国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

A37-42形成二聚體的分子模擬研究

2016-09-02 08:08劉巧菊
關(guān)鍵詞:殘基氫鍵二聚體

劉巧菊,吳 荻

(復(fù)旦大學(xué) 生命科學(xué)學(xué)院 生理學(xué)和生物物理學(xué)系,上海 200438)

?

劉巧菊,吳荻

(復(fù)旦大學(xué) 生命科學(xué)學(xué)院 生理學(xué)和生物物理學(xué)系,上海 200438)

阿爾茨海默癥是一種神經(jīng)退行性疾病,多發(fā)病于老年人群.該疾病不但嚴(yán)重影響患者的健康及正常生活,還給患者家屬帶來極大痛苦.因此治療該疾病成為科學(xué)界急欲攻克的難關(guān).而治療的基礎(chǔ)是解析病理,大量研究表明該病患者腦內(nèi)有大量纖維狀A(yù)蛋白質(zhì)聚集物.因此研究A蛋白質(zhì)如何聚集是解析病理的關(guān)鍵.同時預(yù)防和阻止A蛋白質(zhì)聚集也成為治療阿爾茨海默癥的一種可選方案.本文即選取A蛋白質(zhì)片段,以分子動力學(xué)模擬方法,詳細(xì)分析其形成穩(wěn)定二聚體的完整過程.研究發(fā)現(xiàn)該蛋白質(zhì)片段上殘基側(cè)鏈之間的疏水作用促使兩個A單體相互靠近,其間會形成多種非穩(wěn)態(tài)中間體,其結(jié)構(gòu)經(jīng)過不斷調(diào)整最終才形成穩(wěn)定的二聚體結(jié)構(gòu).該結(jié)構(gòu)調(diào)整過程對形成穩(wěn)定的二聚體結(jié)構(gòu)非常重要.在此過程中兩條肽鏈主鏈形成氫鍵的個數(shù)逐漸增加,同時伴隨形成了新的殘基側(cè)鏈之間的相互作用.研究發(fā)現(xiàn)在二聚體形成的全過程中Ile41和Ala42均起到不可忽視的作用.Ile41由于其側(cè)鏈具有疏水性且體積相對較大,可通過其疏水作用力促使兩個單體相互靠近.而Ala42在后期結(jié)構(gòu)調(diào)整中發(fā)揮了一定作用,穩(wěn)定了二聚體的結(jié)構(gòu).該研究有助于更好地理解A蛋白質(zhì)聚集特別是其形成二聚體的過程,同時也為防治A蛋白質(zhì)聚集提供了一些理論依據(jù).

阿爾茨海默癥; 蛋白質(zhì)聚集; 分子動力學(xué)模擬

阿爾茨海默癥(Alzheimer’s Disease)是Alois Alzheimer于一個世紀(jì)以前發(fā)現(xiàn)并以他的名字命名的一類神經(jīng)退行性疾病[1].該疾病在老年人群發(fā)病率很高,嚴(yán)重危害老年人的身心健康.大量研究表明該疾病患者腦內(nèi)有大量A(Amyloid)蛋白質(zhì)聚集形成纖維狀形態(tài)[2-4].因此研究A蛋白質(zhì)如何聚集對治療阿爾茨海默癥有重要意義.此外近期研究也表明A蛋白質(zhì)的寡聚體(甚至是二聚體)也具有毒性[5-8].因此研究A蛋白質(zhì)如何形成寡聚體同樣具有重要意義.

1 方 法

1.1分子動力學(xué)模擬

本文使用NAMD分子模擬軟件[35],用Charmm力場[36]及CMAP correction[37]進(jìn)行模擬計算.圖形顯示使用VMD軟件[38].A37-42的單體取自PDB文件2ONV,其序列為Gly-Gly-Val-Val-Ile-Ala.這里將其N末端與C末端分別加上Acetyl和N-Methylamide groups.先將單體放入水溶液中(TIP3P水模型),經(jīng)平衡后在恒溫(298K)、恒壓(1atm)條件下再模擬一段時間,取其中16個不同形態(tài)的單體結(jié)構(gòu).然后將每兩個單體放入水溶液中(TIP3P水模型),且兩單體各非氫原子之間最短距離不小于13?.整個模擬系統(tǒng)為正方體,邊長均為50?.這樣總共得到8組初始的模擬系統(tǒng).每個系統(tǒng)經(jīng)能量最小化、恒溫恒容、恒溫恒壓平衡總共約4.2ns后,再在恒溫恒壓下進(jìn)行分子動力學(xué)模擬100ns.整個模擬過程采用PBC(Periodic Boundary Condition),用PME(Particle Mesh Ewald)來處理長距離靜電作用力.模擬時間步長均為2fs,模擬溫度為298K,模擬壓強(qiáng)為1atm.

