国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

植物耐鹽性與鈉離子動態(tài)平衡研究進展*1

2016-09-05 01:31:27陳鵬程陳析豐馬伯軍顧志敏
關(guān)鍵詞:鹽生液泡木質(zhì)部

陳鵬程, 陳析豐, 馬伯軍, 顧志敏

(浙江師范大學(xué)化學(xué)與生命科學(xué)學(xué)院,浙江金華 321004)

植物耐鹽性與鈉離子動態(tài)平衡研究進展*1

陳鵬程, 陳析豐, 馬伯軍, 顧志敏

(浙江師范大學(xué)化學(xué)與生命科學(xué)學(xué)院,浙江金華321004)

綜述了離子轉(zhuǎn)運體系促進植物Na+動態(tài)平衡的分子機制,并對鹽生植物和淡土植物對鹽應(yīng)答反應(yīng)和運輸中的基因功能進行了比較.將鹽生植物中獨特的耐鹽轉(zhuǎn)運蛋白基因和下游調(diào)控基因作為潛在的遺傳資源,可為進一步的作物耐鹽遺傳改良服務(wù).

鹽耐受;Na+動態(tài)平衡;AVP1;SOS1;HKT1

土壤和水中的鹽分嚴重限制了農(nóng)作物的產(chǎn)量,全球約830~950萬hm2耕作土地受到鹽害影響.近年來,隨著耐鹽基因和Na+運輸?shù)鞍紫嚓P(guān)基因陸續(xù)被發(fā)現(xiàn),植物耐鹽機制和Na+穩(wěn)態(tài)的研究取得了突破性進展.本文對近年來鹽生植物和淡土植物模型體系進行了討論,希望能夠促進人們對植物耐鹽機制的認識.

1 高鹽脅迫下的滲透脅迫和離子失衡

植物在鹽脅迫時主要受高滲影響,從而造成植物缺水和離子失衡(見圖1)[1-3],不利于植物正常代謝和生理功能的發(fā)揮,嚴重時能導(dǎo)致細胞死亡[4-5].植物在鹽脅迫下,缺水信號將快速地從根部傳遞到植物的其他部位,導(dǎo)致細胞內(nèi)滲透壓降低并阻礙細胞增大[6-8].

低滲透壓能誘導(dǎo)脫落酸(ABA)合成,并通過ABA信號途徑導(dǎo)致保衛(wèi)細胞去極化和降低氣孔開度及傳導(dǎo)性[9-11].失水和離子毒害阻礙有氧代謝,導(dǎo)致活性氧積累量超出細胞通過解毒機制維持氧化還原平衡的能力[12-14].缺水將加速細胞衰老[15-17].

圖1 NaCl引起的失水及Na+和Cl-的毒害作用[8]

高濃度Na+具有毒害作用,它使細胞膜和一些蛋白質(zhì)不穩(wěn)定[18-19],在細胞生理活動中能夠負調(diào)控細胞分裂和生長、初級和次級代謝及礦質(zhì)營養(yǎng)元素的動態(tài)平衡[20-21].AKT1和AtHAK5是擬南芥根中2個主要的K+吸收蛋白,Na+能夠降低AKT1通道中的 K+流通量[22-23],并且抑制AtHAK5的表達[24-26].因此,即使在高親和力K+運輸系統(tǒng)下,Na+也能和K+競爭[22,27-28],使細胞內(nèi)的K+流失,從而導(dǎo)致Na+/K+失衡[16-17,22].

總體上,Na+持續(xù)地被植物從土壤溶液中運輸?shù)礁獗砥ぜ毎俳?jīng)根木質(zhì)部導(dǎo)管從根部向地上部分運輸,最后到達葉片[16-18].細胞膜、轉(zhuǎn)運蛋白和其他蛋白能抵抗或限制Na+吸收進入細胞.盡管有這些抵抗Na+攝取的系統(tǒng)存在,但由于離子梯度差和蒸騰作用,仍會導(dǎo)致Na+在葉片積累(見圖2)[6,10,17].高鹽誘導(dǎo)的失水降低葉片細胞擴增,由于細胞體積變小,最終導(dǎo)致葉片細胞中Na+濃度快速升高[16,18].

圖2 植物Na+穩(wěn)態(tài)依賴Na+從根木質(zhì)部導(dǎo)管和蒸騰流中外排實現(xiàn)[8]

2 高鹽脅迫下Na+動態(tài)平衡的重建

淡土植物細胞和大部分鹽生植物細胞都具有很高的細胞生長率臨界值,在低滲透壓下降低細胞可延長能力從而限制細胞膨脹[9,29].鹽生植物能在高鹽濃度下呈現(xiàn)出鮮質(zhì)量和干質(zhì)量提高的現(xiàn)象,這將在缺水條件下加速植物生長和使植物持續(xù)增重[16-18].

一些鹽生植物進化出獨特的適應(yīng)高鹽環(huán)境的生理機制[17,30-31].為了耐受鹽損害,鹽生植物能夠調(diào)節(jié)細胞內(nèi)的Na+穩(wěn)態(tài),從而使細胞質(zhì)中離子毒害的影響降低到最小.另外,鹽生植物還能通過調(diào)節(jié)滲透壓控制細胞內(nèi)的Na+卸載進入根木質(zhì)部,這樣能降低通過蒸騰作用運輸來的Na+源頭濃度和限制苗中代謝活躍細胞中 Na+的積累(見圖2)[18,32-33].

