江 震(綜述), 沈喜妹, 楊立勇(審校)
?
c-Jun氨基末端激酶信號通路與胰島β細(xì)胞凋亡
江震(綜述), 沈喜妹, 楊立勇(審校)
NK絲裂原活化蛋白激酶類; 細(xì)胞凋亡; 糖尿??; 胰島/*細(xì)胞學(xué); 氧化性應(yīng)激; 內(nèi)質(zhì)網(wǎng); 細(xì)胞因子類
近年的流行病學(xué)調(diào)查顯示,我國成人糖尿病患病率達(dá)11.6%,糖尿病前期患病率高達(dá)50.1%,糖尿病總體防治形勢嚴(yán)峻[1]。據(jù)一項(xiàng)英國糖尿病前瞻性研究顯示,患者確診糖尿病時胰島β細(xì)胞的功能僅殘留約50%,且隨著糖尿病的進(jìn)展胰島β細(xì)胞的功能呈進(jìn)行性下降[2]。在2型糖尿病患者中,β細(xì)胞數(shù)量減少及凋亡增加是引起β細(xì)胞功能受損的主要原因[3]。c-Jun氨基末端激酶(c-Jun amino-terminal kinase, JNK)作為一類絲氨酸/蘇氨酸蛋白激酶,參與了內(nèi)質(zhì)網(wǎng)應(yīng)激、氧化應(yīng)激及細(xì)胞因子等途徑介導(dǎo)的胰島β細(xì)胞凋亡。對JNK信號通路的調(diào)控,有望成為保護(hù)胰島β細(xì)胞功能的重要手段。筆者圍繞JNK在胰島β細(xì)胞凋亡中的作用作一綜述,旨在闡明糖尿病發(fā)病的可能機(jī)制。
JNK又稱應(yīng)激激活蛋白激酶,為有絲分裂原活化蛋白激酶(mitogen activated protein kinase,MAPK)超家族的重要成員[4]。JNK由不同基因編碼3種異構(gòu)體,分別為JNK1、JNK2和JNK3。JNK1和JNK2基因廣泛表達(dá)于各種組織中,而JNK3表達(dá)局限于腦、心臟、睪丸等特異性組織。
JNK信號通路通過三級酶促級聯(lián)反應(yīng)而激活, 即MAPK激酶的激酶(MAPK kinase kinase,MAPKKK)-MAPK激酶(MAPK kinase, MAPKK)-MAPK[5]。MAPKK通過雙磷酸化JNK上第183位蘇氨酸殘基和第185位酪氨酸殘基,從而激活JNK。靜息狀態(tài)下,JNK主要在細(xì)胞質(zhì)中定位,受刺激因素激活后,JNK移位到細(xì)胞核中,激活核內(nèi)轉(zhuǎn)錄因子,調(diào)節(jié)基因的轉(zhuǎn)錄和翻譯,影響細(xì)胞凋亡、增殖、分化等。
研究證實(shí),糖毒性、脂毒性、胰島淀粉樣多肽等因素可誘發(fā)炎癥、氧化應(yīng)激、內(nèi)質(zhì)網(wǎng)應(yīng)激反應(yīng),引起胰島β細(xì)胞凋亡、數(shù)量進(jìn)行性減少,從而導(dǎo)致糖尿病的發(fā)生發(fā)展。無論1型或2型糖尿病,均存在不同程度的胰島β細(xì)胞的衰竭,而胰島β細(xì)胞的凋亡在糖尿病的發(fā)病過程中發(fā)揮著重要作用。越來越多的研究表明,JNK信號通路在多方面參與了胰島β細(xì)胞的存活和功能的調(diào)節(jié)。
2.1胰島細(xì)胞凋亡誘因
2.1.1胰島細(xì)胞凋亡與炎癥因子炎癥參與了糖尿病的發(fā)生發(fā)展。在一項(xiàng)2型糖尿病的橫斷面研究中發(fā)現(xiàn),患者腫瘤壞死因子-α(tumor necrosis factor-α,TNF-α)等炎癥因子水平均高于正常對照組,并且炎癥評分和2型糖尿病高血糖狀態(tài)和胰島素抵抗相關(guān)[6]。通過免疫組織化學(xué)對比4種主要的自發(fā)性1型糖尿病大鼠模型發(fā)現(xiàn),其胰島組織中均存在相關(guān)炎癥因子的浸潤,而健康的胰腺組織中卻無炎癥因子的表達(dá),同時在浸潤的胰島中發(fā)現(xiàn)凋亡的胰島β細(xì)胞[7]。當(dāng)Cohen糖尿病敏感大鼠注射白細(xì)胞介素-1β(interleukin-1β,IL-1β)抗體后,胰島功能得以改善[8]。在細(xì)胞水平也得出類似的結(jié)論,INS-1細(xì)胞及分離的人胰島細(xì)胞在IL-1β干預(yù)下,TUNEL染色可見胰島β細(xì)胞凋亡增加,胰島素分泌功能受損[9]。
