劉 龍,陳紅英
(西北農林科技大學生命科學學院,楊凌 712100)
?
定量蛋白質組學技術分析豬繁殖與呼吸綜合征病毒感染肺泡巨噬細胞的差異表達蛋白質
劉龍,陳紅英*
(西北農林科技大學生命科學學院,楊凌 712100)
作者采用定量蛋白質組學方法,對豬繁殖與呼吸綜合征病毒(PRRSV)感染豬肺泡巨噬細胞(PAMs)和正常PAMs的蛋白質組進行差異分析。通過高效液相色譜和電噴霧串聯(lián)質譜儀定量分析PRRSV感染細胞與未感染對照細胞間的差異表達蛋白質,并運用Max-Quant 1.0.7.4軟件結合蛋白質數(shù)據(jù)庫PaxDb進行鑒定。與對照組相比,感染組共鑒定出39個差異表達蛋白質,其中30個蛋白質表達上調,9個蛋白質表達下調。通過Western blot和ELISA驗證了感染的PAMs中SPP1、IFIT3、STAT3及IL-8的表達情況與質譜鑒定結果一致。通過液相色譜—串聯(lián)質譜聯(lián)用(LC-MS/MS)技術,篩選得到多個與PRRSV感染相關的差異表達蛋白質,為PRRSV發(fā)病的分子機制分析提供了新依據(jù)。
豬繁殖與呼吸綜合征病毒;豬肺泡巨噬細胞;差異表達蛋白質;感染
豬繁殖與呼吸綜合征(porcine reproductive and respiratory syndrome,PRRS)俗稱藍耳病,是由豬繁殖與呼吸綜合征病毒(porcine reproductive and respiratory syndrome virus,PRRSV)引起的一種高度傳染性疾病,其主要特征是引起妊娠母豬嚴重的繁殖障礙和仔豬呼吸困難及高死亡率[1],近年來給全球范圍的養(yǎng)豬業(yè)造成了巨大經濟損失。PRRSV主要通過呼吸道和生殖道侵入豬體內,其靶細胞為肺泡巨噬細胞(PAMs)和血液中的巨噬細胞[2]。PRRSV感染PAMs后,病毒蛋白質和宿主細胞蛋白質會產生復雜的相互作用[3]。其中,已有體外試驗證明:PRRSV核衣殼蛋白(N)和其非結構蛋白9(NSP9)能夠與多種宿主細胞蛋白質發(fā)生相互作用[4-5]。但是,很難評價單個病毒蛋白質在生理條件下對細胞蛋白質的表達量和生物學功能的影響。因此,需要綜合考慮PRRSV感染宿主細胞后對其生理狀態(tài)的影響。
定量蛋白質組學能夠精確測量樣本在不同生理條件下多種蛋白質表達量的變化,可以實現(xiàn)同時對上千個蛋白質的定量和定性分析,為探究疾病的藥物靶標蛋白質提供重要依據(jù)[6]。目前,在鑒定PRRSV感染PAMs或Marc-145細胞差異表達蛋白質的研究中,大多是利用常規(guī)2-D電泳分離結合圖像軟件找出差異蛋白質點后再經質譜鑒定[7-8]。作者應用液相色譜對樣品中蛋白質的肽段進行分離,然后進行質譜鑒定,全面準確地定量分析PRRSV感染的PAMs中相對于未感染細胞的差異表達蛋白質,以期探究PRRSV與宿主的相互作用及其致病機制。
1.1 病毒株及試驗動物
本研究所用的PRRSV毒株為美洲型強毒株TA-12(GenBank收錄號:HQ416720.1),由本校動物醫(yī)學院周恩民教授實驗室分離保存;PAMs取自1頭6周齡的PRRSV抗原陰性健康長白仔豬,購自陜西楊凌飼養(yǎng)場。采集的PAMs用含10%胎牛血清的RPMI-1640培養(yǎng)基于5% CO2、37 ℃的培養(yǎng)箱中培養(yǎng)。
1.2主要試劑
二硫蘇糖醇(DTT)、碘乙酰胺(IAA)、碳酸氫銨、SDS、Tris-HCl、Tris堿、甘氨酸、丙烯酰胺、N,N′-甲叉雙丙烯酰胺、過硫酸銨、TDMED、抗生素等均購自生工生物公司,RapiGest SF購自Waters公司,SPP1(Cat# AB21078a)、STAT3(Cat# AB20083a)一抗購自生工生物公司,IFIT3一抗(Cat# 15201-1-AP)購自Proteintech,羊抗兔IgG 、ECL發(fā)光液購自康為世紀公司,豬IL-8 ELISA試劑盒購自R&D公司,PDVF膜購自BioRad公司。RPMI-1640培養(yǎng)基、胎牛血清等購自Thermo scientific公司。
1.3PAMs采集
打開小豬胸腔,分離肺,用無菌生理鹽水清洗表面后放入生物安全柜,通過無菌PBS灌洗小豬肺,收集肺泡灌洗液。1 500 r·min-1離心10 min,在超凈工作臺中棄去上清,加入PBS懸浮沉淀,再次離心后用RPMI-1640培養(yǎng)基重懸,調整PAMs密度分裝入細胞凍存管,細胞量5×106·管-1,于液氮中凍存?zhèn)溆谩?/p>
1.4樣品制備