3 植物減輕Na+毒害作用的機制

鹽生植物和淡土植物的許多重要生理代謝在鹽脅迫早期對Na+和Cl-同樣敏感[16-17,34].淡土植物和鹽生植物的膜轉(zhuǎn)運系統(tǒng)能使Na+和Cl-跨越細胞膜,流入液泡或者胞內(nèi)體隔離起來,從而調(diào)節(jié)細胞質(zhì)的Na+和Cl-平衡,這樣能夠降低細胞質(zhì)內(nèi)離子的毒害作用(見圖3).液泡內(nèi)離子積累也能促進滲透調(diào)節(jié),它是促進細胞增大的必要條件[2].在液泡和細胞器內(nèi)能夠積累許多兼容性的滲透溶質(zhì),而這能夠調(diào)節(jié)各細胞器間的滲透壓并維持其平衡[13,35].大量證據(jù)證明,淡土植物和鹽生植物在離子隔離和滲透調(diào)節(jié)方面具有相似的運輸?shù)鞍缀蜐B透溶質(zhì)合成機制.

細胞膜、液泡膜和胞內(nèi)體膜的H+電勢差主要應(yīng)答 Na+的跨膜運輸[36-38].這些細胞膜 H+-ATPase(腺苷三磷酸酶)在細胞溶質(zhì)中具有催化和調(diào)節(jié)活性,利用來源于ATP水解的能量將H+定向泵出質(zhì)外體,從而形成膜內(nèi)外的 H+梯度[38-40].這種 H+-ATPase泵能夠酸化質(zhì)外體(pH 5.5),使其維持相對于細胞質(zhì)(pH 7.2)大約相差1.5~2.0 pH單位,這就是內(nèi)質(zhì)體膜內(nèi)外電勢差為-120~-150 mV的原因[2,33].質(zhì)膜內(nèi)部負的電勢和非原生質(zhì)體的高Na+濃度形成一種熱力學(xué)勢能差,它決定Na+以被動方式進入質(zhì)膜和以主動方式流出質(zhì)膜[2,41-42].

圖3 高Na+濃度下轉(zhuǎn)運蛋白對細胞內(nèi)Na+穩(wěn)態(tài)的促進[8]

Na+單方向的細胞內(nèi)流可能需要不同的轉(zhuǎn)運系統(tǒng)參與,例如非選擇性陽離子通道(NSCC)家族成員、HAK和AKT1(蛋白激酶),它們參與高親和性K+攝取、低親和性陽離子轉(zhuǎn)運蛋白、陽離子和Cl-共轉(zhuǎn)運蛋白和高親和K+轉(zhuǎn)運蛋白[43-44].盡管有學(xué)者指出NSCCs和HKT1轉(zhuǎn)運蛋白是主要的參與者[44],但是這些通道和轉(zhuǎn)運蛋白對Na+攝取的具體功能目前仍然不清楚.HKT1蛋白呈現(xiàn)特異性地高效選擇鈉離子的能力,而HKT2蛋白選擇鉀離子的能力比選擇鈉離子的能力大些或者無差別選擇[45-46].

Na+向外流出細胞膜歸因于SOS1 Na+/H+反轉(zhuǎn)運蛋白,它屬于哺乳動物NHE和細菌NhaP Na+/H+反轉(zhuǎn)運蛋白家族[40,44,47].SOS1介導(dǎo)的逆向轉(zhuǎn)運將Na+通過細胞膜排出細胞外(見圖3). SOS1在根和苗中都發(fā)揮作用,目前還沒有證據(jù)證明在擬南芥中有其他細胞膜Na+/H+反轉(zhuǎn)運蛋白存在,意味著SOS1在大多數(shù)細胞中都發(fā)揮作用.

外界施加Ca2+能夠減少Na+向內(nèi)流動,從而促進和維持Na+和K+平衡[41,48-49].Ca2+激活高親和性的 K+吸收蛋白,從而促進植物對 K+吸收[47,49].同時,外界施加 Ca2+還能夠激活 CBL/ CIPK途徑,磷酸化AKT1并且高親和性攝取K+,從而降低Na+攝入量[50].細胞質(zhì)內(nèi)的Ca2+可能通過NSCCs抑制Na+向內(nèi)流(見圖3).

細胞內(nèi)存在2種質(zhì)子泵:V-ATPase和AVP1 H+焦磷酸酶(PPase)(見圖3),它們的作用底物分別為ATP和焦磷酸(PPi)[36-37,51].這些質(zhì)子泵能夠利用ATP和PPi水解產(chǎn)生的能量轉(zhuǎn)運H+泵出液泡膜,維持約1.5~2.0 pH梯度(液泡膜內(nèi)腔的pH較低),從而使細胞質(zhì)溶膠與內(nèi)腔的膜電勢維持在0~-40 mV(見圖3).通過膜的電勢差決定Na+流入或者流出液泡內(nèi)腔是主動運輸還是被動運輸[32,40].V-ATPase的激活可能促進Na+隔離進質(zhì)內(nèi)體來降低細胞質(zhì)中的離子濃度[36,52-53].

