吳紅霞
【摘要】 類比法是一種重要的解決問(wèn)題策略,在小學(xué)數(shù)學(xué)課堂教學(xué)中可以運(yùn)用類比法來(lái)聯(lián)系舊知,探索新知;加深對(duì)概念的理解,建構(gòu)知識(shí)網(wǎng)絡(luò),使知識(shí)更加系統(tǒng)化.
【關(guān)鍵詞】 類比;數(shù)學(xué)教學(xué);理解
《數(shù)學(xué)課程標(biāo)準(zhǔn)》中有關(guān)解決問(wèn)題的目標(biāo)明確指出:要求學(xué)生“形成解決問(wèn)題的一些基本策略、體驗(yàn)解決問(wèn)題策略的多樣性,發(fā)展實(shí)踐能力與創(chuàng)新精神. ”因此,對(duì)于教育工作者而言,幫助學(xué)生形成解決問(wèn)題的策略是一項(xiàng)基本的任務(wù). 筆者根據(jù)自己的教學(xué)實(shí)踐體會(huì),重點(diǎn)談一談“類比”策略.
一、類比策略的內(nèi)涵
類比是人們思考和處理實(shí)際問(wèn)題的一種重要的手段,數(shù)學(xué)家波利亞說(shuō):“類比是一個(gè)偉大的引路人. ”所謂類比就是通過(guò)對(duì)兩個(gè)研究對(duì)象的比較,根據(jù)它們?cè)谀承┓矫娴南嗤蛳嗨浦帲M(jìn)一步推斷出它們?cè)谄渌矫嬉部赡芫哂械南嗨苹蛳嗤膶傩?
二、數(shù)學(xué)教學(xué)中的運(yùn)用
“教學(xué)有法,教無(wú)定法”,教師對(duì)教學(xué)策略的探索,目的都是為了將傳授知識(shí)與開(kāi)發(fā)智力、培養(yǎng)能力、提高素質(zhì)有機(jī)結(jié)合,使數(shù)學(xué)教學(xué)策略有效地滲透到課堂教學(xué)中去.
以蘇教版四(下)第一單元《乘法》練習(xí)一中有這樣一道思考題“用1,2,3,4,5這五個(gè)數(shù)字組成一個(gè)兩位數(shù)和一個(gè)三位數(shù). 要使乘積最大,應(yīng)該是哪兩個(gè)數(shù)?要使乘積最小呢?換五個(gè)數(shù)字再試一試. ”
片段一:
師出示例題:用1,2,3,4,5這五個(gè)數(shù)字組成一個(gè)兩位數(shù)和一個(gè)三位數(shù). 要使乘積最大,應(yīng)該是哪兩個(gè)數(shù)?要使乘積最小呢?換五個(gè)數(shù)字再試一試.
師:在解決這道思考題之前,老師有這樣一道題目,你會(huì)解決嗎?(出示:已經(jīng)長(zhǎng)方形菜地的周長(zhǎng)是16厘米,當(dāng)長(zhǎng)和寬各是多少厘米時(shí),長(zhǎng)方形菜地的面積最大?)
在學(xué)生根據(jù)長(zhǎng)方形的周長(zhǎng)16厘米,以列表的方式列舉出長(zhǎng)和寬各是多少,并計(jì)算出面積之后,教師組織學(xué)生觀察、發(fā)現(xiàn):
師:請(qǐng)大家觀察這張表格,有什么發(fā)現(xiàn)?
(學(xué)生通過(guò)小組討論,得出長(zhǎng)方形周長(zhǎng)一定的情況下,長(zhǎng)和寬越接近也就是差越小,長(zhǎng)方形的面積越大)
片段二:
師:同學(xué)真棒,都有一雙善于發(fā)現(xiàn)的慧眼. 那下面這題你還能完成嗎?(在喚醒學(xué)生已有舊知之后,緊接著教師又出示了這樣一道例題:用1,2,3,4這四個(gè)數(shù)字組成兩個(gè)兩位數(shù),要使乘積最大,應(yīng)該是哪兩個(gè)數(shù)?要使乘積最小呢?)
該怎么解決呢?同桌互相交流一下.
(有了前面一題的經(jīng)驗(yàn),孩子們很容易討論出:當(dāng)兩個(gè)兩位數(shù)越接近也就是差越小時(shí),乘積越大. )
師:要使乘積最大,這兩個(gè)數(shù)必須滿足什么要求?