將原代PAMs鋪于6孔細胞培養(yǎng)板,細胞數(shù)目約2.5×106·孔-1,置于37 ℃含5% CO2的培養(yǎng)箱中過夜培養(yǎng)。當單層細胞密度達到約80%時,用PRRSV以MOI=1感染PAMs,在感染30 h后收集細胞。未感染的PAMs作為陰性對照。1 500 r·min-1離心5 min,無菌PBS重懸,重復三次,用等體積的含0.1% RapiGest SF的碳酸氫銨(pH 7.8)稀釋。凍融后渦旋5 min,重復三次,然后將樣品于80 ℃加熱10 min。將樣品轉移到1.5 mL離心管,取出一份樣品檢測蛋白質濃度。向樣品中加入終濃度為3 mmol·L-1的二硫蘇糖醇,于60 ℃孵育10 min,冷卻至室溫。加入終濃度為9 mmol·L-1的碘乙酰胺,于黑暗中室溫孵育30 min。然后將樣品凍于-80 ℃冰箱備用。
1.5LC-MS/MS
蛋白質樣品通過胰酶消化為肽段,使用納升級液相色譜系統(tǒng)Ultimate U3000 (Dionex Corporation) 進行分離,然后利用電噴霧串聯(lián)質譜儀 (Thermo Fisher Scientific Inc.) 進行鑒定。所得到的質譜數(shù)據(jù)使用Max-Quant 1.0.7.4 (Cox and Mann) 軟件查詢PaxDb蛋白質數(shù)據(jù)庫進行定量和定性分析。感染組樣品和對照組樣品進行三次獨立的鑒定。
1.6Western blot
1.7ELISA
收集PRRSV感染30 h或未感染的PAMs細胞和上清培養(yǎng)液,上清中的細胞通過200 g離心去除,細胞碎片成分通過14 000 g,4 ℃高速離心去除。IL-8通過雙抗夾心法檢測。純化的IL-8抗體包被于微孔板上,加樣后于37 ℃溫育30 min,洗滌后加入酶標試劑50 μL,溫育后洗滌,體積比1∶1加入顯色液A與顯色液B,37 ℃避光顯色15 min,加入終止液終止反應,然后于450 nm處檢測各樣品的吸光度。具體操作步驟參考豬IL-8 ELISA試劑盒說明書。檢測進行三次重復,統(tǒng)計學分析參照步驟“1.6”。
1.8生物信息學分析
將質譜鑒定的蛋白質提交到String (version 10,http://string-db.org/) 數(shù)據(jù)庫,分析差異表達蛋白質的互作網絡,通過Gene Ontology (http://geneontology.org/) 對差異表達基因進行生物學功能聚類與通路分析,通過IPA軟件 (version 01-04,試用版) 進行調控效應分析。
2.1LC-MS/MS鑒定差異表達蛋白質
本研究利用蛋白質組學方法鑒定PRRSV感染30 h的PAMs與未感染細胞之間的差異表達蛋白質。將感染組與對照組的PAMs總蛋白質分別進行定量質譜分析,通過查詢PaxDb數(shù)據(jù)庫進行三次獨立篩選,最終鑒定出感染組與對照組間的差異蛋白質645個。其中已知蛋白質437個,未知蛋白質208個。對篩選出的蛋白質以柱狀圖方式進行定量分析(圖1A),從圖1可知,其蛋白質呈正態(tài)分布,大多數(shù)蛋白質感染組/對照組的表達量比值(Ratio)分布于log2(Ratio) = [-1,1]之間。
應用以下標準定義一種蛋白質在兩組間表現(xiàn)為差異蛋白質:(1)當Ratio大于2.0或小于0.5,即log2(Ratio)大于1或小于-1,可定義為感染組的上調蛋白質或下調蛋白質;(2)三次試驗重復出現(xiàn)且蛋白質至少由2個或2個以上的肽段組成。最終,篩選出39個表達差異的蛋白質,其中表達上調的蛋白質有30個(圖1B,up-regulation框內),表達下調的蛋白有9個(圖1B,down-regulation框內)。篩選出的蛋白質種類及差異表達情況見表1。
2.2String分析差異蛋白質的定位與互作網絡
為了進一步分析鑒定出的差異蛋白質在PRRSV感染PAMs中的作用,采用String和GO數(shù)據(jù)庫對這39個蛋白質進行數(shù)據(jù)挖掘。根據(jù)GO數(shù)據(jù)庫分析39個差異表達蛋白質的亞細胞定位情況(圖2),其中,19個蛋白質定位于細胞質(49%),6個蛋白質定位于細胞核(15%),7個蛋白質為質膜蛋白質(18%),另外 5個蛋白質屬于細胞間隙蛋白質(13%),還有2個蛋白質為分泌型蛋白質(5%)。
將39個差異表達蛋白質的UniProt 登錄號提交到String數(shù)據(jù)庫,選擇種源為Sus scrofa,數(shù)據(jù)庫根據(jù)已有文獻報道的蛋白質互作信息,生成差異表達蛋白質的互作網絡(圖3)。這些蛋白質按功能主要分為兩部分:一部分參與核苷酸代謝(圖3左),一部分參與機體天然免疫應答(圖3右)。
2.3表達差異蛋白質的生物學功能與通路分析