生理學(xué)的證據(jù)表明,Na+/H+反轉(zhuǎn)運蛋白參與Na+向內(nèi)流進液泡或者質(zhì)內(nèi)體(見圖3).其中NHX反轉(zhuǎn)運蛋白是一類陽離子/H+轉(zhuǎn)運蛋白(見圖3),它能促進和維持細胞內(nèi)Na+,Na+/K+和pH內(nèi)穩(wěn)態(tài)[44,52,54],并通過調(diào)控液泡K+的積累來增強NaCl的耐受能力[24,52].

4 植物根木質(zhì)部Na+的外排作用

土壤溶液中的Na+向根細胞流動主要是梯度壓力差推動的(見圖2)[6,55].Na+由土壤溶液向根木質(zhì)部運輸過程需要經(jīng)歷共質(zhì)體途徑、非原生質(zhì)體或者橫跨細胞膜途徑到內(nèi)皮層.內(nèi)皮層是一個疏水性的屏障,它包含凱氏帶,能夠限制非原生質(zhì)體的物質(zhì)進出[6,43,56].軟木質(zhì)是一種蠟狀物質(zhì),它是質(zhì)外體途徑的一個疏水性屏障[31],但是它可能屬于內(nèi)皮層[5,9,33].

轉(zhuǎn)運系統(tǒng)限制了非原生質(zhì)體Na+流入木質(zhì)部導(dǎo)管,從而減少Na+運輸?shù)街参锏厣喜糠郑ㄒ妶D2(a))[18].Na+從根細胞外排到質(zhì)外體[18,33,57],歸因于 SOS1 Na+/H+反轉(zhuǎn)運蛋白(見圖2 (a))[43,47,58].鹽芥屬擬南芥的鹽耐能力,與組成型的和鹽誘導(dǎo)的脅迫適應(yīng)性基因表達相關(guān),例如SOS1[59-61].T.salsuginea SOS1 RNAi抑制SOS1的表達,降低了它對NaCl的耐受能力.通過測定發(fā)現(xiàn),T.salsuginea SOS1 RNAi株系增加了植物根中Na+的攝入,Na+由地下部分向地上部分運輸,所以地上部分(主要為葉片)Na+含量很高[52,62-63].T.salsuginea的根中呈現(xiàn)高水平的非滲透壓依賴的NSCC K+/Na+選擇性活性,這可能降低Na+的內(nèi)流[64].鹽生植物Suaedamaritima明顯沒有根特異性NSCC基因或者陽離子轉(zhuǎn)運蛋白,這樣就會加速Na+吸收[35].

植物能夠通過促進液泡隔離作用減少游離Na+進入內(nèi)胚層細胞,使Na+在根外表皮和內(nèi)皮層細胞積累(見圖2(a)).在小麥根中,Na+濃度在表皮和亞表皮最高,在皮層細胞和內(nèi)皮細胞由外層向內(nèi)層逐漸降低[18].這些結(jié)果顯示,根的外皮和內(nèi)皮層細胞在Na+從土壤溶液到木質(zhì)部運輸途徑中起著阻泄作用[18].NHX類Na+/H+反轉(zhuǎn)運蛋白可能在Na+向液泡或者胞內(nèi)體的隔離過程中起著重要作用(見圖2(a))[52,65].

Na+從木質(zhì)部導(dǎo)管向外排和卸載作用限制蒸騰流中Na+的濃度(見圖2)[12,18,63].中柱鞘細胞和木質(zhì)部薄壁細胞能夠積累Na+,減少Na+運輸?shù)侥举|(zhì)部導(dǎo)管中[12,18].共質(zhì)體途徑中的Na+通過主動或者被動運輸卸載到木質(zhì)部導(dǎo)管,前者需要SOS1的參與[12,18,44].HKT1轉(zhuǎn)運蛋白在決定Na+從導(dǎo)管卸載到中柱鞘細胞的過程中起著重要作用(見圖2(a))[43,45,66].另外,有研究表明HKT1還能將地上部分(主要為葉片)的Na+轉(zhuǎn)運回根部[67].在淡土植物根中柱鞘特異性表達的HKT1能夠減少木質(zhì)部導(dǎo)管和苗中Na+的積累,從而增強植物NaCl耐受能力(見圖2)[43,63].此外,根外皮和表皮細胞積累更高濃度的Na+,表明HKT1活性可能促進Na+從中柱鞘細胞轉(zhuǎn)運回中柱鞘外細胞.

5 植物地上部分Na+的動態(tài)平衡

Na+由根向地上部分運輸主要是由木質(zhì)部導(dǎo)管蒸騰壓梯度產(chǎn)生的張力推動的(見圖2 (b))[6,68-69].盡管非氣孔蒸騰也能促成植物的水流失[7,10],但是蒸騰流主要由氣孔開度決定[6,68].因此,通過調(diào)控氣孔開度和氣孔開度密度,能夠減輕蒸騰作用,從而減小Na+由根向地上部分轉(zhuǎn)移的速率[18,43,70].另外,限制Na+由根向地上部分轉(zhuǎn)移,能限制或者減小葉細胞吸收Na+的速率(見圖2(b))[43,50,71].曾經(jīng)有研究者提出,一些鹽生植物通過細胞內(nèi)的感受機制,通過降低蒸騰作用,可減少鹽脅迫下苗中Na+積累[41,62,66].然而,降低蒸騰作用可能產(chǎn)生不利的后果,例如降低碳同化能力、營養(yǎng)元素的吸收和蒸發(fā)作用下葉片的冷卻(見圖2)[11,16,70].C3植物還能通過水孔蛋白的水力傳導(dǎo)率減小Na+的轉(zhuǎn)移速率,應(yīng)對由于高鹽引起的高滲脅迫[70,72-73].