2.1.2胰島細(xì)胞凋亡與糖脂毒性葡萄糖和游離脂肪酸(free fatty acid,F(xiàn)FA)對胰島β細(xì)胞的存活和功能起決定性作用,糖毒性和脂毒性引起胰島β細(xì)胞凋亡得到了廣泛認(rèn)可。以高脂和果糖喂養(yǎng)的小鼠出現(xiàn)胰島β細(xì)胞數(shù)量減少,TUNEL染色見胰島細(xì)胞凋亡增加,胰島素抵抗指數(shù)升高[10]。以16.7 mmol/L的葡萄糖或者100 μmol/L飽和脂肪酸棕櫚酸(palmitic acid,PA)體外干預(yù)MIN6細(xì)胞發(fā)現(xiàn)細(xì)胞凋亡率增加,胰島素釋放減少[11]。而基因敲除短鏈脂肪酸受體FFAR2及FFAR3的小鼠在高脂飲食喂養(yǎng)后胰島素分泌得到了增強(qiáng),同時肥胖小鼠的葡萄糖耐受現(xiàn)象得到極大改善[12]。
2.1.3胰島細(xì)胞凋亡與胰島淀粉樣多肽研究顯示,40%~100%的2型糖尿病患者胰島內(nèi)存在胰島淀粉樣蛋白沉積,通過損傷胰島β細(xì)胞參與2型糖尿病的發(fā)病過程[13]。以人胰島素樣多肽轉(zhuǎn)基因小鼠構(gòu)建的2型糖尿病胰島素淀粉樣病變模型,在腹腔注射胰島素樣淀粉多肽的抑制劑后,通過減少胰島淀粉樣蛋白的沉積,起到抑制胰島細(xì)胞凋亡,改善糖耐量的作用[14]。在細(xì)胞水平同樣得到驗(yàn)證,暴露于胰島淀粉樣多肽的INS-1E細(xì)胞活性下降,凋亡增加[15]。這些研究顯示胰島淀粉樣多肽在胰島β細(xì)胞生存方面起著重要作用。
2.1.4胰島細(xì)胞凋亡與毒物環(huán)境污染是糖尿病發(fā)病的重要誘因。隨著環(huán)境污染的日益嚴(yán)重,由重金屬毒物引起的糖尿病的發(fā)病率也逐年升高。許多糖尿病患者與正常人相比,血清樣本中有著更高水平的鎘、鎳、汞等有毒金屬[16]。在一項(xiàng)對美國成年人尿液中重金屬與糖尿病關(guān)系的橫斷面研究中發(fā)現(xiàn),鉬、銻、鎢、鈾與糖尿病呈正相關(guān)[17],說明重金屬含量可作為評估糖尿病患病風(fēng)險的一個因素。在飲用水加入鎘喂養(yǎng)的野生大鼠,出現(xiàn)糖脂代謝紊亂、胰島的損害及外周組織的胰島素抵抗[18]。RIN-m5F細(xì)胞和分離的小鼠胰島在鉬干預(yù)下出現(xiàn)胰島素分泌受損及細(xì)胞凋亡[19]。
2.2JNK信號通路介導(dǎo)的胰島細(xì)胞凋亡
2.2.1JNK介導(dǎo)的內(nèi)質(zhì)網(wǎng)應(yīng)激胰島β細(xì)胞擁有高度發(fā)達(dá)的內(nèi)質(zhì)網(wǎng),是內(nèi)質(zhì)網(wǎng)應(yīng)激(endoplasmic reticulum, ERS)的敏感細(xì)胞,ERS引起的胰島β細(xì)胞的凋亡是糖尿病發(fā)病的重要環(huán)節(jié)。在高糖、脂質(zhì)過度負(fù)荷、病毒感染等誘因下,內(nèi)質(zhì)網(wǎng)穩(wěn)態(tài)被打破,導(dǎo)致蛋白質(zhì)錯誤折疊,誘發(fā)ERS。ERS發(fā)生時,首先活化肌醇需求激酶(inositol requirement 1,IRE-1),激活的IRE-1招募腫瘤壞死因子受體相關(guān)因子2(TNF receptor-associated factor 2,TRAF2)以及凋亡信號調(diào)控激酶1(apoptosis signal-regulating kinase 1,ASK-1),形成IRE-1-TRAF2-ASK1 復(fù)合物,導(dǎo)致JNK的活化,最終引起細(xì)胞凋亡[20]。
