定理2 任意系統(tǒng)(2)的正解(u,v,w) (若存在)必滿足
證明 由定理1知β>λ1,u<β,容易驗(yàn)證β,u分別是 (3) 式的有序上解和下解,從而利用標(biāo)準(zhǔn)的上下解方法結(jié)合θβ的惟一性即有u<θβ。
![](https://cimg.fx361.com/images/2023/0124/080551bda11b125183fc9a2231476e51b7e7dfbf.webp)
![](https://cimg.fx361.com/images/2023/0124/97e6881e36cb3883702fb254f5630306eb10ba0f.webp)
定理3 對(duì)任意給定的a,b>0,存在β0>λ1,使得β>β0時(shí),
證明 由文[11]中第二章論述可知
對(duì)任意的x∈Ω0??Ω。
因此利用主特征值性質(zhì)有
從而對(duì)任意給定的a,b,存在β0>λ1,當(dāng)β>β0時(shí)使得左端成立。利用性質(zhì)(i)和(ii)以及θβ<β可知
同理可得-λ1(-bθβ)2 正解的存在性
令
其中
記L為(2)在(γ*,δ*,θβ,0,0)處關(guān)于(u,v,w)的線性化算子,這里γ*,β*由定理3給出。直接計(jì)算可知
L=
(4)
則L(φ,ψ,χ)=0等價(jià)于
簡(jiǎn)單計(jì)算可知
(5)
這里
(6)
(7)
![](https://cimg.fx361.com/images/2023/0124/9393cc6e86c4c75d3f878f3086f1a7a20c22c920.webp)
設(shè)L*為算子L的伴隨算子,則L*(φ,ψ,χ)=0等價(jià)于
注意到λ1(2θβ-β)>0,有φ≡0。所以
(8)
其中
(9)
利用Fredholm選擇公理結(jié)合(8)式可知
![](https://cimg.fx361.com/images/2023/0124/aee55ab91f78ffdc07ba8ea4aa05bfcdd1fb9ce8.webp)
(10)
綜合(5) 式,(8) 式有
dimN(L)=codimR(L)=2
所以不能應(yīng)用基于單重特征值的Crandall-Rabinowitz分歧定理。受文獻(xiàn)[13]的啟發(fā),我們應(yīng)用空間分解和隱函數(shù)定理來討論系統(tǒng)(2)發(fā)自點(diǎn)(γ*,δ*,θβ,0,0)處的分歧解,即就是下面的定理。
定理 4 對(duì)給定的a,b,c,d,當(dāng)β>β0時(shí),(γ*,δ*,θβ,0,0)是系統(tǒng)(2)的一個(gè)分歧點(diǎn),即在(γ*,δ*,θβ,0,0)的鄰域內(nèi)系統(tǒng)(2)存在正解
![](https://cimg.fx361.com/images/2023/0124/46bdc2dab1295c12569995984de50964a6c15e89.webp)
![](https://cimg.fx361.com/images/2023/0124/91c82ea391119470eff01c5bedbd47905579b604.webp)
(11)
其中
則(u,v,w)是系統(tǒng)(2)的正解等價(jià)于(u-θβ,v,w)是H(γ,δ,U)=0的滿足u-θβ<0,v>0,w>0的解。容易驗(yàn)證
H(γ,δ,0)≡0,對(duì)任意的γ,δ∈R;
HU(γ*,δ*,0)=L,L由(4)式給出
現(xiàn)將空間X,Y做如下正交分解
其中N(L),N(L*),R(L)分別由(5)式,(8)式,(10)式給出;Φ1,Φ2由(6)式給出。故可將任意的U∈X寫成
(12)
![](https://cimg.fx361.com/images/2023/0124/2fac9d875bdc45a1852961197916266cbf1b4e44.webp)
利用(11)式簡(jiǎn)單計(jì)算可得
其中
以及
![](https://cimg.fx361.com/images/2023/0124/d648ebbf8c75768d9b3592d4a019943b75bb523d.webp)
i) 當(dāng)τ1=τ2=s=0,Z=(0,0,0)時(shí),
由(7)式可知上式為零。同理計(jì)算可得
所以我們有H1(0,0,0,0)=0。
ii) 令D(Z,τ1,τ2)H1(0,0,0,0)為算子H1在(0,0,0,0)處關(guān)于(Z,τ1,τ2)的導(dǎo)算子, 則
![](https://cimg.fx361.com/images/2023/0124/0a3391352ae51af4ec34ec417826e4d94e8ba7f4.webp)
![](https://cimg.fx361.com/images/2023/0124/0a3391352ae51af4ec34ec417826e4d94e8ba7f4.webp)
![](https://cimg.fx361.com/images/2023/0124/da3db9b998a49a4a33fe3f6cc65a47c5dfdb8c39.webp)
![](https://cimg.fx361.com/images/2023/0124/0a3391352ae51af4ec34ec417826e4d94e8ba7f4.webp)
![](https://cimg.fx361.com/images/2023/0124/9c4beabb4a94a0e8d04ecc8df9f8dbb2292ac124.webp)
![](https://cimg.fx361.com/images/2023/0124/f644001a4fdbab35e43c7d0c5c62a0dd17992cef.webp)
![](https://cimg.fx361.com/images/2023/0124/0a3391352ae51af4ec34ec417826e4d94e8ba7f4.webp)
![](https://cimg.fx361.com/images/2023/0124/fe28502f81e7503f8c66d0f933d00651823d53be.webp)
![](https://cimg.fx361.com/images/2023/0124/920a18ece2958c3a207722a436767dab21c0c4cc.webp)
(13)
代回到(12) 式可知
是H(γ,δ,U)=0的解。
注1 定理4表明,在蜘蛛的捕食率(即參數(shù)a,b)確定的條件下,存在常數(shù)β0>λ1,使得昆蟲的生長率β大于β0時(shí),只要蜘蛛的生長率γ,δ分別在γ*,δ*附近,系統(tǒng)存在共存態(tài)。由于γ*=-λ1(-aθβ),δ*=-λ1(-bθβ)。所以在上述條件下,系統(tǒng)的共存態(tài)最終依賴于昆蟲的生長率。
[1]NTONIFORNN,PQRRMC,EWUKEMJAEwunkem.Seasonalabundanceanddistributionofthehuntsmanspider,Heteropodavenatoria(Sparassidae: Araneae) in banana agro-ecosystems in Cameroon [J]. Journal of Entomology, 2012, 9: 79-88.