植物在含鹽的環(huán)境中通過滲透調(diào)節(jié)作用積累大量的鹽離子,因此這些離子不能從葉片細胞中完全排除.然而,Na+吸收和轉(zhuǎn)移到葉片將導(dǎo)致葉片細胞體積減小,從而增加細胞質(zhì)中Na+的濃度.與淡土植物相比,很多耐鹽的鹽生植物葉片具有非常高的Na+濃度[5,17,74],表明這些鹽生植物具有較大的Na+穩(wěn)態(tài)能力.

6 植物Na+動態(tài)平衡和信號轉(zhuǎn)導(dǎo)

近年來,通過轉(zhuǎn)錄物組和蛋白質(zhì)組分析鑒定了許多參與耐鹽信號轉(zhuǎn)導(dǎo)途徑的基因或蛋白[42,75-76].其中,對SOS系統(tǒng)調(diào)控 Na+動態(tài)平衡的研究已經(jīng)非常清晰[29](見圖2).NaCl誘導(dǎo)的細胞質(zhì)內(nèi)Ca2+濃度升高,能夠被鈣調(diào)磷酸酶B蛋白和類神經(jīng)元的Ca2+感受器蛋白SOS3(CBL4)識別,這是一種能夠在EF手型Ca2+結(jié)合位點發(fā)生?;饔玫牡鞍祝?4,60,77].Ca2+激活的SOS3能夠與SOS2(CIPK24)自我抑制結(jié)構(gòu)域互作,SOS2是SnRK家族成員之一[24,60,77].SOS3與 SOS2的自我抑制結(jié)構(gòu)域結(jié)合,激活SOS2激酶活性并且促進SOS2-SOS3復(fù)合物定位到細胞膜上[24,50,78]. SOS2隨后與細胞膜上的 Na+/H+反轉(zhuǎn)運蛋白SOS1互作,它能磷酸化SOS1并使之激活,從而使Na+從細胞質(zhì)流出到質(zhì)外體[24,47,78].研究表明,SOS途徑調(diào)控植物耐鹽信號轉(zhuǎn)導(dǎo)途徑的分子機制在植物中是高度保守的[58,79].

SCABP8(CBL10)是SOS3(CBL)家族的一員,它在苗中發(fā)揮著作用[24,80].SCABP8依賴的SOS途徑激活SOS1使Na+外流,從而調(diào)節(jié)苗中細胞內(nèi)的Na+積累(見圖2(a))[24,80].SCABP8磷酸化SOS2,它能夠穩(wěn)定SCABP8-SOS2復(fù)合物,并且將其定位到細胞膜,從而增強SOS1反轉(zhuǎn)運蛋白的活性[24].因此,在根中主要由SOS3與SOS2互作,在苗中主要由SCABP8與SOS2互作,它們共同將這些復(fù)合物招募到細胞膜上來激活SOS1的活性,調(diào)整 Na+的動態(tài)平衡和增強其耐鹽能力[78,80].

ABI2能與SOS2互作,從而抑制SOS3結(jié)合SOS2及SOS2激酶的活性[24,81].ABI2與SOS2的互作可能代表一個細胞內(nèi)NaCl和ABA信號轉(zhuǎn)導(dǎo)的交點[24,50].NaCl誘導(dǎo)的磷脂酶D(PLD)能夠激活受誘導(dǎo)的磷脂酸的合成,這將激活MAPK6,從而磷酸化不同下游靶蛋白,其中包括SOS1[8,82]. Pldα1和 mpk6及 sos1功能的缺失導(dǎo)致植物對NaCl敏感[81].

SOS途徑通過調(diào)控V型ATPase和NHX反轉(zhuǎn)運蛋白活性促進液泡的Na+隔離(見圖3).sos2-2能夠顯著降低液泡膜微囊的 Na+/H+交換活性[47].這種交換活性對阿米洛利和NHX1抗體敏感,這就證明SOS2能夠調(diào)控NHX Na+/H+反轉(zhuǎn)運蛋白的活性.此外,SOS2結(jié)合V-ATPase的B1 和B2亞基,sos2-2降低液泡膜 ATPase的活性[83].遺傳學(xué)證據(jù)表明,SOS1正調(diào)控AVP1的活性,促進液泡 Na+積累和增強耐鹽能力[79]. SCABP8(CBL10)-SOS2復(fù)合物能夠定位到液泡膜,說明SCABP8(CBL10)-SOS2可能參與了促進Na+在液泡中的隔離[11,24].

最近的研究表明,SOS途徑在適應(yīng)鹽脅迫環(huán)境過程中調(diào)控根系形態(tài)的重建[7,49,84].在中等濃度NaCl條件下,SOS途徑通過調(diào)控植物激素的由上往下運輸來影響側(cè)根的形成[85].此外,鹽害條件下SOS途徑在維持Na+穩(wěn)態(tài)和根向地性方面起著重要的作用[86].