由于IPA軟件識別的蛋白數(shù)據(jù)庫里沒有Susscrofa物種的數(shù)據(jù),且鑒定得到的蛋白質少于100個,這里作者使用String數(shù)據(jù)庫的Enrichment功能,對這39個差異表達基因進行生物學功能與通路分析。根據(jù)GO功能聚類及KEGG通路分析,可知與PRRSV感染相關的差異基因具有多個生物學功能,其中得分最高的十個功能為(圖4A):GO:0042288 MHC class I protein binding、GO:0046933 proton-transporting ATP synthase activity、GO:0044822 poly(A) RNA binding、GO:0003723 RNA binding、GO:0042287 MHC protein binding、GO:0046961 rotational mechanism、GO:0044769 ATPase activity、GO:0036442 hydrogen-exporting ATPase activity、GO:0016853 isomerase activity和GO:0003725 double-stranded RNA binding。與PRRSV感染最相關的十個生物學通路為(圖4B):5016 Huntington’s disease、5144 Malaria、5012 Parkinson’s disease、5010 Alzheimer’s disease、4620 Toll-like receptor signaling pathway、5160 Hepatitis C、5162 Measles、190 Oxidative phosphorylation、5143 African trypanosomiasis和5164 Influenza A。柱狀圖的高低代表PRRSV感染后差異表達基因與該功能或通路相關性的大小,-log10(P-value) 數(shù)值越大,表示其相關性越強。該結果顯示:鑒定出的差異表達蛋白質主要行使抗原呈遞、ATP合成和結合RNA 等功能,主要參與Toll樣受體(TLR)信號通路、瘧疾和病毒感染等生物學通路。
A.差異表達蛋白數(shù)量統(tǒng)計圖;B.差異表達蛋白分布散點圖。log2(Ratio)表示差異值,-log10(P-value)表示相關性A.The number statistics of differential proteins;B.The distribute scatter graph of differential proteins.log2(Ratio) means the difference and -log10(P-value) means the correlation圖1 PRRSV感染PAMs表達差異蛋白質分布Fig.1 Distribution of differential proteins in PRRSV infected PAMs
圖2 PRRSV感染PAMs表達差異蛋白質亞細胞定位Fig.2 Subcellular location analysis of differential proteins in PRRSV infected PAMs
2.4Western blot驗證差異表達蛋白質
為了進一步驗證質譜鑒定出的差異蛋白質,通過Western blot檢測感染30 h后分泌型磷蛋白(SPP1)、IFN誘導蛋白3(IFIT3)和信號轉導及轉錄激活因子3(STAT3)的表達量。未感染病毒的PAMs細胞蛋白質樣品作為對照(圖5)。檢測發(fā)現(xiàn),對照樣品中幾乎不能檢測到SPP1蛋白,PRRSV感染30 h PAMs中SPP1的量約是對照組的2倍(P<0.05)。而IFIT3的表達量在感染后約達到對照組的5倍(P<0.01)。蛋白STAT3作為轉錄激活因子,在PRRSV感染后表達下調,檢測到其表達量在感染30 h后僅為對照組的四分之一(P<0.01)。這三個蛋白質的Western blot檢測結果與質譜鑒定結果一致。
表1LC-MS/MS鑒定出的差異表達蛋白質
Table 1Differential expression proteins were identified by LC-MS/MS