研究顯示,高糖或者PA誘導(dǎo)內(nèi)質(zhì)網(wǎng)應(yīng)激通過IRE-1-JNK途徑的激活促進(jìn)胰島β細(xì)胞凋亡[21-22],使用IRE-1抑制劑或者JNK抑制劑下調(diào)JNK的表達(dá),抑制胰島凋亡[22]。用JNK1的shRNA沉默INS-1細(xì)胞的JNK1的表達(dá),可以增加高糖和PA誘導(dǎo)的細(xì)胞凋亡和胱天蛋白酶-9(caspase-9)和胱天蛋白酶-3(caspase-3)的表達(dá),這是通過JNK依賴的ERS途徑,而沉默JNK2或者JNK3卻不干擾上述途徑。提示JNK的亞型JNK1可以保護(hù)PA和高糖通過內(nèi)質(zhì)網(wǎng)應(yīng)激誘導(dǎo)的胰島β細(xì)胞的凋亡[23]。
2.2.2JNK介導(dǎo)的氧化應(yīng)激氧化應(yīng)激指機(jī)體受到有害刺激時,自由基生成增多或者代謝障礙,導(dǎo)致氧化系統(tǒng)和抗氧化系統(tǒng)失平衡,造成組織、細(xì)胞的損傷。胰島β細(xì)胞由于抗氧化酶水平較低這一特性,決定其易受氧化應(yīng)激損傷發(fā)生凋亡。
高糖啟動氧化應(yīng)激,通過活性氧(reactive oxygen species,ROS)激活JNK,上調(diào)caspase-3和caspase-9造成細(xì)胞凋亡,當(dāng)用ROS及JNK的抑制劑預(yù)先干預(yù)后,可抑制上述通路引起的胰島β細(xì)胞凋亡[24]。體外培養(yǎng)NIT-1胰島β細(xì)胞,在極低密度脂蛋白或FFA刺激下,NADPH氧化酶2(nicotinamide adenine dinucleotide phosphate oxidase-2,NOX2)促進(jìn)ROS產(chǎn)生通過JNK途徑介導(dǎo)胰島細(xì)胞凋亡,使用NOX2的抑制劑或siRNA沉默NOX2后,JNK的活化受抑制,胰島β細(xì)胞的凋亡減輕[25-26]。提示高脂飲食破壞了機(jī)體氧化還原反應(yīng)的平衡,激活JNK活性,誘導(dǎo)胰島細(xì)胞凋亡。人胰島淀粉樣多肽通過上調(diào)INS-1E胰島細(xì)胞ROS、丙二醛、超氧化物歧化酶和谷胱甘肽過氧化物酶的表達(dá),活化JNK通路,引起細(xì)胞凋亡增加,而抑制JNK活性后,胰島細(xì)胞凋亡數(shù)量減少[27]。重金屬鎘刺激胰島細(xì)胞RIN-m5F生成ROS,活化JNK,啟動線粒體凋亡途徑,介導(dǎo)胰島細(xì)胞的凋亡,進(jìn)一步使用JNK抑制劑或siRNA干擾后ROS生成并沒有減少,而JNK活化受抑制,胰島細(xì)胞凋亡改善[28]。
2.2.3JNK介導(dǎo)的炎癥糖尿病被認(rèn)為是一種自然免疫和低度炎癥性疾病,炎癥因子是誘導(dǎo)胰島β細(xì)胞凋亡的重要誘導(dǎo)因素,JNK可介導(dǎo)由細(xì)胞因子誘導(dǎo)的胰島β細(xì)胞凋亡。