7 結(jié)論

綜合數(shù)十年鹽生植物的生理研究、最近的基因組測序、鹽生植物和淡土植物的鹽反應(yīng)分子遺傳數(shù)據(jù),研究者分析了Na+及其他離子的轉(zhuǎn)運蛋白和逆境信號途徑,發(fā)現(xiàn)這些離子轉(zhuǎn)運因子和逆境信號途徑對于細胞內(nèi)外的離子動態(tài)平衡和耐鹽性是十分必要的.

通過對擬南芥及其耐鹽近緣種、水稻、小麥的HKT1的研究,建立了鹽生植物和淡土植物的基本耐鹽保護機制.鹽生植物未來的研究將會發(fā)現(xiàn)新的耐鹽等位基因和位點.這些遺傳因子包括轉(zhuǎn)運蛋白、調(diào)節(jié)細胞內(nèi)(包括根莖)外鈉鉀動態(tài)平衡的基因.另外,鹽生植物在高鹽引起的低水勢條件下能進行最理想的細胞伸長和干物質(zhì)積累,而這些能力都是淡土植物中不存在的,因此是獨特而重要的遺傳資源.在今后的農(nóng)業(yè)生產(chǎn)中,將利用前人研究的這些蛋白和基因等遺傳資源進行農(nóng)作物耐鹽性的遺傳改良,提高農(nóng)作物的產(chǎn)量和品質(zhì).

[1]Lexer C,Welch M E,Durphy JL,etal.Natural selection for salt tolerance quantitative trait loci(QTLs)in wild sunflower hybrids:Implications for the origin of Helianthus paradoxus,a diploid hybrid species[J].Molecular Ecology,2003,12(5):1225-1235.

[2]Hasegawa PM,Bressan R A,Zhu JK,etal.Plant cellular andmolecular responses to high salinity[J].Annual Review of Plant Biology,2000,51(1):463-499.

[3]Flowers T J,Galal H K,Bromham L.Evolution of halophytes:Multiple origins of salt tolerance in land plants[J].Functional Plant Biology,2010,37(7):604-612.

[4]Debat V,David P.Mapping phenotypes:Canalization,plasticity and developmental stability[J].Trends in Ecology&Evolution,2001,16(10):555-561.

[5]Mittler R.Oxidative stress,antioxidants and stress tolerance[J].Trends in Plant Science,2002,7(9):405-410.

[6]Taji T,SekiM,Satou M,et al.Comparative genomics in salt tolerance between Arabidopsis and aRabidopsis-related halophyte salt cress using Arabidopsis microarray[J].Plant Physiology,2004,135(3):1697-1709.

[7]Matthews M A,Van Volkenburgh E,Boyer JS.Acclimation of leaf growth to low water potentials in sunflower[J].Plant Cell&Environment,1984,7(3):199-206.

[8]Hasegawa PM.Sodium(Na+)homeostasis and salt tolerance of plants[J].Environmental and Experimental Botany,2013,92(8):19-31.

[9]Schroeder J I,Allen G J,Hugouvieux V,et al.Guard cell signal transduction[J].Annual Review of Plant Biology,2001,52(1):627-658.

[10]Yoo C Y,Pence H E,Hasegawa PM,etal.Regulation of transpiration to improve crop water use[J].Critical Reviews in Plant Science,2009,28(6):410-431.

[11]Kim T H,B?hmer M,Hu H,et al.Guard cell signal transduction network:Advances in understanding abscisic acid,CO2,and Ca2+signaling [J].Annual Review of Plant Biology,2010,61(4):561-591.

[12]Greenway H,Munns R.Mechanisms of salt tolerance in nonhalophytes[J].Annual Review of Plant Physiology,1980,31(1):149-190.

[13]Flowers T J,Colmer T D.Salinity tolerance in halophytes[J].New Phytologist,2008,179(4):945-963.

[14]Mittler R.Oxidative stress,antioxidants and stress tolerance[J].Trends in Plant Science,2002,7(9):405-410.

[15]Rivero R M,Kojima M,Gepstein A,et al.Delayed leaf senescence induces extreme drought tolerance in a flowering plant[J].Proc Natl Acad Sci USA,2007,104(49):19631-19636.

[16]Flowers T J,Troke P F,Yeo A R.Themechanism of salt tolerance in halophytes[J].Annual Review of Plant Physiology,1977,28(1):89-121.

[17]Greenway H,Munns R.Mechanisms of salt tolerance in nonhalophytes[J].Annual Review of Plant Physiology,1980,31(1):149-190.

[18]Munns R,Tester M.Mechanisms of salinity tolerance[J].Annu Rev Plant Biol,2008,59:651-681.

[19]Xu G,Magen H,Tarchitzky J,et al.Advances in chloride nutrition of plants[J].Advances in Agronomy,1999,68:97-150.

[20]White P J,Broadley M R.Chloride in soils and its uptake and movementwithin the plant:A review[J].Annals of Botany,2001,88(6):967-988.

[21]Teakle N L,Tyerman SD.Mechanisms of Cl-transport contributing to salt tolerance[J].Plant Cell&Environment,2010,33(4):566-589.

[22]Alemán F,Nieves-Cordones M,Martínez V,et al.Root K+acquisition in plants:The Arabidopsis thaliana model[J].Plant and Cell Physiology,2011,52(9):1603-1612.