1.2數(shù)據(jù)分析

在結(jié)果分析中,我們定義CEN1為肽鏈A上6個Cα原子的中心位置,CEN2為肽鏈B上6個Cα原子的中心位置,d1為CEN1和CEN2之間的距離.我們以d1來表示兩肽鏈主鏈之間的距離.同時我們定義SCi為肽鏈A上第i個氨基酸殘基側(cè)鏈上所有非氫原子的中心位置,SCj為肽鏈B上第j個氨基酸殘基側(cè)鏈上所有非氫原子的中心位置,d2為SCi和SCj之間的距離.我們以d2來表示兩條肽鏈上每兩對氨基酸殘基側(cè)鏈之間的距離.由于Gly的側(cè)鏈上沒有非氫原子,因此在計算d2時,不考慮Gly37及Gly38.通過分析該系統(tǒng)中16對氨基酸殘基側(cè)鏈之間的距離d2的分布圖,我們定義了針對該系統(tǒng)的NSCC(Number of Side Chain Contacts)為小于7?的d2的總數(shù).另外我們定義d3為肽鏈A上Val39的Cα原子與肽鏈B上Ala42的Cα原子之間的距離;d4為肽鏈A上Ala42的Cα原子與肽鏈B上Val39的Cα原子之間的距離.目前文獻(xiàn)中氫鍵的判斷標(biāo)準(zhǔn)并不唯一(參照Berhanu等人在方法章節(jié)中的討論[39]),本文參照Reddy等人使用的參數(shù)[40]即D(donor)、A(acceptor)原子之間的距離小于等于3.5?并且D-H…A夾角大于等于135°.

2 結(jié)果與分析

圖1是兩條肽鏈(兩個單體)A和B的6個Cα原子中心之間的距離(即d1)隨時間的變化圖.該圖展示了在模擬初期兩條肽鏈之間的距離時遠(yuǎn)時近,而在模擬后期該距離則小于10?且相對穩(wěn)定不變.這說明模擬后期所形成的二聚體結(jié)構(gòu)相對穩(wěn)定.在模擬初始階段,盡管兩條肽鏈有時相互靠近,其距離小于10?,但是其結(jié)構(gòu)并不穩(wěn)定,很快就分開了.只有在模擬達(dá)到65ns以后,其二聚體的結(jié)構(gòu)才趨于穩(wěn)定.

下面我們通過分析A、B肽鏈上除Gly37和Gly38之外的每兩個氨基酸側(cè)鏈之間的距離(即d2)的分布圖(圖4、圖5)和其中一些距離隨時間的變化(圖6)來說明其對A37-42形成二聚體的影響.圖4是A、B肽鏈的主鏈上沒有氫鍵形成時,每兩對殘基側(cè)鏈d2的分布圖.圖中可以清楚地看到在d2小于7?時,A鏈上的Val39、Val40,Ile41和B鏈上的Ile41有大量的相互作用.由于Ile41側(cè)鏈?zhǔn)杷曰鶊F(tuán)相對較大,其疏水作用力非常顯著.圖4說明Ile41對促進(jìn)A37-42形成二聚體起到重要作用.圖6(a)分析了B鏈的Ile41分別與A鏈上4個疏水性殘基之間的d2隨時間的變化.一個有趣的現(xiàn)象是在約53~56ns時,Ile41-Ile41及Ala42-Ile41的d2距離相對較小,但到了模擬后期(大致從70ns開始)這兩對側(cè)鏈之間的距離卻變大了,尤其是Ala42-Ile41,其距離甚至大于10?.這一現(xiàn)象說明Ile41的突出貢獻(xiàn)是通過與其對側(cè)肽鏈殘基之間的相互作用促進(jìn)兩條肽鏈相互靠近.而在兩條肽鏈靠近后,會進(jìn)行結(jié)構(gòu)的調(diào)整與再平衡,進(jìn)而形成穩(wěn)定的二聚體結(jié)構(gòu).