生:差最小.
師:說(shuō)的非常好,要使乘積最大,這個(gè)兩位數(shù)的排頭應(yīng)該怎么安排?(通過(guò)引導(dǎo)讓學(xué)生發(fā)現(xiàn),要使乘積最大,四個(gè)數(shù)中最大的兩個(gè)數(shù)必須做兩個(gè)數(shù)的排頭,而且得滿足兩個(gè)數(shù)的差最小,由此得出乘積最大的兩個(gè)數(shù)是41 × 32,因?yàn)?1 - 32 = 9小于42 - 31 = 11,以此類推,乘積最小的兩個(gè)數(shù)是13 × 24)
片段三:
有了四個(gè)數(shù)字,找乘積最大和最小的經(jīng)驗(yàn),學(xué)生在解決乘法練習(xí)一“用1,2,3,4,5這五個(gè)數(shù)字組成一個(gè)兩位數(shù)和一個(gè)三位數(shù). 要使乘積最大,應(yīng)該是哪兩個(gè)數(shù)?要使乘積最小呢?”時(shí),將通過(guò)兩種題目的類比找到解決問(wèn)題的方法.
師:仔細(xì)觀察,這道題和剛才的思考題有什么不同?
生:數(shù)字的數(shù)量不同.
師:這道題能自己獨(dú)立解決嗎?(學(xué)生動(dòng)手嘗試,找到五個(gè)數(shù)字和四個(gè)數(shù)字之間的相容點(diǎn))
師小結(jié):要使乘積最大,那最小的1不可能當(dāng)排頭,先暫時(shí)不考慮它. 那剩下的就只有2、3、4、5四個(gè)數(shù)字,結(jié)合剛才方法得出52 × 43乘積最大,那隔離的1怎么放呢?是放在52后面得到521 × 43呢?還是放在43后面得到52 × 431呢?讓學(xué)生明白1個(gè)43小于1個(gè)52,所以乘積最大的兩個(gè)數(shù)應(yīng)該是52 × 431,以此類推得出乘積最小的兩個(gè)數(shù)是13 × 245.
經(jīng)過(guò)這三個(gè)片段,在講授新知識(shí)時(shí)聯(lián)系舊知識(shí),將新舊知識(shí)類比分析,將使學(xué)生更加理解新知識(shí),同時(shí)也能突破難點(diǎn),降低教學(xué)難度,達(dá)到事半功倍的效果.
總之,教師在類比中激“問(wèn)”,對(duì)學(xué)生而言,知識(shí)已化難為易,激起了學(xué)生探索的興趣,學(xué)生就會(huì)主動(dòng)去發(fā)現(xiàn)一些原先未曾注意的研究點(diǎn),從而提出一些有價(jià)值的問(wèn)題來(lái),不僅活躍了課堂氣氛,還利用類比的思路啟發(fā)解決原問(wèn)題的思路,從而解決了新問(wèn)題. 類比法不僅使數(shù)學(xué)知識(shí)容易理解,而且使公式的記憶變得自然和簡(jiǎn)潔,從而激發(fā)學(xué)生的創(chuàng)造力,正如數(shù)學(xué)家波利亞所說(shuō):“我們應(yīng)該討論一般化和特殊化和類比的這些過(guò)程本身,它們是獲得發(fā)現(xiàn)的偉大源泉”.
【參考文獻(xiàn)】
[1]《蘇教版小學(xué)數(shù)學(xué)》教科書(shū)第八冊(cè)[M].南京:江蘇教育出版社,2002年5月第3版.
[2]教師教學(xué)用書(shū)[M].南京:江蘇教育出版社,2002年5月第3版.
[3]王馨苑.數(shù)學(xué)類比法研究[J].甘肅科技縱橫,2004(3).
[4]彭國(guó)慶.影響小學(xué)生解決問(wèn)題的因素分析及教學(xué)研究[J].現(xiàn)代教育科學(xué)(普教研究),2009(3).
[5]薄守敏.類比法在小學(xué)數(shù)學(xué)教學(xué)中的幾點(diǎn)運(yùn)用[J].連云港高等??茖W(xué)校.
[6]談亞杰.引導(dǎo)學(xué)生提問(wèn)及解決問(wèn)題的策略[J].江蘇教育研究,2009.