IL-1β通過激活MIN6的JNK信號通路介導(dǎo)胰島β細(xì)胞凋亡,使用JNK抑制劑后可顯著保護(hù)IL-1β誘導(dǎo)的細(xì)胞凋亡[29]。干擾素-γ(interferon-γ,IFN-γ)可引起JNK亞型中JNK1表達(dá)的上調(diào)介導(dǎo)細(xì)胞凋亡,應(yīng)用JNK1的siRNA后抑制IFN誘導(dǎo)的細(xì)胞凋亡[30]。還有研究發(fā)現(xiàn)JNK亞型在細(xì)胞凋亡中的不同作用,其用細(xì)胞因子(IL-1β,TNF-α和 IFN-γ)培養(yǎng)INS-1E細(xì)胞,用siRNA沉默JNK3表達(dá),增加細(xì)胞因子誘導(dǎo)的凋亡,而敲除JNK1或JNK2結(jié)果卻是相反的,起保護(hù)作用,結(jié)果提示JNK3在細(xì)胞因子誘導(dǎo)的凋亡中起保護(hù)作用[31]。
細(xì)胞因子誘導(dǎo)胰島細(xì)胞凋亡還需依賴于JNK支架蛋白的調(diào)節(jié)。細(xì)胞因子誘導(dǎo)JNK相互作用蛋白-1 (c-Jun amino-terminal kinase interacting protein-1,JIP1)泛素化降解,JNK的結(jié)合位點(diǎn)暴露,從而與下游底物如轉(zhuǎn)錄因子結(jié)合,介導(dǎo)胰島細(xì)胞的凋亡[32]。衰減JIP-1含量可以增加JNK磷酸化[33],過表達(dá)JIP-1基因的胰島β細(xì)胞可通過下調(diào)JNK介導(dǎo)caspase-3等轉(zhuǎn)錄因子的活性來減少JNK誘導(dǎo)的細(xì)胞凋亡,反義mRNA使JIP-1的表達(dá)減少,增加細(xì)胞凋亡[34]。以上研究表明,胰島β細(xì)胞中支架蛋白JIP-1是JNK誘導(dǎo)細(xì)胞凋亡的重要信號分子,其在胰島β細(xì)胞中的含量是JNK誘導(dǎo)細(xì)胞凋亡過程中的關(guān)鍵調(diào)節(jié)因素。
2.2.4JNK與TLR4依賴的途徑Shen等的研究表明,體外培養(yǎng)胰島細(xì)胞,在PA干預(yù)下,可通過Toll樣受體4(toll like receptor 4,TLR4)依賴途徑激活JNK,誘導(dǎo)細(xì)胞凋亡,進(jìn)一步敲除TLR4基因或者使用JNK抑制劑干預(yù),可下調(diào)JNK的表達(dá),同時抑制PA誘導(dǎo)的胰島細(xì)胞的凋亡[35-36]。說明TLR4-JNK信號通路也是誘導(dǎo)胰島細(xì)胞的凋亡的一個重要途徑。
2.2.5JNK與腺苷酸活化蛋白激酶(AMP-activated protein kinase ,AMPK)途徑AMPK在胰島β細(xì)胞凋亡中所起的作用仍具有爭議性,有的研究證實(shí)是起促進(jìn)凋亡作用,而有些結(jié)論卻是相反的。最新研究表明,AMPK對胰島β細(xì)胞的促凋亡或者抗凋亡的效應(yīng)可能歸因于不同的培養(yǎng)條件,從而通過調(diào)節(jié)不同的下游介質(zhì)來起到相應(yīng)作用。在標(biāo)準(zhǔn)培養(yǎng)情況下(非高糖、高脂),AMPK的激活劑5-氨基咪唑-4-甲酰胺核糖核苷酸(5-aminoimidazole-4-carboxamide Ribonucleoside,AICAR)通過AMPK依賴的JNK-caspase-3途徑介導(dǎo)INS-1E的凋亡,而在PA的干預(yù)下,AICAR卻是通過下調(diào)p38的磷酸化起抑制胰島β細(xì)胞凋亡。而AMPK的另一激活劑二甲雙胍在標(biāo)準(zhǔn)培養(yǎng)情況下,不引起細(xì)胞的凋亡,但在PA的干預(yù)下,二甲雙胍通過下調(diào)P38和JNK的磷酸化起到抑制胰島β細(xì)胞的作用[37],表明JNK在AMPK依賴的胰島β細(xì)胞凋亡中是起促進(jìn)還是抑制作用是具有條件性的。
