国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

肺動(dòng)脈高壓相關(guān)基因研究進(jìn)展

2016-03-15 14:48李林臣
關(guān)鍵詞:檢驗(yàn)科外顯子基因突變

李 娜,李林臣

(1.中國(guó)石油中心醫(yī)院檢驗(yàn)科,河北 廊坊 065000;2.張家口市第一人民醫(yī)院檢驗(yàn)科,河北 張家口 075000)

?

肺動(dòng)脈高壓相關(guān)基因研究進(jìn)展

李娜1,李林臣2

(1.中國(guó)石油中心醫(yī)院檢驗(yàn)科,河北 廊坊 065000;2.張家口市第一人民醫(yī)院檢驗(yàn)科,河北 張家口 075000)

肺動(dòng)脈高壓(pulmonary arterial hypertension)是以肺血管阻力進(jìn)行性升高、肺動(dòng)脈平均壓力升高為特征,影響肺動(dòng)脈循環(huán)和心臟的一種疾病[1]。研究發(fā)現(xiàn)肺動(dòng)脈高壓的發(fā)生涉及細(xì)胞異常、分子介質(zhì)和遺傳因素等多個(gè)途徑,內(nèi)皮細(xì)胞、平滑肌細(xì)胞、成纖維細(xì)胞和血小板等細(xì)胞異常參與其形成,多種血管活性物質(zhì)失衡促進(jìn)其發(fā)生,其中遺傳因素在其發(fā)病中起著重要的作用[2]。肺動(dòng)脈高壓呈常染色體顯性遺傳,有明顯的家族聚集傾向[3]。近年來(lái)隨著基因和基因組學(xué)的發(fā)展,陸續(xù)發(fā)現(xiàn)了許多與肺動(dòng)脈高壓相關(guān)的基因,現(xiàn)就相關(guān)基因綜述如下。

1BMPR2

BMPR2基因位于染色體2q33,由13個(gè)外顯子組成,編碼骨形成蛋白-2型受體,屬于TGF-β超家族。目前認(rèn)為BMPR2基因突變引起功能缺陷是家族性肺動(dòng)脈高壓和特發(fā)性肺動(dòng)脈高壓(IPAH)的重要發(fā)病機(jī)制[4]。基因功能研究表明BMPR2激酶區(qū)的點(diǎn)突變和結(jié)構(gòu)域異常能夠?qū)κ荏w功能起顯性抑制作用,使異源二聚體復(fù)合物不能形成或喪失激酶活性而阻斷下游信號(hào)通路,導(dǎo)致細(xì)胞過(guò)度增殖及凋亡受抑制,引起血管重構(gòu)和肺動(dòng)脈高壓的發(fā)生[5]。>75%的家族性肺動(dòng)脈高壓和大約10%~20%的IPAH病人與BMPR2突變有關(guān)[6]。但是,并不是所有具有致病突變的家族成員都會(huì)發(fā)展成肺動(dòng)脈高壓(不完全外顯)。據(jù)估計(jì)BMPR2突變攜帶者外顯率27%,并且女性(42%)外顯率高于男性(14%)[7]。

2ACVRL1

ACVRL1基因位于染色體12q13.13,由11個(gè)外顯子組成,編碼活化素受體樣激酶-1,也是一種編碼TGF-β超家族受體蛋白的基因,研究發(fā)現(xiàn)其突變可能促使肺動(dòng)脈高壓的發(fā)生[8]。Fessel等[9]研究發(fā)現(xiàn)ACVRL1外顯子10中被稱為NANDOR box的區(qū)域是突變高發(fā)區(qū),此區(qū)域基因突變顯著影響TGF-β通路的調(diào)節(jié),繼而引起以內(nèi)皮細(xì)胞、平滑肌細(xì)胞功能紊亂、增殖為特點(diǎn)的肺動(dòng)脈高壓的發(fā)生[10]。Harrison等[11]對(duì)14例肺動(dòng)脈高壓患者(13例合并HHT或HHT家族史)進(jìn)行分子遺傳學(xué)研究,發(fā)現(xiàn)9例ACVRL1基因突變,其中1例未合并HHT的已知癥狀,僅有HHT家族史;又對(duì)1例18個(gè)月不伴有HHT的IPAH患者進(jìn)行研究,發(fā)現(xiàn)了ACVRL1基因突變。Fujiwara等[12]也在肺動(dòng)脈高壓不伴有HHT的兒童中檢測(cè)到ACVRL1突變。因此可見(jiàn)AVCRL1在肺動(dòng)脈高壓發(fā)病中發(fā)揮著重要作用。