圖5是在A、B兩條肽鏈的主鏈上有氫鍵形成時,每兩對氨基酸殘基側(cè)鏈之間的d2的分布圖.對比圖4可以明顯地看出當(dāng)兩肽鏈主鏈上開始有氫鍵形成時,有幾對殘基側(cè)鏈之間的相互作用開始變得特別顯著.這些側(cè)鏈對是: Val39-Ala42、Val40-Val39、Ile41-Val40、Ile41-Ala42,和Ala42-Val39.如果我們分析這些側(cè)鏈對之間的距離d2隨時間的變化(圖6(b)),在約65ns時,除Ala42-Val39外,其它側(cè)鏈對的距離已經(jīng)接近穩(wěn)態(tài)結(jié)構(gòu)時的距離.而Ala42-Val39則是經(jīng)過一段時間的結(jié)構(gòu)調(diào)整、再平衡,最終達(dá)到穩(wěn)態(tài)結(jié)構(gòu)的距離.綜合分析圖3~圖5,在主鏈氫鍵未形成時,兩肽鏈上的殘基側(cè)鏈已經(jīng)有相互作用,尤其是Ile41在此過程中起到重要作用.這從一個側(cè)面說明是疏水性殘基側(cè)鏈的相互作用促使兩條肽鏈主鏈相互靠近,進(jìn)而促進(jìn)主鏈氫鍵的形成.

在圖7中,我們選取A、B鏈上Val39-Ala42與Ala42-Val39兩對Cα之間的距離(即d3和d4)分別作為x軸與y軸,描繪其自由能圖譜.我們可以清晰地看到圖中有一系列自由能值較低的點.我們按其出現(xiàn)在模擬過程中的時間順序,依次將其命名為點a~h.為了便于說明,我們?yōu)槊恳粋€標(biāo)注點選取一個相對應(yīng)的模擬結(jié)構(gòu)截圖.從a點到b點,A鏈通過自我折疊形成氫鍵以及與B鏈形成氫鍵暫時穩(wěn)定了結(jié)構(gòu).然而該結(jié)構(gòu)只穩(wěn)定了很短一段時間.之后A、B鏈之間距離加大,從而促進(jìn)側(cè)鏈之間形成新的相互作用.經(jīng)過一系列的結(jié)構(gòu)調(diào)整,通過c點、d點,其中在d點的模擬結(jié)構(gòu)截圖展示了A、B鏈?zhǔn)且云叫薪Y(jié)構(gòu)方式相互靠近的.而到達(dá)e至f點時,兩條肽鏈大體上是以交叉結(jié)構(gòu)相互靠近.之后結(jié)構(gòu)再次調(diào)整至g點,此時的結(jié)構(gòu)已經(jīng)是反平行的-sheet結(jié)構(gòu).在結(jié)構(gòu)經(jīng)過微調(diào)之后到達(dá)h點,此時形成的是最為穩(wěn)定的二聚體結(jié)構(gòu).由此可見穩(wěn)定的二聚體結(jié)構(gòu)的形成過程非常復(fù)雜,先是通過殘基側(cè)鏈的疏水作用使兩條肽鏈相互靠近,然后經(jīng)過不斷的結(jié)構(gòu)調(diào)整,形成新的殘基側(cè)鏈之間的相互作用,從而促進(jìn)兩條肽鏈主鏈形成氫鍵的個數(shù)增加,進(jìn)而形成相對穩(wěn)定的二聚體結(jié)構(gòu).