[23]Qi Z,Spalding E P.Protection of plasmamembrane K+transport by the salt overly sensitive1 Na+-H+antiporter during salinity stress[J]. Plant Physiology,2004,136(1):2548-2555.

[24]Pardo JM,Rubio F.Na+and K+transporters in plant signaling[M]//Transporters and Pumps in Plant Signaling.Berlin:Springer,2011:65-98.

[25]Peleg Z,Apse M P,Blumwald E.Engineering salinity and water-stress tolerance in crop plants:Getting closer to the field[J].Adv Bot Res,2011,57:405-443.

[26]Nieves-Cordones M,Miller A J,Alemán F,etal.A putative role for the plasmamembrane potential in the control of the expression of the gene encoding the tomato high-affinity potassium transporter HAK5[J].PlantMolecular Biology,2008,68(6):521-532.

[27]Epstein E.The essential role of calcium in selective cation transport by plant cells[J].Plant Physiology,1961,36(4):437-444.

[28]Epstein E,Rains DW,Elzam OE.Resolution of dualmechanismsof potassium absorption by barley roots[J].Proc Natl Acad SciUSA,1963,49(5):684-692.

[29]Binzel M L,Hess F D,Bressan R A,et al.Intracellular compartmentation of ions in salt adapted tobacco cells[J].Plant Physiology,1988,86 (2):607-614.

[30]Bohnert H J,Nelson D E,Jensen R G.Adaptations to environmental stresses[J].Plant Cell,1995,7(7):1099-1111.

[31]Shabala SN,Mackay A S.Ion transport in halophytes[J].Advances in Botanical Research,2011,57:151-187.

[32]Niu X,Bressan R A,Hasegawa PM,et al.Ion homeostasis in NaCl stress environments[J].Plant Physiology,1995,109(3):735-742.

[33]Cuin T A,Bose J,Stefano G,et al.Assessing the role of root plasma membrane and tonoplast Na+/H+exchangers in salinity tolerance in wheat:In planta quantificationmethods[J].Plant Cell&Environment,2011,34(6):947-961.

[34]Greenway H,Osmond C B.Salt responses of enzymes from species differing in salt tolerance[J].Plant Physiology,1972,49(2):256-259.

[35]Wang Suomin,Zhang Jinlin,F(xiàn)lowers T J.Low-affinity Na+uptake in the halophyte Suaeda maritima[J].Plant Physiology,2007,145(2):559-571.

[36]Schumacher K,Krebs M.The V-ATPase:small cargo,large effects[J].Current Opinion in Plant Biology,2010,13(6):724-730.

[37]Gaxiola R A,Palmgren M G,Schumacher K.Plant proton pumps[J].FEBS Letters,2007,581(12):2204-2214.

[38]Duby G,Boutry M.The plant plasmamembrane proton pump ATPase:A highly regulated P-type ATPasewithmultiple physiological roles[J]. Pflügers Archiv:European Journal of Physiology,2009,457(3):645-655.

[39]Piette A S,Derua R,Waelkens E,etal.A phosphorylation in the C-terminal auto-inhibitory domain of the plant plasmamembrane H+-ATPase activates the enzyme with no requirement for regulatory 14-3-3 proteins[J].Journal of Biological Chemistry,2011,286(21):18474-18482.

[40]Blumwald E,Aharon G S,Apse M P.Sodium transport in plant cells[J].Biochimica et Biophysica Acta(BBA):Biomembranes,2000,1465 (1/2):140-151.

[41]Epstein E.Mineral nutrition of plants:Principles and perspectives[M].London:John Wiley and Sons Inc,1972.

[42]Zhang Jinlin,F(xiàn)lowers T J,Wang Suomin.Mechanisms of sodium uptake by roots of higher plants[J].Plant and Soil,2010,326(1):45-60.

[43]Plett D,Moller I.Na+transport in glycophytic plants:whatwe know and would like to know[J].Plant Cell&Environment,2010,33(4):612-626.

[44]Kronzucker H J,Britto D T.Sodium transport in plants:a critical review[J].New Phytologist,2011,189(1):54-81.

[45]Hauser F,Horie T.A conserved primary salt tolerancemechanismmediated by HKT transporters:Amechanism for sodium exclusion andmaintenance of high K+/Na+ratio in leaves during salinity stress[J].Plant Cell&Environment,2010,33(4):552-565.

[46]Mian A,Oomen R J,Isayenkov S,etal.Over-expression of an Na+-and K+-permeable HKT transporter in barley improves salt tolerance[J]. Plant Journal,2011,68(3):468-479.

[47]Qiu Quansheng,Guo Yan,Dietrich M A,et al.Regulation of SOS1,a plasmamembrane Na+/H+exchanger in Arabidopsis thaliana,by SOS2 and SOS3[J].Proc Natl Acad Sci USA,2002,99(12):8436-8441.

[48]Cramer G R,Lynch J,L?chli A,et al.Influx of Na+,K+,and Ca2+into roots of salt-stressed cotton seedlings effects of supplemental Ca2+[J].Plant Physiology,1987,83(3):510-516.

[49]Rengel Z.The role of calcium in salt toxicity[J].Plant Cell&Environment,1992,15(6):625-632.

[50]Lin Huixin,Yang Yongqing,Quan Ruidang,etal.Phosphorylation of SOS3-LIKE CALCIUM BINDING PROTEIN8 by SOS2 protein kinase stabilizes their protein complex and regulates salt tolerance in Arabidopsis[J].Plant Cell,2009,21(5):1607-1619.