3CAV1

CAV1基因位于染色體7q31.1,由4個(gè)外顯子組成,編碼窖蛋白。窖蛋白是胞膜窖中的重要結(jié)構(gòu)蛋白,與多種信號(hào)分子相互作用,能抑制細(xì)胞生長(zhǎng)。胞膜窖是細(xì)胞膜內(nèi)陷形成的燒瓶狀的特殊膜結(jié)構(gòu),存在于多種血管細(xì)胞的胞膜表面,參與膜轉(zhuǎn)運(yùn)、細(xì)胞信號(hào)傳導(dǎo)、膽固醇內(nèi)穩(wěn)態(tài)形成和力傳導(dǎo)等活動(dòng)[13-16]。Austin等[17]對(duì)一個(gè)患有肺動(dòng)脈高壓但沒(méi)有BMPR2或者其他TGF-β超家族成員基因突變的家庭成員進(jìn)行全外顯子測(cè)序,分析病人和健康對(duì)照基因發(fā)現(xiàn)CAV1中存在一個(gè)遺傳移碼突變(c.474delA)。此外,在一個(gè)患有IPAH小孩的CAV1基因幾乎相同的位置發(fā)現(xiàn)了一個(gè)新的移碼突變(c.473delC),這兩個(gè)突變可能導(dǎo)致幾乎相同形式的變異窖蛋白-1,窖蛋白-1基因敲除小鼠會(huì)發(fā)生擴(kuò)張型心肌病和肺動(dòng)脈高壓[18]。表明CAV1突變?cè)诜蝿?dòng)脈高壓致病機(jī)制中發(fā)揮了作用。

4SERT

SERT基因位于17q11.1-12,由14個(gè)外顯子組成,編碼5-羥色胺轉(zhuǎn)運(yùn)蛋白。Eddahibi等[19-21]研究表明低氧誘導(dǎo)下,肺動(dòng)脈平滑肌細(xì)胞中5-羥色胺轉(zhuǎn)運(yùn)蛋白表達(dá)升高,5-羥色胺轉(zhuǎn)運(yùn)基因缺失小鼠耐受低氧誘導(dǎo)肺動(dòng)脈高壓的發(fā)生。進(jìn)一步研究證明,增加血漿中5-羥色胺轉(zhuǎn)運(yùn)蛋白的表達(dá)可促進(jìn)肺動(dòng)脈平滑肌細(xì)胞增殖和肥大,引起肺血管阻力增加,肺動(dòng)脈壓升高。

5KCNK3

KCNK3基因位于2p23,由3個(gè)外顯子組成,編碼鉀離子通道蛋白。Ma等[22]對(duì)肺動(dòng)脈高壓家族3個(gè)病人基因進(jìn)行全外顯子測(cè)序,沒(méi)有檢測(cè)到BMPR2、ACVRL1、ENG、SMAD9或者CAV1突變,但發(fā)現(xiàn)KCNK3發(fā)生了錯(cuò)義突變c.608 p.G203D。在進(jìn)一步的研究中又發(fā)現(xiàn)82例非家族性肺動(dòng)脈高壓中有2例,230例IPAH中有3例具有另外5個(gè)雜合錯(cuò)義突變(E182K,T8K,Y192C,G97R,V221L)。所有6個(gè)罕見(jiàn)的變異都位于高度保守蛋白質(zhì)區(qū),可能都被破壞,都在體外實(shí)驗(yàn)中證實(shí)缺少鉀通道功能。提示鉀離子通道異??赡苁欠蝿?dòng)脈高壓新的致病機(jī)制。

6其他相關(guān)基因

隨著科學(xué)工作者的不斷努力,越來(lái)越多的基因被發(fā)現(xiàn)在肺動(dòng)脈高壓發(fā)生和發(fā)展中發(fā)揮著作用。Huang等[23]研究發(fā)現(xiàn)在Smad8敲除小鼠模型中,出現(xiàn)了與肺動(dòng)脈高壓相同的臨床表現(xiàn)和組織病理學(xué)特征。Shintani等[24]對(duì)日本23例肺動(dòng)脈高壓患者進(jìn)行研究,發(fā)現(xiàn)不存在其他已知的肺動(dòng)脈高壓相關(guān)基因突變,但確定了存在Smad8截短突變。Germain等[25]對(duì)625例病例和1525例正常對(duì)照進(jìn)行全基因組關(guān)聯(lián)研究,發(fā)現(xiàn)CBLN2上2個(gè)SNP位點(diǎn)與疾病表型相關(guān),攜帶該SNP位點(diǎn)患病風(fēng)險(xiǎn)增加近2倍。Nimmakayalu等[26]和Kerstjens等[27]分別研究發(fā)現(xiàn)在肺動(dòng)脈高壓中TBX2和TBX4存在微缺失。Chaouat等[28]研究發(fā)現(xiàn)ENG引起遺傳性出血性毛細(xì)血管擴(kuò)張癥,推測(cè)可能直接導(dǎo)致肺動(dòng)脈高壓的發(fā)展。Melanie等[29]研究發(fā)現(xiàn)EIF2AK4突變可引起肺靜脈閉塞,一種常染色體隱性遺傳的肺動(dòng)脈高壓。de Jesus PV[30]等在特發(fā)性肺動(dòng)脈高壓全外顯子測(cè)序研究中發(fā)現(xiàn)新的突變基因TopBP1。