基因名稱GenenameUniProt收錄號UniProtaccession差異值log2(Ratio)P值P-value相關性-log10(P-value)比值Ratio上調Up-regulated IL-1BP268892.3677494450.000549573.2599767805.16135350 IL-8P268941.9291586030.000413033.3840200483.80833028 ATP5A1F1RPS81.8249978930.041579161.3811242593.54306490 HIST1H1DQ53DY51.7635702390.010184911.9920430173.39537340 SPP1P142871.6311335090.003714452.4301049853.09756275 THEMIS2F1STM81.6204382920.047990691.3188430033.07468431 ERAP2F1RNU01.4521237820.025001121.6020404842.73610535 CD97F1SD421.4047860700.040622351.3912349212.64778517 GLOBINF1RGX41.3743766040.016879721.7726346452.59255861 ANXA5F2Z5C11.2915748810.000634063.1978711722.44795134 OAS2F1RKA71.2725443130.030316891.5183154102.41587249 ANKRD22F1SCY91.2625292970.001123812.9493074392.39915987 IFIT3F1SCY21.2225594340.006901742.1610414762.33360347 PGCPF1S0L61.1835528680.009915222.0036976512.27135446 NUCB2F1S9A41.1750440050.032166101.4926016282.25799768 SERPINB2F1SMW71.1737573750.002110422.6756312772.25598484 PGRMC1Q952501.1632312170.000359903.4438146262.23958468 SRSF3F1RY921.1319567590.006087112.2155891432.19155785 SLC25A12F1S0861.1299315900.042272931.3739376232.18848363 TOP1F1SDV71.0994617970.009735592.0116376192.14274742 NUDFV2F1SM981.0879596710.035476651.4500574232.12573193 SLC25A4F1RZQ61.0788999740.015969531.7967079442.11242479 FKBP11F1SPN11.0665848460.037140931.4301471732.09446946 STIM1F1SUZ41.0665502230.046838111.3294006532.09441919 DLATF1SMB21.0655019730.040190561.3958759062.09289796 ATP5BF1SLA01.0565724490.003500892.4558217652.07998403 NIPSNAP3AF1SP561.0475992100.008206082.0858641512.06708714 TFAMQ5D1441.0220136930.006234682.2051856552.03075148 ERP29F1RJM21.0106741990.003079002.5115905172.01485246 ACADLP792741.0026746410.026715541.5732359872.00371128下調Down-regulated PGAM1F1S8Y5-1.0130159570.032947311.4821800250.49550930 RBM3I3L5X7-1.0410301900.020179841.6950823650.48598032 STAT3Q19S50-1.1233912060.017850821.7483418610.45901360 TXNRD1F1SG38-1.1521358840.027877291.5547494700.44995858 PYGLF1SFF8-1.2697427810.022467701.6484414140.41473371 TFRCD7RK08-1.3168526840.015228701.8173371500.40140968 COMMD9F1SHG3-1.3323626130.029752611.5264749700.39711737 YARSI3L5T8-1.4598376470.015217651.8176524740.36353404 PSMB6F1RFV5-1.6823036500.009017222.0449274060.31158471
圖3 PRRSV感染PAMs表達差異蛋白質的互作網絡Fig.3 The interaction network of differential proteins in PRRSV infected PAMs
