国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

An Extremal Problem on Lagrangians of Hypergraphs

2016-03-17 01:06
關(guān)鍵詞:猜想

?

An Extremal Problem on Lagrangians of Hypergraphs

YAOYu-ping1*

(College of Mathematics and Econometrics, Hunan University, Changsha 410082, China)

KeywordsLagrangians;FranklandFürediconjecture;colexorder

ForasetVandapositiveintegerr,letV(r)denotethefamilyofallr-subsetsofV.Anr-uniformgraphorr-graphGconsistsofasetV(G)ofverticesandasetE(G)?V(G)(r)ofedges.Anedgee={a1,a2,…,ar}willbesimplydenotedbya1a2…ar.Anr-graphHisasubgraphofanr-graphG,denotedbyH?GifV(H)?V(G)andE(H)?E(G).Thecomplementofanr-graphGisdenotedbyGc.Acompleter-graphontverticesisalsocalledacliqueofordert.LetNbethesetofallpositiveintegers.Foranyintegern∈N, we denote the set {1, 2, 3, …,n} by [n]. Let [n](r)represent the completer-uniform graph on the vertex set [n].

In [1], Motzkin and Straus provided the following simple expression for the Lagrangian of a 2-graph.

TheobviousgeneralizationofMotzkinandStraus’resulttohypergraphsisfalsebecausetherearemanyexamplesofhypergraphsthatdonotachievetheirLagrangianonanypropersubhypergraph.Indeed,estimatingtheLagrangianofahypergraphismuchdifficult.Lagrangiansofhypergraphshasbeenprovedtobeausefultoolinhypergraphextremalproblems.Inmostapplications,anupperboundoftheLagrangiansofcertainclassofhypergraphsisneeded.FranklandFüredi[2]askedthefollowingquestion.Givenr≥3andm∈N, how large can the Lagrangian of anr-graph withmedges be? For distinctA,B∈N(r)wesaythatAislessthanBinthecolexorderifmax(AΔB)∈B,whereAΔB=(AB)∪(BA).LetCr,mbether-uniformhypergraphwithmedgesformedbytakingthefirstmsetsinthecolexorderofN(r). The following conjecture of Frankl and Füredi (if it is true) provides a solution to the question mentioned at the beginning.

Conjecture 1 (Frankl and Füredi[2]) IfGis ar-graph withmedges, thenλ(G)≤λ(Cr,m).

Definition2Anr-graphG=([n],E)isleft-compressedifj1j2…jr∈Eimpliesi1i2…ir∈Eprovidedip≤jpforeveryp,1≤p≤r.

Wearegoingtoprovethefollowingresult.

Theremainingproofofthispaperisorganizedasfollows.InSection1,wegivesomepremilinaryresults.InSection2,wegivetheproofofTheorem2.

1Preliminaries

(1)

Remark1Anr-graphG=([n],E)isleft-compressedifandonlyifEji=forany1≤i

ThefollowinglemmagivessomenecessaryconditionsofanoptimalweightingforG.

(a) In Lemma 1, part (Ⅰ) implies that

In particular, ifGis left-compressed, then

for anyi,jsatisfying 1≤i

(b) IfGis left-compressed, then for anyi,jsatisfying 1≤i

(2)

holds. IfGis left-compressed andEij=fori,jsatisfying 1≤i

x1≥x2≥…≥xn≥0.

(3)

We will also give some useful results to apply the following results in the proof.

Sunetal.in[7]provedthatλ(G)≤λ(C3,m)if|EΔE″|≤8.Later,Sunetalextendedtheresults,whichisTheorem3.

2ProofofTheorem2

ProofofTheorem2LetGbethe3-graphsatisfyingconditionsofTheorem5.If[t-1](3)?G,thenbyTheorem4,wehaveλ(G)≤λ(C3,m).Otherwise,wewillprovethefollowinglemmaswhichimplyTheorem2.

Next,wewillgivetheproofofLemma4-7.Infact,theproofsofotherthreelemmasaresimilartotheproofofLemma4.Weomitthedetailsoftheproofofotherlemmasandwillgiveonlyanoutlineoftheproofs.InSection2.1,wegivetheproofofLemma4.InSection2.2-2.4,wegivetheoutlineoftheproofofLemma4-7,respectively.

2.1ProofofLemma4

xt+xt-1+xt-2+…+xt-2-i+1-x1≥0.

(4)

To verify (4), we have

(5)

Let us continue our proof. We divide the proof into two cases:a=0 anda≥1.