3 討 論

本文所得到的結(jié)果與已發(fā)表文獻(xiàn)[33-34]所得結(jié)論相吻合.Nguyen和Derreumaux[34]在研究A37-42形成16聚體的過程中發(fā)現(xiàn)溶液中A37-42的單體比例為25%,且單體聚集和多聚體解離的過程一直在發(fā)生,聚合物結(jié)構(gòu)并不穩(wěn)定.本文從8個模擬體系的研究中也發(fā)現(xiàn)A37-42形成二聚體過程中,其以單體形式存在時間占很大比例,且大多數(shù)A37-42二聚體并不穩(wěn)定,時常解聚.另外Nguyen和Derreumaux[34]在研究中也發(fā)現(xiàn)溶液中A37-42形成二聚體的比例居多,且反平行結(jié)構(gòu)多于平行結(jié)構(gòu).而本文所示的穩(wěn)定的二聚體結(jié)構(gòu)正是反平行結(jié)構(gòu).Wagoner等研究人員[33]在研究A37-42形成多聚體過程中同樣發(fā)現(xiàn)溶液中存在一定比例的單體,且A37-42可形成-sheet,但不容易形成纖維狀聚集物,并從能量計算的角度分析了Ile41及Ala42對A37-42形成復(fù)雜形態(tài)寡聚體的影響.而本文則是依據(jù)模擬過程所得到的結(jié)構(gòu)直觀地分析了Ile41及Ala42對A37-42形成二聚體的影響.本文著重研究了每對殘基側(cè)鏈之間的相互作用,通過計算d2詳細(xì)分析每一個氨基酸殘基側(cè)鏈對A37-42形成二聚體的影響,從而發(fā)現(xiàn)Ile41及Ala42對A37-42二聚體的形成起到的不同作用.

[1]ALZHEIMER A. Uber eine eigenartige Erkrankung der Hirnrinde.[J].AllgZschrPsychiat, 1907,64: 146-148.

[2]EISENBERG D, JUCKER M. The amyloid state of proteins in human diseases[J].Cell, 2012,148(6): 1188-1203.

[3]HAMLEY I W. The amyloid beta peptide: A chemist’s perspective. Role in Alzheimer’s and fibrillization[J].ChemRev, 2012,112(10): 5147-5192.

[4]KNOWLES T P, VENDRUSCOLO M, DOBSON C M. The amyloid state and its association with protein misfolding diseases[J].NatRevMolCellBiol, 2014,15(6): 384-396.

[5]CLEARY J P, WALSH D M, HOFMEISTER J J,etal. Natural oligomers of the amyloid-beta protein specifically disrupt cognitive function[J].NatNeurosci, 2005,8(1): 79-84.

[6]HAASS C, SELKOE D J. Soluble protein oligomers in neurodegeneration: Lessons from the Alzheimer’s amyloid beta peptide[J].NatRevMolCellBiol, 2007,8(2): 101-112.

[7]SHANKAR G M, LI S, MEHTA T H,etal. Amyloid-beta protein dimers isolated directly from Alzheimer’s brains impair synaptic plasticity and memory[J].NatMed, 2008,14(8): 837-842.

[8]WALSH D M, SELKOE D J. A beta oligomers-A decade of discovery[J].JNeurochem, 2007,101(5): 1172-1184.

[9]FITZPATRICK A W P, DEBELOUCHINA G T, BAYRO M J,etal. Atomic structure and hierarchical assembly of a cross-beta amyloid fibril[J].ProcNatlAcadSciUSA, 2013,110(14): 5468-5473.

[10]LU J X, QIANG W, YAU W M,etal. Molecular structure of beta-amyloid fibrils in Alzheimer’s disease brain tissue[J].Cell, 2013,154(6): 1257-1268.

[11]LUHRS T, RITTER C, ADRIAN M,etal. 3D structure of Alzheimer’s amyloid-beta(1-42)fibrils[J].ProcNatlAcadSciUSA, 2005,102(48): 17342-17347.

[12]PARAVASTU A K, LEAPMAN R D, YAU W M,etal. Molecular structural basis for polymorphism in Alzheimer’s beta-amyloid fibrils[J].ProcNatlAcadSciUSA, 2008,105(47): 18349-18354.

[13]PETKOVA A T, ISHII Y, BALBACH J J,etal. A structural model for Alzheimer’s beta-amyloid fibrils based on experimental constraints from solid state NMR[J].ProcNatlAcadSciUSA, 2002,99(26): 16742-16747.

[14]MA B, NUSSINOV R. Simulations as analytical tools to understand protein aggregation and predict amyloid conformation[J].CurrOpinChemBiol, 2006,10(5): 445-452.

[15]MEISI G, YANG X, HELLSTRAND E,etal. Differences in nucleation behavior underlie the contrasting aggregation kinetics of the A beta40 and A beta42 peptides[J].ProcNatlAcadSciUSA, 2014,111(26): 9384-9389.

[16]ZHANG Y, REMPEL D L, ZHANG J,etal. Pulsed hydrogen-deuterium exchange mass spectrometry probes conformational changes in amyloid beta(A beta) peptide aggregation[J].ProcNatlAcadSciUSA, 2013,110(36): 14604-14609.

