?
An Extremal Problem on Lagrangians of Hypergraphs
YAOYu-ping1*
(College of Mathematics and Econometrics, Hunan University, Changsha 410082, China)
KeywordsLagrangians;FranklandFürediconjecture;colexorder
ForasetVandapositiveintegerr,letV(r)denotethefamilyofallr-subsetsofV.Anr-uniformgraphorr-graphGconsistsofasetV(G)ofverticesandasetE(G)?V(G)(r)ofedges.Anedgee={a1,a2,…,ar}willbesimplydenotedbya1a2…ar.Anr-graphHisasubgraphofanr-graphG,denotedbyH?GifV(H)?V(G)andE(H)?E(G).Thecomplementofanr-graphGisdenotedbyGc.Acompleter-graphontverticesisalsocalledacliqueofordert.LetNbethesetofallpositiveintegers.Foranyintegern∈N, we denote the set {1, 2, 3, …,n} by [n]. Let [n](r)represent the completer-uniform graph on the vertex set [n].
In [1], Motzkin and Straus provided the following simple expression for the Lagrangian of a 2-graph.
TheobviousgeneralizationofMotzkinandStraus’resulttohypergraphsisfalsebecausetherearemanyexamplesofhypergraphsthatdonotachievetheirLagrangianonanypropersubhypergraph.Indeed,estimatingtheLagrangianofahypergraphismuchdifficult.Lagrangiansofhypergraphshasbeenprovedtobeausefultoolinhypergraphextremalproblems.Inmostapplications,anupperboundoftheLagrangiansofcertainclassofhypergraphsisneeded.FranklandFüredi[2]askedthefollowingquestion.Givenr≥3andm∈N, how large can the Lagrangian of anr-graph withmedges be? For distinctA,B∈N(r)wesaythatAislessthanBinthecolexorderifmax(AΔB)∈B,whereAΔB=(AB)∪(BA).LetCr,mbether-uniformhypergraphwithmedgesformedbytakingthefirstmsetsinthecolexorderofN(r). The following conjecture of Frankl and Füredi (if it is true) provides a solution to the question mentioned at the beginning.
Conjecture 1 (Frankl and Füredi[2]) IfGis ar-graph withmedges, thenλ(G)≤λ(Cr,m).
Definition2Anr-graphG=([n],E)isleft-compressedifj1j2…jr∈Eimpliesi1i2…ir∈Eprovidedip≤jpforeveryp,1≤p≤r.
Wearegoingtoprovethefollowingresult.
Theremainingproofofthispaperisorganizedasfollows.InSection1,wegivesomepremilinaryresults.InSection2,wegivetheproofofTheorem2.
1Preliminaries
(1)
Remark1Anr-graphG=([n],E)isleft-compressedifandonlyifEji=forany1≤i ThefollowinglemmagivessomenecessaryconditionsofanoptimalweightingforG. (a) In Lemma 1, part (Ⅰ) implies that In particular, ifGis left-compressed, then for anyi,jsatisfying 1≤i (b) IfGis left-compressed, then for anyi,jsatisfying 1≤i (2) holds. IfGis left-compressed andEij=fori,jsatisfying 1≤i x1≥x2≥…≥xn≥0. (3) We will also give some useful results to apply the following results in the proof. Sunetal.in[7]provedthatλ(G)≤λ(C3,m)if|EΔE″|≤8.Later,Sunetalextendedtheresults,whichisTheorem3. 2ProofofTheorem2 ProofofTheorem2LetGbethe3-graphsatisfyingconditionsofTheorem5.If[t-1](3)?G,thenbyTheorem4,wehaveλ(G)≤λ(C3,m).Otherwise,wewillprovethefollowinglemmaswhichimplyTheorem2. Next,wewillgivetheproofofLemma4-7.Infact,theproofsofotherthreelemmasaresimilartotheproofofLemma4.Weomitthedetailsoftheproofofotherlemmasandwillgiveonlyanoutlineoftheproofs.InSection2.1,wegivetheproofofLemma4.InSection2.2-2.4,wegivetheoutlineoftheproofofLemma4-7,respectively. 2.1ProofofLemma4 xt+xt-1+xt-2+…+xt-2-i+1-x1≥0. (4) To verify (4), we have (5) Let us continue our proof. We divide the proof into two cases:a=0 anda≥1. By Remark 2, (6) So (7) (8) (9) Then (10) (11) (13) Note that (14) where (15) and (16) (17) (18) (19) (20) By (4) (14), (18) and (20), we have (21) Therefore,λ(C3,m)≥λ(G′)≥λ(G). 2.2OutlineoftheproofofLemma5 We divide the prove into two parts:p=3 andp>3. PartⅠp=3,thenwehavej+1≥i.Wedividetheproveintotwocases: j≥2andj=1. 2.3OutlineoftheProofofLemma6 PartⅠp=3.Wedividethisproveintotwocases: i=1andi≥2. PartⅡp≥4.Wedivideourproofintotwocases: p=4, a=0andp≥5ora≥1. Case1p=4, a=0.Ifj=1,thenwehavei=1ori=2.Wedividethisproveintothreesubcases: j≥2; j=1, i=1; j=1, i=2. 2.4OutlineofproofLemma7 References: [1]MOTZKINTS,STRAUSEG.MaximaforgraphsandanewproofofatheoremofTurán[J].CanadJMath, 1965,17(1):533-540. [2]FRANKLP,FüREDIZ.Extremalproblemswhosesolutionsaretheblow-upsofthesmallWitt-designs[J].JCombinTheorSerA, 1989,52(5):129-147. [3]TALBOTJ.Lagrangiansofhypergraphs[J].CombinProbabComput, 2002,11(2):199-216. [4]PENGY,ZHAOC.AMotzkin-Straustyperesultfor3-uniformhypergraphs[J].JGraphsComb, 2013,29(3):681-694. [5]FRANKLP,R?DLV.Hypergraphsdonotjump[J].Combinatory, 1989,4(2-3):149-159. [6]TANGQS,PENGY,ZHANGXD, et al.Someresultsonlagrangiansofhypergraphs[J].DiscAppMath, 2013,166(3):222-238. [7]SUNYP,TANGQS,ZHAOC, et al.Onthelargestgraph-lagrangianof3-graphswithfixednumberofedges[J].JOptimizTheorAppl, 2013,163(1):57-79. (編輯HWJ) 極值問(wèn)題——超圖的拉格朗日 姚宇萍*,彭岳建 (湖南大學(xué)數(shù)學(xué)與計(jì)量經(jīng)濟(jì)學(xué)院,湖南 長(zhǎng)沙410082) 摘要設(shè)G=([t],E)是一個(gè)有m條邊的左壓的3-一致超圖,其中,并設(shè)[t-2](3)?G.本文證明,如果按同余字典序排列中最小元素是(t-p-i)(t-p)并且,則有λ(G)≤λ(C3,m). 關(guān)鍵詞拉格朗日;Frankl and Füredi 猜想;同余字典序 中圖分類號(hào)O157.5 文獻(xiàn)標(biāo)識(shí)碼A 文章編號(hào)1000-2537(2015)06-0068-08 *通訊作者,E-mail:yupingyao1989@163.com, PENG Yue-jian2 基金項(xiàng)目:National Natural Science Foundation of China (No.11271116) 收稿日期:2015-01-27 DOI:10.7612/j.issn.1000-2537.2016.01.012 湖南師范大學(xué)自然科學(xué)學(xué)報(bào)2016年1期