A.與PRRSV感染最相關的十個生物學功能;B.與PRRSV感染最相關的十個生物學通路。Ratio表示滿足指定生物學功能初始值的基因數(shù)與該功能總基因數(shù)的比值,-log10(P-value)表示差異表達基因與該功能或通路的相關性A.The top ten functions related to PRRSV infection;B.The top ten pathways related to PRRSV infection.Ratio means genes in a given function that meet cutoff criteria were divided by total genes that make up that function,-log10(P-value) means the correlation between differential genes with the biological function or pathway圖4 差異表達基因的生物學功能與通路分析Fig.4 Function and pathway analysis of differential expression genes
A.Western blot驗證PRRSV感染30 h后的PAMs差異表達蛋白質;B.感染樣品中蛋白質相對于對照PAMs細胞蛋白質的灰度比值,β-actin作為內參校正蛋白質上樣量。*.P<0.05,差異顯著;**.P<0.01,差異極顯著A.Western blot assays of differential expression PAMs proteins at 30 h post infection;B.The relative levels of protein expression,the protein levels in the uninfected sample were normalized to 1 using β-actin as the internal control.*.P<0.05 and significant difference;**.P<0.01 and extreme difference圖5 Western blot鑒定表達差異蛋白質SPP1、IFIT3和STAT3Fig.5 Identification of the expression level of SPP1,IFIT3 and STAT3 by Western blot
2.5ELISA檢測IL-8的表達量
白介素8(IL-8)是炎性細胞因子,屬于分泌型蛋白。作者用ELISA方法定量檢測感染后PAMs培養(yǎng)上清中的IL-8含量。首先根據(jù)標準品作出IL-8濃度與吸光值的標準曲線y=252.330x2+99.214x+48.701,在50~900 pg·μL-1濃度范圍內線性關系良好,樣品線性回歸與IL-8預期濃度相關系數(shù)為0.999(圖6A)。然后分別檢測PAMs細胞和培養(yǎng)上清的吸光值,根據(jù)標準曲線計算出IL-8的濃度(圖6B)。發(fā)現(xiàn)PRRSV感染30 h的PAMs細胞內IL-8的濃度相比對照細胞沒有顯著差異(P>0.05),基本穩(wěn)定在100~110 pg·μL-1;而培養(yǎng)上清中IL-8的濃度在感染30 h后達到165 pg·μL-1,相比對照細胞上清上升了大約40%(P<0.05)。
A.標準曲線;B.感染30 h PAMs細胞內和上清中的IL-8濃度。*表示P<0.05,差異顯著;n.s.表示P>0.05,差異不顯著A.Standard curve;B.The concentrations of IL-8 in cell and supernatant of PAMs at 30 h post infection.*means P<0.05 and significant difference;n.s.means P>0.05 and no significant圖6 ELISA檢測PAMs合成IL-8的含量Fig.6 The levels of IL-8 in PAMs were detected by ELISA
利用定量質組學全面科學地分析PRRSV感染的PAMs中差異表達的蛋白質,有助于進一步理解PRRSV的致病機制。本研究中,作者成功鑒定出39個PAMs差異表達的蛋白質,利用生物數(shù)據(jù)庫分析了這些差異蛋白質的亞細胞定位、生物學功能和參與的信號通路。其中,參與TLR信號通路的蛋白包括IL-1β、IL-8和SPP1,參與流感病毒和丙型肝炎病毒感染通路的蛋白質包括IL-8和STAT3。隨后作者用Western blot和ELISA的方法,分別驗證了SPP1、IFIT3、 STAT3和IL-8在感染細胞中的表達情況。
