黃 昊,楊星九,高 苒
中國(guó)醫(yī)學(xué)科學(xué)院醫(yī)學(xué)實(shí)驗(yàn)動(dòng)物研究所 北京協(xié)和醫(yī)學(xué)院比較醫(yī)學(xué)中心,北京 100021
·綜 述·
胃癌多藥耐藥機(jī)制及研究進(jìn)展
黃 昊,楊星九,高 苒
中國(guó)醫(yī)學(xué)科學(xué)院醫(yī)學(xué)實(shí)驗(yàn)動(dòng)物研究所 北京協(xié)和醫(yī)學(xué)院比較醫(yī)學(xué)中心,北京 100021
胃癌在我國(guó)乃至全球范圍內(nèi)仍然是最常見(jiàn)的惡性腫瘤之一,其每年的死亡人數(shù)在各類癌癥中排名第3?;熑允峭砥谖赴┑闹饕委煼桨钢唬捎诓幻舾泻投嗨幠退幍陌l(fā)展,胃癌的化療療效一直較差。雖然近年發(fā)現(xiàn)許多新的分子及機(jī)制與胃癌多藥耐藥的發(fā)展相關(guān),但對(duì)其如何發(fā)生多藥耐藥的詳細(xì)機(jī)制仍不清楚。本文主要綜述胃癌多藥耐藥相關(guān)分子的鑒定及多藥耐藥機(jī)制,以便更加深入了解胃癌多藥耐藥的發(fā)生機(jī)制,可能為克服胃癌多藥耐藥提供新的思路。
胃癌;化療;多藥耐藥
ActaAcadMedSin,2016,38(6):739-745
胃癌是世界范圍內(nèi)最常見(jiàn)的惡性腫瘤之一,據(jù)2012年資料統(tǒng)計(jì),每年約有72萬(wàn)人因胃癌死亡,在各類癌癥中排名第3,僅次于肺癌和肝癌[1]。我國(guó)的胃癌發(fā)病率和死亡率也處于較高水平,均排名第3位[2]。胃癌治療方案的確定主要取決于患者就診時(shí)疾病的分期,但對(duì)大多數(shù)就診時(shí)已為中晚期的患者,只有30%的患者能進(jìn)行手術(shù),對(duì)手術(shù)后或已無(wú)法手術(shù)的大部分患者,都需要進(jìn)行以化療為主的藥物治療。即便如此,胃癌整體5年生存率仍然低于30%[3]。多藥耐藥是影響化療療效以及導(dǎo)致患者死亡的主要原因。胃癌對(duì)化療藥物相對(duì)不敏感,對(duì)其如何發(fā)生多藥耐藥的機(jī)制仍不清楚。在過(guò)去的幾十年中,經(jīng)典的胃癌化療方案包括5-氟尿嘧啶、順鉑(cisplatin,DDP)和表阿霉素,但結(jié)果不盡令人滿意。雖然多個(gè)臨床研究使用新的方案,晚期胃癌患者的生存時(shí)間有所延長(zhǎng),但整體效果仍然有限[4- 6]。近年來(lái),為揭示胃癌細(xì)胞發(fā)生耐藥的機(jī)制,研究者通過(guò)不同模型、技術(shù)及方法發(fā)現(xiàn)了一系列與胃癌多藥耐藥相關(guān)的分子,并對(duì)相應(yīng)的分子機(jī)制進(jìn)行了深入地研究。本文主要綜述胃癌多藥耐藥相關(guān)分子的鑒定及多藥耐藥機(jī)制,深入了解胃癌多藥耐藥的發(fā)生機(jī)制,可能為克服胃癌多藥耐藥提供新的思路。