糖尿病發(fā)病機(jī)制復(fù)雜,JNK信號通路與胰島β細(xì)胞凋亡關(guān)系密切。JNK信號介導(dǎo)胰島β細(xì)胞的凋亡過程中,各種機(jī)制如氧化應(yīng)激、內(nèi)質(zhì)網(wǎng)應(yīng)激等并非完全獨(dú)立的,常相互作用,交織成網(wǎng),密不可分。因而,JNK誘導(dǎo)胰島細(xì)胞凋亡的機(jī)制是多因素、多途徑共同作用的結(jié)果。對JNK亞型的研究中顯示,JNK1和JNK2起促進(jìn)胰島β凋亡作用,而JNK3具有保護(hù)作用,可以抑制胰島β凋亡。綜上,JNK信號通路的激活廣泛參與了胰島β細(xì)胞的凋亡,JNK的過表達(dá)促進(jìn)凋亡,抑制此通路活性則可以減少凋亡,起保護(hù)作用。探討JNK信號轉(zhuǎn)導(dǎo)通路在胰島β細(xì)胞凋亡中的作用,有望為糖尿病的預(yù)防和治療提供新的依據(jù)。
[1]Xu Y,Wang L,He J,etal. Prevalence and control of diabetes in Chinese adults[J].Jama, 2013,310(9):948-959.
[2]Meier J J,Bonadonna R C. Role of reduced β-cell mass versus impaired β-cell function in the pathogenesis of type 2 diabetes[J].DiabetesCare, 2013,36(Suppl 2):S113-S119.
[3]Butler A E,Dhawan S. β-cell identity in type 2 diabetes: lost or found[J]?Diabetes, 2015,64(8):2698-2700.
[4]Couto D,Freitas M,Porto G,etal. Polyacrylic acid-coated and non-coated iron oxide nanoparticles induce cytokine activation in human blood cells through TAK1, p38 MAPK and JNK pro-inflammatory pathways[J].ArchivesofToxicology, 2015,89(10):1759-1769.
[5]Wang J,Pan C,Wang Y,etal. Genome-wide identification of MAPK, MAPKK, and MAPKKK gene families and transcriptional profiling analysis during development and stress response in cucumber[J].BMCGenomics, 2015,16(1):386.
[6]Daniele G,Mendoza R G,Winnier D,etal. The inflammatory status score including IL-6, TNF-α, osteopontin, fractalkine, MCP-1 and adiponectin underlies whole-body insulin resistance and hyperglycemia in type 2 diabetes mellitus[J].Actadiabetologica, 2014,51(1):123-131.