SPP1是一種分泌型的磷酸化糖蛋白,其主要定位于細胞膜外,是一個功能活躍的蛋白質,主要參與細胞黏附、PI3K-Akt信號通路和Toll樣受體信號通路等[9]。體外研究表明SPP1通過影響巨噬細胞的活性而在天然免疫過程中發(fā)揮重要作用[10]。而在巨噬細胞中,SPP1的表達需要TLR誘導型PI3K、JNK、ERK和AP-1的激活,TLR信號能夠進一步上調內源性SPP1的表達,從而抑制巨噬細胞中IFN-β的合成[11]。本研究中作者檢測到PRRSV感染能夠上調PAMs中SPP1表達,提示PRRSV感染可能通過TLR信號通路抑制IFN-β的合成,參與病毒逃逸宿主的天然免疫。
IFIT3屬于IFIT家族蛋白,在抗病毒和免疫調節(jié)中發(fā)揮著重要作用[12]。有報道稱IFIT3能增強單核巨噬細胞在LPS刺激下多種細胞因子的表達與炎癥通路的活化,而且IFIT3通過NF-κB通路參與趨化因子的表達調控[13]。在作者的定量質譜數(shù)據(jù)中,感染30 h的PAMs中IFIT3上調表達,其含量達到對照組的2.3倍,這與通過iTRAQ標記的定量蛋白組學檢測PAMs差異表達蛋白質的結果一致[14]。提示PRRSV感染可能通過激活IFIT3的表達,上調一些炎癥因子的表達,從而導致機體出現(xiàn)炎癥。另有報道表明PRRSV感染的Marc-145細胞中,IFIT3的激活能夠抑制PRRSV的復制[15]。因此,作者推測 PAMs中IFIT3的上調表達對病毒復制也有抑制作用,但其作用機制還有待進一步研究。
STAT3在細胞生長發(fā)育和凋亡、病毒感染和細胞免疫應答等多個環(huán)節(jié)具有重要的調節(jié)作用[16]。研究發(fā)現(xiàn)在CoV感染的Vero E6細胞中,STAT3第705位的酪氨酸發(fā)生去磷酸化而定位到細胞質,從而失去轉錄激活活性[17];而在VZV和HBV等病毒感染后,磷酸化的STAT均上調表達[18-19]。因此,STAT3對病毒感染和復制的影響是一種病毒特異性的生物學過程,不同病毒感染對STAT3的影響有不同表現(xiàn)。另外,有報道表明STAT3能夠通過抑制蛋白激酶R的活性,從而抑制細胞自噬[20]。在本試驗中,作者檢測到在PRRSV感染的PAMs中STAT3下調表達,提示PRRSV感染可能會通過抑制STAT3的表達而抑制PAMs的增值,并促進細胞凋亡或自噬。
IL-8,又名CXCL8,是一種多源性的細胞因子,對中性粒細胞有強烈的趨化作用。細胞因子IL-1、TNF、內毒素和病毒感染均能誘導多種細胞合成和分泌IL-8,包括單核細胞、巨噬細胞和成纖維細胞等[21]。通過生物學通路分析,作者了解到參與TLR信號通路的細胞因子IL-8和IL-1β在感染PRRSV后都上調表達。TLR信號通路作為抗病毒的靶通路,其中TLR3和TLR9激活髓樣分化因子(MyD88)依賴型途徑,隨后NF-κB游離釋放進入細胞核協(xié)同其他轉錄因子誘導IL-1β、IL-6和IL-8等炎性因子的表達[22],IL-1β和IL-8進一步激活T淋巴細胞,參與細胞的天然免疫應答(圖7),同時IL-1β促進巨噬細胞的凋亡。有研究表明在PRRSV感染前期,血清中高濃度的IL-8表現(xiàn)出較強的抗PRRSV活性[23],另外有研究也發(fā)現(xiàn)IL-8、IL-1β和IFN-γ與豬體內PRRSV的清除有關[24]。這提示PRRSV感染過程中細胞可能通過IL-8與IL-1β等細胞因子的上調表達共同參與機體的抗病毒免疫反應。
圖7 IPA軟件分析細胞因子IL-1β和IL-8的調控效應Fig.7 The regulation effect of cellular factors IL-1β and IL-8 was analyzed by IPA
應用高通量蛋白質組學技術研究PRRSV感染PAMs和正常PAMs的蛋白質組差異,鑒定出39個差異表達蛋白質:其中有30個表達上調,另外9個表達下調。同時,通過Western blot或ELISA驗證了感染后SPP1、IFIT3、STAT3和IL-8的差異表達情況與質譜鑒定結果一致。分析在PRRSV感染后,一方面病毒可借助SPP1等細胞蛋白質的差異表達逃逸宿主的天然免疫;另一方面宿主上調表達IL-8等多個細胞因子共同參與機體的抗病毒免疫反應,同時一些差異表達的蛋白質(如STAT3的下調表達,IFIT3的上調表達)可能促進細胞凋亡或導致宿主機體出現(xiàn)炎癥等病理性反應。
[1]WENSVOORT G,TERPSTRA C,POL J M,et al.Mystery swine disease in The Netherlands:the isolation of Lelystad virus[J].VetQ,1991,13(3):121-130.