為揭示胃癌細(xì)胞發(fā)生耐藥的機(jī)制,研究者使用不同的實(shí)驗(yàn)?zāi)P?、?xì)胞毒性藥物及方法,深入研究胃癌多藥耐藥相關(guān)的分子及分子機(jī)制。目前為止,大多數(shù)胃癌多藥耐藥機(jī)制的信息,均是通過(guò)研究耐藥細(xì)胞株獲得,這些耐藥細(xì)胞株可以通過(guò)細(xì)胞毒性藥物持續(xù)作用或利用細(xì)胞學(xué)和分子生物學(xué)相關(guān)工具,使親本胃癌細(xì)胞獲得耐藥性而成為耐藥細(xì)胞。此外,有研究者通過(guò)對(duì)新鮮腫瘤標(biāo)本中分離的胃癌細(xì)胞進(jìn)行檢測(cè),研究各種耐藥分子與細(xì)胞毒性藥物敏感性之間的相關(guān)性。
Zhao等[7]和Wangpaichitr等[8]通過(guò)與親本細(xì)胞系SGC- 7901相比,在兩株分別耐受長(zhǎng)春新堿和阿霉素的耐藥胃癌細(xì)胞珠中確定了63個(gè)表達(dá)上調(diào)基因,其中胸苷酸合成酶和硫氧化還原蛋白已有較多報(bào)道與耐藥有關(guān)。Wu等[9]通過(guò)建立耐羥基喜樹(shù)堿的耐藥細(xì)胞系,利用蛋白質(zhì)組學(xué)分析方法,確定307個(gè)差異表達(dá)基因與細(xì)胞藥物敏感性相關(guān),包括凋亡相關(guān)基因(BAX、TIAL1)、細(xì)胞分裂相關(guān)基因(MCM2)、細(xì)胞黏附或轉(zhuǎn)移相關(guān)基因(TIMP2、VSNL1)以及周期檢控點(diǎn)基因(RAD1)。針對(duì)另一株耐藥細(xì)胞系SGC- 7901/DDP,Huang 等[10]發(fā)現(xiàn)信號(hào)傳導(dǎo)轉(zhuǎn)錄因子3(signal transducer and activator of transcription 3,STAT3)和其靶基因在耐藥細(xì)胞中過(guò)度激活和/或過(guò)表達(dá),功能抑制STAT3后能顯著降低順鉑耐藥、增加耐藥細(xì)胞凋亡,提示通過(guò)干擾STAT3信號(hào)可能會(huì)逆轉(zhuǎn)胃癌細(xì)胞對(duì)化療藥物的耐受性。另有報(bào)道胃癌患者以及細(xì)胞中的G2和S期蛋白1的甲基化水平與化療療效顯著相關(guān),靶向抑制G2和S期蛋白1的表達(dá)能夠增強(qiáng)細(xì)胞對(duì)化療藥物的敏感性[11]。
Kim等[12]對(duì)123例DDP聯(lián)合5-氟尿嘧啶(5-fluorouracil,5-FU)化療(順鉑和5-FU方案,簡(jiǎn)稱CF方案)患者的內(nèi)鏡活檢樣本進(jìn)行前瞻性和高通量的轉(zhuǎn)錄表達(dá)譜分析,其中對(duì)22例對(duì)CF方案獲得性耐藥的患者組織重新分析,獲得633個(gè)候選的耐藥基因標(biāo)志物,根據(jù)這些基因標(biāo)志物將另外的101例胃癌患者分為兩組,其中陽(yáng)性組患者對(duì)CF方案的療效顯著低于陰性組,633個(gè)耐藥基因標(biāo)志中包括絲蘇氨酸蛋白激酶、真核翻譯起始因子4B、核糖體蛋白S6、DNA損傷修復(fù)基因以及藥物代謝基因。另外,Koizumi等[13]探討了25例晚期和/或復(fù)發(fā)性胃癌患者的胸苷酸磷酸化酶(thymidine phosphorylase,TP)和二氫嘧啶脫氫酶(dihydropyrimidine dehydrogenase,DPD)的表達(dá)水平與卡培他濱療效的關(guān)系,患者對(duì)卡培他濱的整體反應(yīng)率為32%,TP 19例(76%)、DPD 13例(52%)呈陽(yáng)性表達(dá),TP陽(yáng)性且DPD陰性的腫瘤患者療效較好;另外,Shen等[14]在統(tǒng)計(jì)晚期胃癌患者DPD和胸苷酸合成酶的mRNA表達(dá)水平與接受S- 1聯(lián)合順鉑化療療效的關(guān)系中發(fā)現(xiàn),DPD和/或胸苷酸合成酶的mRNA表達(dá)水平越低,患者對(duì)藥物的反應(yīng)性越好,生存時(shí)間越長(zhǎng)。