[17]HOSHINO T, MAHMOOD M I, MORI K,etal. Binding and aggregation mechanism of amyloid beta-peptides onto the GM1 ganglioside-containing lipid membrane[J].JPhysChemB, 2013,117(27): 8085-8094.

[18]JANG H, CONNELLY L, ARCE F T,etal. Mechanisms for the insertion of toxic, fibril-like beta-amyloid oligomers into the membrane[J].JChemTheoryComput, 2013,9(1): 822-833.

[19]JANG H, ARCE F T, RAMACHANDRAN S,etal. Familial Alzheimer’s disease Osaka mutant(delta E22) beta-barrels suggest an explanation for the different A beta(1-40/42) preferred conformational states observed by experiment[J].JPhysChemB, 2013,117(39): 11518-11529.

[20]XIE L G, LUO Y, WEI G H. A beta(16-22) peptides can assemble into ordered beta-barrels and bilayer beta-sheets, while substitution of phenylalanine 19 by tryptophan increases the population of disordered aggregates[J].JPhysChemB, 2013,117(35): 10149-10160.

[21]HARD T, LENDEL C. Inhibition of amyloid formation[J].JMolBiol, 2012,421(4/5): 441-465.

[22]NGUYENT P, DERREUMAUX P. Understanding amyloid fibril nucleation and A beta oligomer/drug interactions from computer simulations[J].AccountsChemRes, 2014,47(2): 603-611.

[23]SIEVERS S A, KARANICOLAS J, CHANG H W,etal. Structure-based design of non-natural amino-acid inhibitors of amyloid fibril formation[J].Nature, 2011,475(7354): 96-100.

[24]FANDRICH M, SCHMIDT M, GRIGORIEFF N. Recent progress in understanding Alzheimer’s beta-amyloid structures[J].TrendsBiochemSci, 2011,36(6): 338-345.

[25]GREENWALD J, RIEK R. Biology of amyloid: Structure, function, and regulation[J].Structure, 2010,18(10): 1244-1260.

[26]TYCKO R, WICKNER R B. Molecular structures of amyloid and prion fibrils: Consensus versus controversy[J].AccountsChemRes, 2013,46(7): 1487-1496.

[27]NELSON R, SAWAYA M R, BALBIRNIE M,etal. Structure of the cross-beta spine of amyloid-like fibrils[J].Nature, 2005,435(7043): 773-778.

[28]COLLETIER J P, LAGANOWSKY A, LANDAU M,etal. Molecular basis for amyloid-beta polymorphism[J].ProcNatlAcadSciUSA, 2011,108(41): 16938-16943.

[29]SAWAYA M R, SAMBASHIVAN S, NELSON R,etal. Atomic structures of amyloid cross-beta spines reveal varied steric zippers[J].Nature, 2007,447(7143): 453-457.

[30]CHANG L K, ZHAO J H, LIU H L,etal. Molecular dynamics simulations to investigate the structural stability and aggregation behavior of the GGVVIA oligomers derived from amyloid beta peptide[J].JBiomolStructDyn, 2009,26(6): 731-740.

[31]CHANG L K, ZHAO J H, LIU H L,etal. The importance of steric zipper on the aggregation of the MVGGVV peptide derived from the amyloid beta peptide[J].JBiomolStructDyn, 2010,28(1): 39-50.

[32]CHEN Y, HE Y J, WU M Y,etal. Insight into the stability of cross-beta amyloid fibril from molecular dynamics simulation[J].Biopolymers, 2010,93(6): 578-586.

[33]WAGONER V A, CHEON M, CHANG I,etal. Impact of sequence on the molecular assembly of short amyloid peptides[J].Proteins, 2014,82(7): 1469-1483.

[34]NGUYEN P H, DERREUMAUX P. Conformational ensemble and polymorphism of the all-atom Alzheimer’s A beta(37-42) amyloid peptide oligomers[J].JPhysChemB, 2013,117(19): 5831-5840.

[35]PHILLIPS J C, BRAUN R, WANG W,etal. Scalable molecular dynamics with NAMD[J].JComputChem, 2005,26(16): 1781-1802.

[36]MACKERELL A D, BASHFORD D, BELLOTT M,etal. All-atom empirical potential for molecular modeling and dynamics studies of proteins[J].JPhysChemB, 1998,102(18): 3586-3616.