[2]DUAN X,NAUWYNCK H J,PENSAERT M B.Virus quantification and identification of cellular targets in the lungs and lymphoid tissues of pigs at different time intervals after inoculation with porcine reproductive and respiratory syndrome virus (PRRSV)[J].VetMicrobiol,1997,56(1-2):9-19.
[3]DING Z,LI Z J,ZHANG X D,et al.Proteomic alteration of Marc-145 cells and PAMs after infection by porcine reproductive and respiratory syndrome virus[J].VetImmunolImmunopathol,2012,145(1-2):206-213.
[4]LI J N,GUO D W,HUANG L,et al.The interaction between host Annexin A2 and viral Nsp9 is beneficial for replication of porcine reproductive and respiratory syndrome virus[J].VirusRes,2014,189:106-113.
[5]LIU L,LEAR Z,HUGHES D J,et al.Resolution of the cellular proteome of the nucleocapsid protein from a highly pathogenic isolate of porcine reproductive and respiratory syndrome virus identifies PARP-1 as a cellular target whose interaction is critical for virus biology[J].VetMicrobiol,2015,176(1-2):109-119.
[6]錢小紅.定量蛋白質組學分析方法[J].色譜,2013,31(8):719-723.
QIAN X H.The analytical method of quantitative proteomics[J].ChineseJournalofChromatography,2013,31(8):719-723.(in Chinese)
[7]YANG Y,AN T,GONG D,et al.Identification of porcine serum proteins modified in response to HP-PRRSV HuN4 infection by two-dimensional differential gel electrophoresis[J].VetMicrobiol,2012,158(3-4):237-246.
[8]ZHANG H,GUO X,GE X,et al.Changes in the cellular proteins of pulmonary alveolar macrophage infected with porcine reproductive and respiratory syndrome virus by proteomics analysis[J].JProteomeRes,2009,8(6):3091-3097.
[9]李鐵求,滕伊漓,鄒亞光,等.基于基因芯片的前列腺癌轉移高表達基因SPP1的生物信息學分析[J].中華男科學雜志,2014,20(11):984-990.
LI T Q,TENG Y L,ZOU Y G,et al.The highly expressed secreted phosphoprotein 1 gene in prostate cancer metastasis:A microarray-based bioinformatic analysis[J].NationalJournalofAndrology,2014,20(11):984-990.(in Chinese)
[10]ROLLO E E,DENHARDT D T.Differential effects of osteopontin on the cytotoxic activity of macrophages from young and old mice[J].Immunology,1996,88(4):642-647.
[11]ZHAO W,WANG L,ZHANG L,et al.Differential expression of intracellular and secreted osteopontin isoforms by murine macrophages in response to toll-like receptor agonists[J].JBiolChem,2010,285(27):20452-20461.
[12]MIETTINEN J J,MATIKAINEN S,NYMAN T A.Global secretome characterization of herpes simplex virus 1-infected human primary macrophages[J].JVirol,2012,86(23):12770-12778.
[13]扶瓊.SLE相關基因IFIT3的功能及分子機制研究[D].上海:上海交通大學,2008.
FU Q.A study on biological functions and molecular mechanisms of a lupus related gene IFIT3[D].Shanghai:Shanghai Jiaotong University,2008.(in Chinese)
[14]LU Q,BAI J,ZHANG L,et al.Two-dimensional liquid chromatography-tandem mass spectrometry coupled with isobaric tags for relative and absolute quantification (iTRAQ) labeling approach revealed first proteome profiles of pulmonary alveolar macrophages infected with porcine reproductive and respiratory syndrome virus[J].JProteomeRes,2012,11(5):2890-2903.