再生基因家族成員4(regenerating islet-derived protein 4,RegⅣ)是一種分泌蛋白,研究者在36例胃癌患者血清中發(fā)現(xiàn),14例RegⅣ高豐度的患者對(duì)CF方案的療效較差,患者病情無(wú)變化甚至出現(xiàn)惡化,其余22例RegⅣ低豐度的患者中8例(36.7%)患者對(duì)CF方案的療效為部分緩解,提示對(duì)血清中RegⅣ水平的檢測(cè)有可能用于胃癌患者對(duì)耐CF方案的療效預(yù)測(cè)[15]。Rho-三磷酸鳥(niǎo)苷酶解離抑制子2在胃癌組織中與P-糖蛋白(P-glycoprotein,P-gp)的表達(dá)呈正相關(guān);在細(xì)胞水平上,其通過(guò)激活Ras相關(guān)的C3肉毒桿菌毒素基質(zhì)1活性上調(diào)P-gp的表達(dá)從而引起胃癌細(xì)胞耐藥,提示Rho-三磷酸鳥(niǎo)苷酶解離抑制子2可能作為胃癌增敏或逆轉(zhuǎn)耐藥的分子靶點(diǎn)[16]。
盡管目前對(duì)腫瘤發(fā)生發(fā)展的分子研究不斷深入,但是基于療效和/或耐藥方面的分子機(jī)制仍然不清楚。關(guān)于耐藥分子的大多數(shù)詳細(xì)信息都通過(guò)構(gòu)建耐藥細(xì)胞系的方法中獲得。雖然這些細(xì)胞系都是從臨床樣本中通過(guò)原代培養(yǎng)建立起來(lái)的,但通過(guò)體外的長(zhǎng)期培養(yǎng),其生物學(xué)行為以及基因表達(dá)譜,可能都已經(jīng)發(fā)生了很大的變化。因此,通過(guò)對(duì)細(xì)胞系研究獲得的實(shí)驗(yàn)結(jié)果仍需在臨床標(biāo)本中結(jié)合臨床情況進(jìn)行進(jìn)一步的驗(yàn)證。
多年對(duì)腫瘤多藥耐藥細(xì)胞學(xué)機(jī)制的研究,已鑒定出一些相關(guān)分子,這些多藥耐藥分子可以根據(jù)它們的作用機(jī)制被分為不同的類別,其中一些也在胃癌中被研究。
藥物外排增加及代謝異常 ATP結(jié)合盒式蛋白(ATP-binding cassette transporter,ABC)是能夠通過(guò)泵出細(xì)胞毒性藥物(如長(zhǎng)春新堿、阿霉素、放線菌素-D和紫杉烷類等)影響細(xì)胞內(nèi)藥物濃度的分子家族,該系列包括P-gp、多藥耐藥相關(guān)蛋白(multidrug resistance associated protein,MRP)1和乳腺癌耐藥相關(guān)蛋白[17-18]。P-gp是ABC家族的重要成員,并在許多腫瘤中已被廣泛研究。胃癌組織中耐藥組與藥物敏感組相比,P-gp和MRP的陽(yáng)性率更高,提示P-gp和MRP可能與胃癌的多藥耐藥相關(guān)[19]。米托蒽醌藥物誘導(dǎo)的胃癌耐藥細(xì)胞株EPG85-257中,既未檢測(cè)到P-gp,也未檢測(cè)到MRP1的表達(dá)。