呂秋燕,劉文斌,唐 敏*,申騰飛,程玲玲
(1.蘇州市吳中區(qū)東山中學(xué),中國(guó) 蘇州 215107;2.中國(guó)礦業(yè)大學(xué)理學(xué)院,中國(guó) 徐州 221116)
?
帶p-Laplacian算子的分?jǐn)?shù)階微分方程多點(diǎn)邊值問題的解的存在性
呂秋燕1,劉文斌2,唐敏2*,申騰飛2,程玲玲2
(1.蘇州市吳中區(qū)東山中學(xué),中國(guó) 蘇州215107;2.中國(guó)礦業(yè)大學(xué)理學(xué)院,中國(guó) 徐州221116)
摘要利用不動(dòng)點(diǎn)定理,研究帶有p-Laplacian算子的分?jǐn)?shù)階微分方程多點(diǎn)邊值問題解的存在性,得到邊值問題至少存在一個(gè)解的充分條件.
關(guān)鍵詞分?jǐn)?shù)階微分方程;p-Laplacian算子;存在性;不動(dòng)點(diǎn)定理
Exitence of Solutions for Fractions Multi-point Boundary Value Problem withp-Laplacian Operator
LVQiu-yan1,LIUWen-bin2*,TANGMin2,SHENTeng-fei2,CHENGLing-ling2
(1.Dongshan High School, Suzhou 215107, China;2.College of Science, China University of Mining and Technology, Xuzhou 221116, China)
AbstractThis paper presents a study on the existence of solutions for the fractional multi-point boundary value problem withp-Laplacian operator. Making use of the fixed-point theorem, we obtained sufficient conditions to guarantee the existence of at least one solution for the boundary value problem.
Key wordsfractional differential equation;p-Laplacian operator; existence; fixed point theorem
近年來(lái),分?jǐn)?shù)階微分方程被廣泛應(yīng)用于物理學(xué)、生物學(xué)、控制論等諸多領(lǐng)域[1-3],因此,分?jǐn)?shù)階微分方程受到許多學(xué)者的廣泛關(guān)注,并取得了很多有意義的結(jié)果.文獻(xiàn)[4]研究了分?jǐn)?shù)階微分方程三點(diǎn)邊值問題
解的存在性,其中1<α≤2,0≤β≤1.
為了研究流體力學(xué)中相關(guān)問題,文獻(xiàn)[5]介紹了一類帶有p-Laplacian算子的微分方程,其一維形式如下
(φp(x′(t)))′=f(t,x(t),x′(t)),
(1)
文獻(xiàn)[13]研究了下面分?jǐn)?shù)階微分方程反周期邊值問題
受以上文獻(xiàn)的啟示,我們研究如下一類帶有p-Laplacian算子分?jǐn)?shù)階微分方程多點(diǎn)邊值問題解的存在性,
(2)
1基本定義和預(yù)備知識(shí)
顯然,E是Banach空間.
定義1.1[14]函數(shù)u:(0,∞)→R的α>0階Riemann-Liouville型積分是指
其中右邊在(0,∞)上逐點(diǎn)定義.
定義1.2[14]函數(shù)u:(0,∞)→R的α>0階Caputo型微分是指
其中n為大于或等于α的最小整數(shù),右邊是在(0,∞)上逐點(diǎn)定義的.
引理1.1[14]設(shè)函數(shù)u∈C(0,1)有α>0階的Caputo型微分,則
其中n是大于或等于α的最小整數(shù).
引理1.3設(shè)g(t)∈C[0,1],
(3)
2主要結(jié)論
引理2.1算子F:E→E是全連續(xù)的.
定理2.1對(duì)任意的常數(shù)r>0,Ω={u|‖u‖ (H)|f(t,u,v,w)|≤σφp(mr), 因此得到 由引理1.2知F滿足Rothe條件,原方程至少存在一個(gè)解. 3例子 例3.1考慮如下帶有p-Laplacian算子的分?jǐn)?shù)階微分方程多點(diǎn)邊值問題 (4) 不妨設(shè)r=6,則有界集Ω={u‖|u‖E<6,u∈E}. 顯然,問題(4)滿足定理2.1的假設(shè)條件.因此,至少存在一個(gè)解. 參考文獻(xiàn): [1]LAKSHMIKANTHM V. Theory of fraction functional differential equations[J]. Nonlinear Anal: TMA, 2008,69(10):33337-33343. [2]ABDELKADER B. Second-order boundary value problems with integral boundary conditions[J]. Nonlinear Anal, 2009,70(1):364-371. [3]DELBOSCO D. Fractional calculus and function spaces[J]. J Fract Calc,1994,6:45-53. [4]LI C, LUO X, ZHOU Y. Existence of positive solutions of the boundary value problem for nonlinear fractional differential equations[J]. Comput Math Appl, 2010,59(3):1363-1375. [5]LEIBENSON L S. General problem of the movement of a compressible fluid in a porous medium[J]. Izvestiia Akademii Nauk Kirgizskoi SSR, 1945,9:7-10. [6]SHEN T, LIU W, CHEN T,etal. Solvability of fractionalm-point boundary value problems withp-Laplacian operator at resonance[J]. Electr J Diff Equ, 2014(58):1-10. [7]JIANG W. Solvability of boundary value problem withp-Laplacian at resonance[J]. Bound Value Probl, 2014(1):36. [8]申騰飛,劉文斌,宋文耀.一類帶有p-Laplacian算子分?jǐn)?shù)階微分方程邊值問題正解的存在性[J]. 湖南師范大學(xué)自然科學(xué)學(xué)報(bào), 2012,35(5):9-14. [9]BAI Z. Positive solutions for boundary value problem of nonlinear fractional differential equation[J]. J Math Anal Appl, 2005,311(2):495-505. [10]GE W. The existence of solutions ofm-point boundary value problems at resonance[J]. Acta Math Appl Sin, 2005,28(4):288-295. [11]CHENG L, LIU W, YE Q. Boundary value problem for a coupled system of fractional differential equations withp-Laplacian operator at resonance[J]. Electr J Diff Equ, 2014(60):1-12. [12]BAI Z. On positive solutions of nonlocal fractional boundary value problem[J]. Nonlinear Anal: TMA, 2010,72(2):916-924. [13]CHEN T. An anti-periodic boundary value problem for the fractional differential equation withp-Laplacian operator[J]. Appl Math, 2012,25(11):1671-1675. [14]BAI Z. Solvability for a class of fractional m-point boundary value problems at resonance[J]. Comput Math Appl, 2012,62(3):1292-1302. [15]鐘成奎.非線性泛函分析引論[M].蘭州:蘭州大學(xué)出版社,1998. (編輯HWJ) 中圖分類號(hào)O175.8 文獻(xiàn)標(biāo)識(shí)碼A 文章編號(hào)1000-2537(2016)01-0080-05 *通訊作者,E-mail:wblium@163.com 基金項(xiàng)目:國(guó)家自然科學(xué)基金資助項(xiàng)目(11271364) 收稿日期:2013-12-02 DOI:10.7612/j.issn.1000-2537.2016.01.014
湖南師范大學(xué)自然科學(xué)學(xué)報(bào)2016年1期