[51]Pasapula V,Shen G,Kuppu S,etal.Expression of an Arabidopsis vacuolar H+-pyrophosphatase gene(AVP1)in cotton improves drought-and salt tolerance and increases fibre yield in the field conditions[J].Plant Biotechnology Journal,2011,9(1):88-99.

[52]Bassil E,Ohto M,Esumi T,et al.The Arabidopsis intracellular Na+/H+antiporters NHX5 and NHX6 are endosome associated and necessary for plant growth and development[J].Plant Cell,2011,23(1):224-239.

[53]Krebs M,Beyhl D,G?rlich E,et al.Arabidopsis V-ATPase activity at the tonoplast is required for efficient nutrient storage but not for sodium accumulation[J].Proc Natl Acad Sci USA,2010,107(7):3251-3256.

[54]Leidi E O,Barragán V,Rubio L,et al.The AtNHX1 exchanger mediates potassium compartmentation in vacuoles of transgenic tomato[J]. Plant Journal,2010,61(3):495-506.

[55]Brady N C.The nature and properties of soils[M].New York:Macmillan Publishing Company,1996.

[56]Baxter I,Brazelton JN,Yu D,etal.A coastal cline in sodium accumulation in Arabidopsis thaliana is driven by natural variation of the sodium transporter AtHKT1[J].PLoSGenetics,2010,6(11):e1001193.

[57]Tester M,Langridge P.Breeding technologies to increase crop production in a changingworld[J].Science,2010,327(5967):818-822.

[58]Oh D H,Dassanayake M,Bohnert H J,et al.Life at the extreme:Lessons from the genome[J].Genome Biol,2012,13(3):241.

[59]Dassanayake M,Oh D H,Haas JS,et al.The genome of the extremophile crucifer Thellungiella parvula[J].Nat Genet,2011,43(9):913-918.

[60]Gong Qingqiu,Li Pinghua,Ma Shisong,et al.Salinity stress adaptation competence in the extremophile Thellungiella halophila in comparison with its relative Arabidopsis thaliana[J].Plant Journal,2005,44(5):826-839.

[61]Dassanayake M,Oh D,Hong H,et al.Transcription strength and halophytic lifestyle[J].Trends in Plant Science,2011,16(1):1-3.

[62]Edelist C,Raffoux X,F(xiàn)alque M,et al.Differential expression of candidate salt-tolerance genes in the halophyte Helianthus paradoxus and its glycophyte progenitors H.annuus and H.petiolaris(Asteraceae)[J].American Journal of Botany,2009,96(10):1830-1838.

[63]Plett D,Safwat G,Gilliham M,et al.Improved salinity tolerance of rice through cell type-specific expression of AtHKT1[J].PLoSOne,2010,5(9):e12571.

[64]Amtmann A.Learning from evolution:Thellungiella generates new knowledge on essential and critical components of abiotic stress tolerance in plants[J].Molecular Plant,2009,2(1):3-12.

[65]Olías R,Eljakaoui Z,Li Jun,etal.The plasmamembrane Na+/H+antiporter SOS1 is essential for salt tolerance in tomato and affects the partitioning of Na+between plant organs[J].Plant Cell&Environment,2009,32(7):904-916.

[66]Munns R,James R A,Xu B,etal.Wheatgrain yield on saline soils is improved by an ancestral Na+transporter gene[J].Nature Biotechnology,2012,30(4):360-364.

[67]Berthomieu P,Conéjéro G,Nublat A,etal.Functional analysis of AtHKT1 in Arabidopsis shows that Na+recirculation by the phloem is crucial for salt tolerance[J].EMBO Journal,2003,22(9):2004-2014.

[68]Jaffe M J,Takahashi H,Biro R L.A peamutant for the study of hydrotropism in roots[J].Science,1985,230(4724):445-447.

[69]Boyko A,Kovalchuk I.Genome instability and epigeneticmodification-heritable responses to environmentalstress[J].CurrentOpinion in Plant Biology,2011,14(3):260-266.

[70]Casson SA,Hetherington A M.Environmental regulation of stomatal development[J].CurrentOpinion in Plant Biology,2010,13(1):90-95.

[71]Christmann A,Weiler EW,Steudle E,et al.A hydraulic signal in root-to-shoot signalling of water shortage[J].Plant Journal,2007,52(1):167-174.

[72]Horie T,Hauser F,Schroeder JI.HKT transporter-mediated salinity resistancemechanisms in Arabidopsis andmonocot crop plants[J].Trends in Plant Science,2009,14(12):660-668.

[73]Ayadi M,Cavez D,Miled N,et al.Identification and characterization of two plasmamembrane aquaporins in durum wheat(Triticum turgidum L.subsp.durum)and their role in abiotic stress tolerance[J].Plant Physiology and Biochemistry,2011,49(9):1029-1039.

[74]Rus A,Baxter I,Muthukumar B,etal.Naturalvariantsof AtHKT1 enhance Na+accumulation in twowild populationsof Arabidopsis[J].PLoS Genetics,2006,2(12):e210.

[75]Golldack D,Lüking I,Yang O.Plant tolerance to droughtand salinity:Stress regulating transcription factors and their functional significance in the cellular transcriptional network[J].Plant Cell Reports,2011,30(8):1383-1391.