然而,乳腺癌耐藥相關(guān)蛋白作為ABC家族的一個(gè)異生轉(zhuǎn)運(yùn)體,在耐藥細(xì)胞中高表達(dá),其可以通過(guò)排出米托蒽醌,降低藥物毒性,表明ABC家族各個(gè)成員可能會(huì)在不同的細(xì)胞中發(fā)揮不同的功能[20]。P-gp、ABCC2和ABCC3能夠顯著影響依托泊苷的藥物代謝,但腫瘤患者的藥物轉(zhuǎn)運(yùn)載體的不同導(dǎo)致患者對(duì)口服依托泊苷療效的極大差異(25%~80%)[21]。5-FU在細(xì)胞內(nèi)不能直接代謝為有效成分,口服卡培他濱僅能在TP作用下代謝為活化的5-FU,然而TP編碼基因的甲基化修飾能導(dǎo)致TP的功能異常而導(dǎo)致5-FU耐受[22- 23]。
增加DNA損傷修復(fù)及減少細(xì)胞凋亡 化療藥物引起的DNA損傷和殺死癌細(xì)胞主要以引起細(xì)胞凋亡為主,癌基因與抑癌基因的突變能夠引起細(xì)胞周期阻滯,如p53蛋白介導(dǎo)DNA損傷后的細(xì)胞凋亡,化療藥物耐受可能與細(xì)胞正常的凋亡途徑發(fā)生異常有關(guān)[24]。據(jù)報(bào)道,p53失活與胃癌細(xì)胞耐藥相關(guān),對(duì)于DDP和5-FU,p53野生型的細(xì)胞比p53突變的細(xì)胞更敏感[25]。然而,以阿霉素或5-FU為基礎(chǔ)的化療,野生型p53的晚期胃癌患者對(duì)化療的敏感性顯著高于p53突變的患者[26]。拓樸異構(gòu)酶Ⅱ是參與DNA復(fù)制和損傷修復(fù)的關(guān)鍵酶,其表達(dá)水平或功能下調(diào)能夠?qū)е禄熌退嶽27]。胃癌細(xì)胞株SGC- 7901經(jīng)阿霉素或依托泊苷處理后成為多藥耐藥細(xì)胞株,小干擾RNA敲低耐藥細(xì)胞中端粒重復(fù)結(jié)合因子2(telomeric repeat-binding factor 2,TRF2)的表達(dá)能部分逆轉(zhuǎn)其耐藥表型,高表達(dá)TRF2能促進(jìn)SGC- 7901細(xì)胞的耐藥表型,且TRF2抑制了ATM依賴的雙鏈斷裂的易感基因的表達(dá)[28];另有報(bào)道端粒末端復(fù)合體上TRF2的相互作用蛋白R(shí)as相關(guān)蛋白1在依托泊苷處理后的胃癌親本及耐藥細(xì)胞中呈高表達(dá);耐藥細(xì)胞中靶向抑制Ras相關(guān)蛋白1的表達(dá)能部分逆轉(zhuǎn)胃癌耐藥,且增加了ATM通路的活化,包括組蛋白H2AX和p53的磷酸化,從而促進(jìn)細(xì)胞凋亡[29]。
藥物活性靶蛋白的修飾或改變 磷脂酰肌醇- 3-羥激酶(phosphatidylinositol 3-hydroxy kinase,PI3K)及其下游靶點(diǎn)蛋白激酶B(protein kinase B,亦稱Akt),是由各種酪氨酸激酶受體誘導(dǎo)致癌的關(guān)鍵因子。PI3K/Akt的上調(diào)表達(dá)賦予了AGS細(xì)胞對(duì)P-gp相關(guān)及不相關(guān)化療藥物的耐受性,抑制PI3K/Akt的表達(dá)能部分逆轉(zhuǎn)PI3K/Akt介導(dǎo)的多藥耐藥。研究還表明,AGS細(xì)胞中P-gp、Bcl- 2和Bax的表達(dá)改變可能會(huì)影響PI3K/Akt誘導(dǎo)的耐藥性[30]。