[15]ZHANG L,LIU J,BAI J,et al.Poly(I:C) inhibits porcine reproductive and respiratory syndrome virus replication in MARC-145 cells via activation of IFIT3[J].AntiviralRes,2013,99(3):197-206.
[16]LEE H,HERRMANN A,DENG J H,et al.Persistently activated Stat3 maintains constitutive NF-κB activity in tumors[J].CancerCell,2009,15(4):283-293.
[17]MIZUTANI T,F(xiàn)UKUSHI S,MURAKAMI M,et al.Tyrosine dephosphorylation of STAT3 in SARS coronavirus-infected Vero E6 cells[J].FEBSLett,2004,577(1-2):187-192.
[18]HILL E R,KOGANTI S,ZHI J,et al.Signal transducer and activator of transcription 3 limits Epstein-Barr virus lytic activation in B lymphocytes[J].JVirol,2013,87(21):11438-11446.
[19]HUANG S C,RAGHAVARAJU G,LIU H S.High expression of vascular endothelial growth factor in EV71-infected patients does not originate from EV71-infected cells[J].Intervirology,2010,53(6):394-401.
[20]SHEN S,NISO-SANTANO M,ADJEMIAN S,et al.Cytoplasmic STAT3 represses autophagy by inhibiting PKR activity[J].MolCell,2012,48(5):667-680.
[21]STRIETER R M,CHENSUE S W,BASHA M A,et al.Human alveolar macrophage gene expression of interleukin-8 by tumor necrosis factor-α,lipopolysaccharide,and interleukin-1β[J].AmJRespirCellMolBiol,1990,2(4):321-326.
[22]BARTON G M,MEDZHITOV R.Toll-like receptor signaling pathways[J].Science,2003,300(5625):1524-1525.
[23]PETRY D B,LUNNEY J,BOYD P,et al.Differential immunity in pigs with high and low responses to porcine reproductive and respiratory syndrome virus infection[J].JAnimSci,2007,85(9):2075-2092.
[24]LUNNEY J K,F(xiàn)RITZ E R,REECY J M,et al.Interleukin-8,interleukin-1β,and interferon-γ levels are linked to PRRS virus clearance[J].ViralImmunol,2010,23(2):127-134.
(編輯白永平)
Analysis of Differential Expression Proteins in Porcine Reproductive and Respiratory Syndrome Virus Infected Pulmonary Alveolar Macrophage by Quantitative Proteomics
LIU Long,CHEN Hong-ying*
(CollegeofLifeSciences,NorthwestA&FUniversity,Yangling712100,China)
The purpose of our research was to study the differential expression proteins of Porcine reproductive and respiratory syndrome virus (PRRSV) infected porcine alveolar macrophage (PAMs) relative to the un-infected control PAMs.Differential proteins in response to PRRSV infection were analyzed by High Performance Liquid Chromatography coupled with tandem mass spectrometry,and then identified using software Max-Quant 1.0.7.4 combining with the protein database PaxDb.Thirty-nine differential proteins were identified in the PRRSV infected group,including thirty up-regulated proteins and nine down-regulated proteins.The up-regulation of SPP1,IFIT3 and IL-8,and down-regulation of STAT3 in PRRSV infected PAMs were verified by Western blot and ELISA.This study provides new evidences for further studies on the molecular mechanism of PRRSV pathogenesis by using LC-MS/MS.
porcine reproductive and respiratory syndrome virus;porcine alveolar macrophage;differential expression proteins;infection
10.11843/j.issn.0366-6964.2016.06.018
2015-12-17
中央高校基本科研業(yè)務費創(chuàng)新重點項目(QN2011065)
劉龍(1988-),男,陜西山陽人,博士,主要從事PRRSV蛋白與宿主蛋白相互作用的研究,Tel:029-87092687,E-mail: liulong2015@outlook.com
陳紅英, E-mail: chenhy@nwsuaf.edu.cn
S858.285.3
A
0366-6964(2016)06-1222-10