By Remark 2,

(6)

So

(7)

(8)

(9)

Then

(10)

(11)

(13)

Note that

(14)

where

(15)

and

(16)

(17)

(18)

(19)

(20)

By (4) (14), (18) and (20), we have

(21)

Therefore,λ(C3,m)≥λ(G′)≥λ(G).

2.2OutlineoftheproofofLemma5

We divide the prove into two parts:p=3 andp>3.

PartⅠp=3,thenwehavej+1≥i.Wedividetheproveintotwocases: j≥2andj=1.

2.3OutlineoftheProofofLemma6

PartⅠp=3.Wedividethisproveintotwocases: i=1andi≥2.

PartⅡp≥4.Wedivideourproofintotwocases: p=4, a=0andp≥5ora≥1.

Case1p=4, a=0.Ifj=1,thenwehavei=1ori=2.Wedividethisproveintothreesubcases: j≥2; j=1, i=1; j=1, i=2.

2.4OutlineofproofLemma7

References:

[1]MOTZKINTS,STRAUSEG.MaximaforgraphsandanewproofofatheoremofTurán[J].CanadJMath, 1965,17(1):533-540.

[2]FRANKLP,FüREDIZ.Extremalproblemswhosesolutionsaretheblow-upsofthesmallWitt-designs[J].JCombinTheorSerA, 1989,52(5):129-147.

[3]TALBOTJ.Lagrangiansofhypergraphs[J].CombinProbabComput, 2002,11(2):199-216.

[4]PENGY,ZHAOC.AMotzkin-Straustyperesultfor3-uniformhypergraphs[J].JGraphsComb, 2013,29(3):681-694.

[5]FRANKLP,R?DLV.Hypergraphsdonotjump[J].Combinatory, 1989,4(2-3):149-159.

[6]TANGQS,PENGY,ZHANGXD, et al.Someresultsonlagrangiansofhypergraphs[J].DiscAppMath, 2013,166(3):222-238.

[7]SUNYP,TANGQS,ZHAOC, et al.Onthelargestgraph-lagrangianof3-graphswithfixednumberofedges[J].JOptimizTheorAppl, 2013,163(1):57-79.

(編輯HWJ)

極值問(wèn)題——超圖的拉格朗日

姚宇萍*,彭岳建

(湖南大學(xué)數(shù)學(xué)與計(jì)量經(jīng)濟(jì)學(xué)院,湖南 長(zhǎng)沙410082)

摘要設(shè)G=([t],E)是一個(gè)有m條邊的左壓的3-一致超圖,其中,并設(shè)[t-2](3)?G.本文證明,如果按同余字典序排列中最小元素是(t-p-i)(t-p)并且,則有λ(G)≤λ(C3,m).

關(guān)鍵詞拉格朗日;Frankl and Füredi 猜想;同余字典序

中圖分類號(hào)O157.5

文獻(xiàn)標(biāo)識(shí)碼A

文章編號(hào)1000-2537(2015)06-0068-08

*通訊作者,E-mail:yupingyao1989@163.com, PENG Yue-jian2

基金項(xiàng)目:National Natural Science Foundation of China (No.11271116)

收稿日期:2015-01-27

DOI:10.7612/j.issn.1000-2537.2016.01.012

猜你喜歡
猜想
重視初中學(xué)生直覺(jué)思維能力的培養(yǎng)
繪本閱讀:學(xué)生言語(yǔ)智慧飛越的踏板
數(shù)學(xué)課程中的創(chuàng)造教育淺議
合理猜想,有效驗(yàn)證
培養(yǎng)數(shù)學(xué)意識(shí)增強(qiáng)學(xué)生自主探究能力研究
培養(yǎng)學(xué)生猜想能力 營(yíng)造高效物理課堂
數(shù)學(xué)教學(xué)中提升學(xué)生自主探究能力研究
小學(xué)生空間觀念培養(yǎng)微探
“猜想與假設(shè)”在小學(xué)各年段有不同的要求
安徽省| 彰化市| 平顶山市| 元江| 祥云县| 惠水县| 常熟市| 赤水市| 峨眉山市| 巫山县| 新密市| 黄陵县| 长汀县| 威宁| 娄烦县| 庐江县| 定远县| 平潭县| 博爱县| 兴义市| 房产| 藁城市| 密云县| 牡丹江市| 抚州市| 思茅市| 阳江市| 鄄城县| 池州市| 南涧| 民权县| 南宫市| 平顶山市| 固阳县| 新野县| 和硕县| 肇东市| 兰考县| 潮安县| 邵东县| 淮滨县|