[37]MACKERELL A D, FEIG M, BROOKS C L. Extending the treatment of backbone energetics in protein force fields: Limitations of gas-phase quantum mechanics in reproducing protein conformational distributions in molecular dynamics simulations[J].JComputChem, 2004,25(11): 1400-1415.

[38]HUMPHREY W, DALKE A, SCHULTEN K. VMD: Visual molecular dynamics[J].JMolGraph, 1996,14(1): 33-38.

[39]BERHANU W M, MASUNOV A E. Natural polyphenols as inhibitors of amyloid aggregation. Molecular dynamics study of GNNQQNY heptapeptide decamer[J].BiophysChem, 2010,149: 12-21.

[40]REDDY G, STRAUB J E, THIRUMALAI D. Dynamics of locking of peptides onto growing amyloid fibrils[J].ProcNatlAcadSciUSA, 2009,106(29): 11948-11953.

LIU Qiaoju, WU Di

(Department of Physiology and Biophysics, School of Life Sciences,FudanUniversity,Shanghai200438,China)

Alzheimer’s disease(AD) is a neurodegenerative disease usually affecting the elderly. AD can seriously affect the normal life of the patients and bring pains to their families. Therefore, scientists have tried hard to find out the solutions that can cure AD. Understanding how the disease is developed is essential for the treatment of AD. Researchers have found that the fibrils made of the amyloid(A) peptides are deposited in the brain of the AD patients. Therefore, it is necessary to study the amyloidpeptide aggregation process. Meanwhile, inhibiting the Aaggregation process is suggested as one of the possible ways for the treatment of AD. In this paper, we study the dimerization process of A37-42by the molecular dynamics simulations. We find that the two monomers approach each other due to the favorable hydrophobic interactions between their side chains. The dimerization process undergoes several intermediate states, through which the two chains adjust their interactions and conformations continuously. With the increasing number of the interchain hydrogen bonds and the newly formed side chain interactions, the dimer structure is stabilized finally. We also find that the contributions of Ile41 and Ala42 are nonnegligible in this dimerization process. Ile41 helps bring the two monomers close to each other with the aid of its hydrophobic side chain, and Ala42 contributes to the optimization of conformations in the late stage of the dimerization process. This study can help people understand more about the Aaggregation(especially the dimerization) process and may also provide some clues for the inhibition of the Aaggregation.

Alzheimer’s disease; protein aggregation; molecular dynamics simulation

0427-7104(2016)01-0119-09

2015-03-24

上海市生物物理重點學(xué)科建設(shè)項目(B111)

劉巧菊(1989—),女,碩士研究生;吳荻,女,副教授,通訊聯(lián)系人,E-mail: diwu@fudan.edu.cn.

Q 615

A

猜你喜歡
殘基氫鍵二聚體
人分泌型磷脂酶A2-IIA的功能性動力學(xué)特征研究*
基于各向異性網(wǎng)絡(luò)模型研究δ阿片受體的動力學(xué)與關(guān)鍵殘基*
Streptomyces sp.DJ菌株產(chǎn)生的角蛋白酶的序列分析
鹽酸四環(huán)素中可交換氫和氫鍵的核磁共振波譜研究
降鈣素原、D-二聚體聯(lián)合SOFA評分對膿毒癥預(yù)后的評估價值
VIDAS 30熒光分析儀檢測血漿D-二聚體的性能驗證
“殘基片段和排列組合法”在書寫限制條件的同分異構(gòu)體中的應(yīng)用
不孕癥女性IVF助孕前后凝血四項及D二聚體變化與妊娠結(jié)局
D-二聚體及纖維蛋白原降解物水平與急性ST段抬高型心肌梗死相關(guān)動脈自發(fā)再通的相關(guān)性研究
細(xì)說氫鍵
云龙县| 微博| 汾西县| 辽宁省| 大冶市| 台湾省| 蚌埠市| 郁南县| 恭城| 洪洞县| 凉城县| 濮阳市| 武陟县| 江油市| 安康市| 广南县| 鹤庆县| 钟山县| 兰考县| 嵊泗县| 根河市| 甘洛县| 南城县| 娱乐| 开平市| 永吉县| 玉溪市| 济源市| 门源| 英山县| 安达市| 惠东县| 紫阳县| 涿鹿县| 五常市| 临沭县| 康马县| 昌平区| 同仁县| 华蓥市| 晋江市|