.008
TK 402
A
1008-973X(2016)12-2297-06