隨著人們對(duì)肺動(dòng)脈高壓遺傳基因的了解,希望可用于肺動(dòng)脈高壓基因治療。

參考文獻(xiàn):

[1]Vonk-Noordegraaf A,Haddad F,Chin K M,et al.Right heart adaptation to pulmonary arterial hypertension:Physiology and pathobiology[J].J Am Coll Cardiol,2013,62(25 Suppl):D22-D33.

[2]齊建光,杜軍保.肺動(dòng)脈高壓的分子機(jī)制研究進(jìn)展[J].內(nèi)科理論與實(shí)踐,2008(6):372-376.

[3]Machado R D,Eickelberg O,Elliott C G,et al.Genetics and genomics of pulmonary arterial hypertension[J].J Am Coll Cardiol,2009,54(1 Suppl):S32-S42.

[4]Machado R D,Aldred M A,James V,et al.Mutations of the TGF-beta type II receptor BMPR2 in pulmonary arterial hypertension[J].Hum Mutat,2006,27(2):121-132.

[5]Teichert-Kuliszewska K,Kutryk M J,Kuliszewski M A,et al.Bone morphogenetic protein receptor-2 signaling promotes pulmonary arterial endothelial cell survival:Implications for loss-of-function mutations in the pathogenesis of pulmonary hypertension[J].Circ Res,2006,98(2):209-217.

[6]Soubrier F,Chung W K,Machado R,et al.Genetics and genomics of pulmonary arterial hypertension[J].J Am Coll Cardiol,2013,62(25 Suppl):D13-D21.

[7]Larkin E K,Newman J H,Austin E D,et al.Longitudinal analysis casts doubt on the presence of genetic anticipation in heritable pulmonary arterial hypertension[J].Am J Respir Crit Care Med,2012,186(9):892-896.

[8]Qingyou Z,Junbao D,Weijin Z,et al.Impact of hydrogen sulfide on carbon monoxide/heme oxygenase pathway in the pathogenesis of hypoxic pulmonary hypertension[J].Biochem Biophys Res Commun,2004,317(1):30-37.

[9]Fessel J P,Loyd J E,Austin E D.The genetics of pulmonary arterial hypertension in the post-BMPR2 era[J].Pulm Circ,2011,1(3):305-319.

[10]Lesca G,Plauchu H,Coulet F,et al.Molecular screening of ALK1/ACVRL1 and ENG genes in hereditary hemorrhagic telangiectasia in France[J].Hum Mutat,2004,23(4):289-299.

[11]Harrison R E,Berger R,Haworth S G,et al.Transforming growth factor-beta receptor mutations and pulmonary arterial hypertension in childhood[J].Circulation,2005,111(4):435-441.

[12]Fujiwara M,Yagi H,Matsuoka R,et al.Implications of mutations of activin receptor-like kinase 1 gene(ALK1)in addition to bone morphogenetic protein receptor II gene(BMPR2)in children with pulmonary arterial hypertension[J].Circ J,2008,72(1):127-133.

[13]Patel H H,Murray F,Insel P A.Caveolae as organizers of pharmacologically relevant signal transduction molecules[J].Annu Rev Pharmacol Toxicol,2008,48:359-391.

[14]Frank P G,Cheung M W,Pavlides S,et al.Caveolin-1 and regulation of cellular cholesterol homeostasis[J].Am J Physiol Heart Circ Physiol,2006,291(2):H677-H686.

[15]Mercier I,Jasmin J F,Pavlides S,et al.Clinical and translational implications of the caveolin gene family:Lessons from mouse models and human genetic disorders[J].Lab Invest,2009,89(6):614-623.

[16]Chidlow J J,Sessa W C.Caveolae,caveolins,and cavins:Complex control of cellular signalling and inflammation[J].Cardiovasc Res,2010,86(2):219-225.