[76]Pérez-Alfocea F,Ghanem M E,Gómez-Cadenas A,etal.Omics of root-to-shoot signaling under salt stressand water deficit[J].Omics:A Journal of Integrative Biology,2011,15(12):893-901.

[77]Tracy F E,Gilliham M,Dodd A N,etal.NaCl-induced changes in cytosolic free Ca2+in Arabidopsis thaliana are heterogeneous and modified by external ionic composition[J].Plant Cell&Environment,2008,31(8):1063-1073.

[78]Quintero F J,Martinez-Atienza J,Villalta I,et al.Activation of the plasma membrane Na/H antiporter Salt-Overly-Sensitive 1(SOS1)by phosphorylation of an auto-inhibitory C-terminal domain[J].Proc Natl Acad Sci USA,2011,108(6):2611-2616.

[79]Undurraga SF,SantosM P,Paez-Valencia J,etal.Arabidopsis sodium dependentand independent phenotypes triggered by H+-PPase up-regulation are SOS1 dependent[J].Plant Science,2012,183(2):96-105.

[80]Quan R,Lin H,Mendoza I,et al.SCABP8/CBL10,a putative calcium sensor,interacts with the protein kinase SOS2 to protect Arabidopsis shoots from salt stress[J].Plant Cell,2007,19(4):1415-1431.

[81]Roy S J,Tucker E J,Tester M.Genetic analysis of abiotic stress tolerance in crops[J].Current Opinion in Plant Biology,2011,14(3):232-239.

[82]Cheng Ninghui,Pittman JK,Zhu Jiankang,et al.The protein kinase SOS2 activates the Arabidopsis H+/Ca2+antiporter CAX1 to integrate calcium transport and salt tolerance[J].Journal of Biological Chemistry,2004,279(4):2922-2926.

[83]Batelli G,Verslues P E,Agius F,et al.SOS2 promotes salt tolerance in part by interacting with the vacuolar H+-ATPase and upregulating its transport activity[J].Molecular and Cellular Biology,2007,27(22):7781-7790.

[84]Sunkar R,Chinnusamy V,Zhu J,etal.SmallRNAsasbig players in plantabiotic stress responsesand nutrient deprivation[J].Trends in Plant Science,2007,12(7):301-309.

[85]Zhao Yankun,Wang Tao,Zhang Wensheng,et al.SOS3 mediates lateral root development under low salt stress through regulation of auxin redistribution and maxima in Arabidopsis[J].New Phytologist,2011,189(4):1122-1134.

[86]Mirouze M,Paszkowski J.Epigenetic contribution to stress adaptation in plants[J].Current Opinion in Plant Biology,2011,14(3):267-274.

(責(zé)任編輯薛榮)

Na+homeostasis and salt tolerance of plants

CHEN Pengcheng, CHEN Xifeng, MA Bojun, GU Zhimin
(College of Chemistry and Life Sciences,Zhejiang Normal University,Jinhua 321004,China)

Itwas summarized ion transport systems that facilitated plant Na+homeostasis.Halophyte and glycophyte salinity responses and transport determinant function were compared and contrasted.The potential of halophytes as genetic resources for unique alleles or loci of transport protein genes,transcriptional and posttranscriptional regulation of transport protein function were discussed in the context of crop salt tolerance.

salt tolerance;Na+homeostasis;AVP1;SOS1;HKT1

Q945.78

A

1001-5051(2016)02-0207-08

10.16218/j.issn.1001-5051.2016.02.014

*收文日期:2015-05-06;2015-10-15

浙江省自然科學(xué)基金資助項目(LY12C06001)

陳鵬程(1987-),男,湖南衡陽人,碩士研究生.研究方向:植物分子遺傳學(xué).

猜你喜歡
鹽生液泡木質(zhì)部
中國鹽生植物分布與鹽堿地類型的關(guān)系
不同品種吊蘭根初生木質(zhì)部原型的觀察與比較
植物研究(2021年2期)2021-02-26 08:40:10
植物液泡膜H+-ATPase和H+-PPase 研究進展
白念珠菌液泡的致病性作用
鎘污染來源對蘿卜鎘積累特性的影響
蘋果樹木質(zhì)部及韌皮部組織基因組DNA的提取及質(zhì)量檢測
農(nóng)用紙膜破損試驗
鹽分脅迫對2種楊樹次生木質(zhì)部導(dǎo)管特征的影響
鹽生海蘆筍內(nèi)生真菌Salicorn35的分離鑒定與抗氧化發(fā)酵條件優(yōu)化
一株不產(chǎn)生孢子的鹽生海蘆筍內(nèi)生真菌鑒定
桃园市| 邵阳县| 深水埗区| 高雄县| 镇安县| 林州市| 毕节市| 额敏县| 文安县| 竹溪县| 湘乡市| 静宁县| 辽源市| 海南省| 蒙自县| 玉溪市| 临夏市| 白水县| 鹤庆县| 中方县| 镇江市| 潞城市| 清徐县| 澎湖县| 荔浦县| 全椒县| 高清| 永顺县| 抚宁县| 新野县| 墨江| 伊金霍洛旗| 芮城县| 栾川县| 定结县| 闻喜县| 滨海县| 莱阳市| 通许县| 庆云县| 岱山县|