[2] VENKATESHALU, HANUMANTHRAYA L, MARADDI G. Impact of different rice agro-ecosystem on spider population dynamics [J]. Environment and Ecology, 2009, 27(3A): 1231-1236.
[3] VENTURINO E, ISAIA M, BONA F, et al. Modeling the spiders ballooning effect on the vineyard ecology [J]. Mathematical Modeling of Natural Phenomena, 2006, 1(1): 137-159.
[4] CHATTERJEE S, ISAIA M, VENTURINO E. Effects of spiders predational delays in intensive agroecosystems [J]. Nonlinear Analysis: Real World Applications, 2009, 10: 3045- 3058.
[5] SEN M, BANERJEE M, VENTURINO E. A model for biological control in agriculture [J]. Mathematics and Computers in Simulation, 2013, 87(1): 30-44.
[6] 王利娟, 姜洪領(lǐng). 一類捕食食餌模型正解的定性分析和數(shù)值模擬[J]. 中山大學(xué)學(xué)(自然科學(xué)版), 2015, 54(4): 55-62.
[7] 姜洪領(lǐng), 王利娟. 一類無攪拌Chemostat模型平衡態(tài)正解存在性與數(shù)值模擬[J]. 中山大學(xué)學(xué)報(bào)(自然科學(xué)版), 2011, 50(3): 11-16.
[8] WEI F. Coexistence, stability, and limiting behavior in a one-predator-two-prey model [J]. Journal of mathematical analysis and applications, 1993, 179(2): 592-609.
[9] DANCER E N, DU Y H. Positive solutions for a three-species competition system with diffusion-I. General existence results [J]. Nonlinear Analysis Theory Methods & Applications, 1995, 24(3): 337-357.
[10] DANCER E N, DU Y H. Positive solutions for a three-species competition system with diffusion-II. The case of equal birth rates [J]. Nonlinear Analysis Theory Methods & Applications, 1995, 24(3): 359-373.
[11] DU Y H, LOU Y. Some uniqueness and exact multiplicity results for a predator-prey model [J]. Transactions of the American Mathematical Society, 1997, 349(6): 2443-2475.
[12] WANG L J, JIANG H L, LI Y. Positive steady state solutions of a plant-pollinator model with diffusion [J]. Discrete and Continuous Dynamical Systems-Series B, 2015, 20: 1805-1819.
[13] YAMADA Y. Stability of steady states for prey-predator diffusion equations with homogeneous Dirichlet conditions [J]. SIAM Journal on Mathematical Analysis, 1990, 21(2): 327-345.
The existence of steady-state positive solutions for a spider-insect model
JIANGHongling
(Baoji University of Arts and Sciences, Institute of Mathematics and Information Science,Baoji 721013, China)
A one-prey-two-predator spider-insect model is studied. By the variational principle of eigenvalue and the Maximum principle, priori estimates and the necessary conditions of existence for positive solutions are given. Applying the method of space decomposition and implicit function theorem, a sufficient condition of existence of positive solutions is obtained. The results show that, under certain conditions, the coexistence depends on the growth rate of insects.
spider-insect model; steady-state positive solution; existence
10.13471/j.cnki.acta.snus.2016.03.011
2015-11-24
國家自然科學(xué)基金資助項(xiàng)目(11401356,11501496);寶雞文理學(xué)院重點(diǎn)科研資助項(xiàng)目(ZK15038)
姜洪領(lǐng)(1978年生),男;研究方向:應(yīng)用偏微分方程;E-mail:jhonglings@163.com
O
A
0529-6579(2016)03-0064-05