[7]J?rns A,Arndt T,Zu Vilsendorf A M,etal. Islet infiltration, cytokine expression and beta cell death in the NOD mouse, BB rat, Komeda rat, LEW. 1AR1-iddm rat and humans with type 1 diabetes[J].Diabetologia, 2014,57(3):512-521.
[8]Aharon-Hananel G,J?rns A,Lenzen S,etal. Antidiabetic effect of interleukin-1β antibody therapy through β-cell protection in the Cohen diabetes-sensitive rat[J].Diabetes, 2015,64(5):1780-1785.
[9]Hajmrle C,Ferdaoussi M,Plummer G,etal. SUMOylation protects against IL-1β-induced apoptosis in INS-1 832/13 cells and human islets[J].AmericanJPhysiology-EndocrinologyandMetabolism, 2014,307(8):E664-E673.
[10]Mathijs I,Da Cunha D A,Himpe E,etal. Phenylpropenoic acid glucoside augments pancreatic beta cell mass in high-fat diet-fed mice and protects beta cells from ER stress-induced apoptosis[J].MolecularNutrition&FoodResearch, 2014,58(10):1980-1990.
[11]Tan C,Voss U,Svensson S,etal. High glucose and free fatty acids induce beta cell apoptosis via autocrine effects of ADP acting on the P2Y13 receptor[J].PurinergicSignalling, 2013,9(1):67-79.
[12]Tang C,Ahmed K,Gille A,etal. Loss of FFA2 and FFA3 increases insulin secretion and improves glucose tolerance in type 2 diabetes[J].NatureMedicine, 2015,21(2):173-177.
[13]Westermark P,Andersson A,Westermark G T. Islet amyloid polypeptide, islet amyloid, and diabetes mellitus[J].PhysiologicalReviews, 2011,91(3):795-826.
[14]Wijesekara N,Ahrens R,Wu L,etal. Islet amyloid inhibitors improve glucose homeostasis in a transgenic mouse model of type 2 diabetes[J].Diabetes,ObesityandMetabolism, 2015,17(10):1003-1006.
[15]Li X L,Wong Y S,Xu G,etal. Selenium-enriched spirulina protects INS-1E pancreatic beta cells from human islet amyloid polypeptide-induced apoptosis through suppression of ROS-mediated mitochondrial dysfunction and PI3/AKT pathway[J].EuropeanJNutrition, 2015,54(4):509-522.
[16]Jomova K,Valko M. Advances in metal-induced oxidative stress and human disease[J].Toxicology, 2011,283(2):65-87.
[17]Menke A,Guallar E,Cowie C C. Metals in urine and diabetes in United States adults[J].Diabetes, 2016,65(1):164-171.
[19]Yang T Y,Yen C C,Lee K I,etal. Molybdenum induces pancreatic β-cell dysfunction and apoptosis via interdependent of JNK and AMPK activation-regulated mitochondria-dependent and ER stress-triggered pathways[J].ToxicologyandAppliedPharmacology, 2016,294:54-64.
[20]Yoshida H. ER stress and diseases[J].TheFEBSJournal, 2007,274(3):630-658.
[21]Chen K,Jin P,He H H,etal. Overexpression of Insig-1 protects β cell against glucolipotoxicity via SREBP-1c[J].JBiomedicalScience, 2011,18(1):57.
[22]Cunha D A,Igoillo-Esteve M,Gurzov E N,etal. Death protein 5 and p53-upregulated modulator of apoptosis mediate the endoplasmic reticulum stress-mitochondrial dialog triggering lipotoxic rodent and human β-cell apoptosis[J].Diabetes, 2012,61(11):2763-2775.
[23]Prause M,Christensen D P,Billestrup N,etal. JNK1 protects against glucolipotoxicity-mediated beta-cell apoptosis[J].PloSOne, 2014,9(1):e87067.
[24]Wang C,Zou S,Cui Z,etal. Zerumbone protects INS-1 rat pancreatic beta cells from high glucose-induced apoptosis through generation of reactive oxygen species[J].BiochemicalandBiophysicalResearchCommunications, 2015,460(2):205-209.