[17]Austin E D,Ma L,Leduc C,et al.Whole exome sequencing to identify a novel gene(caveolin-1)associated with human pulmonary arterial hypertension[J].Circ Cardiovasc Genet,2012,5(3):336-343.

[18]Murata T,Lin M I,Huang Y,et al.Reexpression of caveolin-1 in endothelium rescues the vascular,cardiac,and pulmonary defects in global caveolin-1 knockout mice[J].J Exp Med,2007,204(10):2373-2382.

[19]Eddahibi S,Hanoun N,Lanfumey L,et al.Attenuated hypoxic pulmonary hypertension in mice lacking the 5-hydroxytryptamine transporter gene[J].J Clin Invest,2000,105(11):1555-1562.

[20]Eddahibi S,Humbert M,Fadel E,et al.Serotonin transporter overexpression is responsible for pulmonary artery smooth muscle hyperplasia in primary pulmonary hypertension[J].J Clin Invest,2001,108(8):1141-1150.

[21]Marcos E,Fadel E,Sanchez O,et al.Serotonin-induced smooth muscle hyperplasia in various forms of human pulmonary hypertension[J].Circ Res,2004,94(9):1263-1270.

[22]Ma L,Chung W K.The genetic basis of pulmonary arterial hypertension[J].Hum Genet,2014,133(5):471-479.

[23]Huang Z,Wang D,Ihida-Stansbury K,et al.Defective pulmonary vascular remodeling in Smad8 mutant mice[J].Hum Mol Genet,2009,18(15):2791-2801.

[24]Shintani M,Yagi H,Nakayama T,et al.A new nonsense mutation of Smad8 associated with pulmonary arterial hypertension[J].J Med Genet,2009,46(5):331-337.

[25]Germain M,Eyries M,Montani D,et al.Genome-wide association analysis identifies a susceptibility locus for pulmonary arterial hypertension[J].Nat Genet,2013,45(5):518-521.

[26]Nimmakayalu M,Major H,Sheffield V,et al.Microdeletion of 17q22q23.2 encompassing TBX2 and TBX4 in a patient with congenital microcephaly,thyroid duct cyst,sensorineural hearing loss,and pulmonary hypertension[J].Am J Med Genet A,2011,155A(2):418-423.

[27]Kerstjens-Frederikse W S,Bongers E M,Roofthooft M T,et al.TBX4 mutations(small patella syndrome)are associated with childhood-onset pulmonary arterial hypertension[J].J Med Genet,2013,50(8):500-506.

[28]Chaouat A,Coulet F,Favre C,et al.Endoglin germline mutation in a patient with hereditary haemorrhagic telangiectasia and dexfenfluramine associated pulmonary arterial hypertension[J].Thorax,2004,59(5):446-448.

[29]Eyries M,Montani D,Girerd B,et al.EIF2AK4 mutations cause pulmonary veno-occlusive disease,a recessive form of pulmonary hypertension[J].Nat Genet,2014,46(1):65-69.

[30]de Jesus P V,Yuan K,Lyuksyutova M A,et al.Whole-exome sequencing reveals TopBP1 as a novel gene in idiopathic pulmonary arterial hypertension[J].Am J Respir Crit Care Med,2014,189(10):1260-1272.

[責(zé)任編輯:李薊龍]

作者簡(jiǎn)介:李娜(1982-),女,技師,研究方向:醫(yī)學(xué)相關(guān)。

中圖分類號(hào):R 543

文獻(xiàn)標(biāo)識(shí)碼:C

DOI:10.3969/j.issn.1673-1492.2016.02.013

來(lái)稿日期:2015-11-02

猜你喜歡
檢驗(yàn)科外顯子基因突變
外顯子跳躍模式中組蛋白修飾的組合模式分析
外顯子組測(cè)序助力產(chǎn)前診斷胎兒骨骼發(fā)育不良
管家基因突變導(dǎo)致面部特異性出生缺陷的原因
淺析檢驗(yàn)科常規(guī)生化檢驗(yàn)的室內(nèi)質(zhì)量控制
外顯子組測(cè)序助力產(chǎn)前診斷胎兒骨骼發(fā)育不良
基因突變的“新物種”
管家基因突變導(dǎo)致面部特異性出生缺陷的原因
強(qiáng)化檢驗(yàn)科在醫(yī)院感染管理中的作用
強(qiáng)化檢驗(yàn)科在醫(yī)院感染管理中的作用
人類組成型和可變外顯子的密碼子偏性及聚類分析