[25]Jiao J,Dou L,Li M,etal. NADPH oxidase 2 plays a critical role in dysfunction and apoptosis of pancreatic β-cells induced by very low-density lipoprotein[J].MolecularandCellularBiochemistry, 2012,370(1-2):103-113.
[26]Yuan H,Zhang X,Huang X,etal. NADPH oxidase 2-derived reactive oxygen species mediate FFAs-induced dysfunction and apoptosis of β-cells via JNK, p38 MAPK and p53 pathways[J].PloSOne, 2010,5(12):e15726.
[27]Li X L,Xu G,Chen T,etal. Phycocyanin protects INS-1E pancreatic beta cells against human islet amyloid polypeptide-induced apoptosis through attenuating oxidative stress and modulating JNK and p38 mitogen-activated protein kinase pathways[J].IntJBiochemCellBiol, 2009,41(7):1526-1535.
[28]Chang K C,Hsu C C,Liu S H,etal. Cadmium induces apoptosis in pancreaticβ-cells through a mitochondria-dependent pathway: the role of oxidative stress-mediated c-Jun N-terminal kinase activation[J].PloSOne, 2013,8(2):e54374.
[29]Wang Q,Zhang H,Zhao B,etal. IL-1β caused pancreatic β-cells apoptosis is mediated in part by endoplasmic reticulum stress via the induction of endoplasmic reticulum Ca2+release through the c-Jun N-terminal kinase pathway[J].MolecularandCellularBiochemistry, 2009,324(1-2):183-190.
[30]Santin I,Moore F,Colli M L,etal. PTPN2, a candidate gene for type 1 diabetes, modulates pancreatic β-cell apoptosis via regulation of the BH3-only protein Bim[J].Diabetes, 2011,60(12):3279-3288.
[31]Abdelli S,Puyal J,Bielmann C,etal. JNK3 is abundant in insulin-secreting cells and protects against cytokine-induced apoptosis[J].Diabetologia, 2009,52(9):1871-1880.
[32]Humphrey R K,Yu S M A,Bellary A,etal. Lysine 63-linked ubiquitination modulates mixed lineage kinase-3 interaction with JIP1 scaffold protein in cytokine-induced pancreatic β cell death[J].JBiologicalChemistry, 2013,288(4):2428-2440.
[33]Beeler N,Riederer B M,Waeber G,etal. Role of the JNK-interacting protein 1/islet brain 1 in cell degeneration in Alzheimer disease and diabetes[J].BrainResBull, 2009,80(4-5):274-281.
[34]Haefliger J A,Tawadros T,Meylan L,etal. The scaffold protein IB1/JIP-1 is a critical mediator of cytokine-induced apoptosis in pancreaticβcells[J].JCellSci, 2003,116(8):1463-1469.
[35]Shen X,Yang L,Yan S,etal. Fetuin A promotes lipotoxicity in βcells through the TLR4 signaling pathway and the role of pioglitazone in anti-lipotoxicity[J].MolCellEndocrinol, 2015,412:1-11.
[36]Lee S M,Choi S E,Lee J H,etal. Involvement of the TLR4 (Toll-like receptor 4) signaling pathway in palmitate-induced INS-1 beta cell death[J].MolCellBiochem, 2011,354(1-2):207-217.
[37]Dai Y L,Huang S L,Leng Y. AICAR and metformin exert AMPK-dependent effects on INS-1E pancreatic β-cell apoptosis via differential downstream mechanisms[J].IntJBiolSci, 2015,11(11):1272-1280.
(編輯:常志衛(wèi))
2015-11-18
國家自然科學(xué)基金(81370921)
福建醫(yī)科大學(xué) 附屬第一醫(yī)院內(nèi)分泌科,福州350005
江震(1988-),男,醫(yī)師
楊立勇. Email:yly_lm@sina.com
R322.57; R329.25; R345.57; R977.3
A
1672-4194(2016)05-0345-04