Oki等[31]研究顯示,Akt的活化與原發(fā)性胃癌組織對(duì)多種化療藥物(5-氟尿嘧啶、阿霉素、絲裂霉素C、順鉑)耐受增加以及酪氨酸磷酸酶蛋白的雜合性缺失相關(guān),表明Akt可能是一種能改善胃癌患者預(yù)后的新治療方法或藥物敏感性檢測(cè)的分子靶點(diǎn)。Yu等[32]發(fā)現(xiàn)胃癌組織中Akt及磷酸化的Akt呈高表達(dá),在體外實(shí)驗(yàn)中發(fā)現(xiàn)依托泊苷和阿霉素可劑量和時(shí)間依賴性地刺激胃癌細(xì)胞中的Akt和PI3K的活性;PI3K抑制劑預(yù)處理胃癌細(xì)胞,能阻斷Akt的磷酸化及促進(jìn)細(xì)胞對(duì)依托泊苷和阿霉素的敏感性。在另一項(xiàng)研究中,阿霉素耐受的胃癌細(xì)胞SGC- 7901/阿霉素相對(duì)于親本細(xì)胞,磷酸化的Akt表達(dá)水平較高。使用PI3K抑制劑LY294002 處理SGC- 7901/阿霉素細(xì)胞,p-Akt和P-gp的表達(dá)水平下降,部分耐藥表型得到逆轉(zhuǎn)[33]。小分子多靶點(diǎn)酪氨酸激酶抑制劑阿帕替尼 (YN968D1),雖不能阻斷絲/蘇氨酸激酶、細(xì)胞外調(diào)節(jié)蛋白激酶1/2通路以及下調(diào)ABCB1或ABCG2的表達(dá),但其能通過(guò)抑制轉(zhuǎn)運(yùn)功能而逆轉(zhuǎn)ABCB1和ABCG2介導(dǎo)的多藥耐藥,阿帕替尼有可能用于克服對(duì)傳統(tǒng)化療藥物產(chǎn)生的多藥耐藥[34]。
腫瘤干細(xì)胞理論 腫瘤治療的傳統(tǒng)方法是通過(guò)手術(shù)切除、化療、放療等方法盡量去除已經(jīng)存在的腫瘤細(xì)胞,但腫瘤復(fù)發(fā)和轉(zhuǎn)移仍然是現(xiàn)今需要面對(duì)的問(wèn)題。近年來(lái),腫瘤干細(xì)胞學(xué)說(shuō)受到越來(lái)越多的關(guān)注,研究者們?cè)诙喾N惡性腫瘤中皆成功分離出腫瘤干細(xì)胞,腫瘤干細(xì)胞的ABC轉(zhuǎn)運(yùn)家族蛋白以及抗凋亡蛋白表達(dá)水平較高、活性氧降低、對(duì)DNA損傷修復(fù)更為高效[35- 36]。在現(xiàn)階段的化療和放療過(guò)程中,腫瘤干細(xì)胞得到富集并導(dǎo)致隨后的腫瘤復(fù)發(fā)[37- 39],也是導(dǎo)致腫瘤治療失敗的主要原因之一。胃癌中的腫瘤干細(xì)胞通常由組織特異性干細(xì)胞轉(zhuǎn)化而來(lái),而胃癌細(xì)胞是否來(lái)源于腫瘤干細(xì)胞仍然不是很清楚[40- 41]。胃癌組織中的干細(xì)胞標(biāo)志物包括組織特異性肌動(dòng)蛋白結(jié)合蛋白Villin、亮氨酸富集的G蛋白偶聯(lián)受體5、Y性別決定區(qū)域盒- 2以及傳統(tǒng)的CD133或CD44[42]。Xu等[43]在胃癌干細(xì)胞克隆中分離出CD44與RNA結(jié)合蛋白Musashi- 1陽(yáng)性的細(xì)胞亞群,其具有自我更新及無(wú)限增殖的能力;與CD44或Musashi- 1單一陽(yáng)性和陰性細(xì)胞相比,雙陽(yáng)的細(xì)胞ABCG2表達(dá)上調(diào)、對(duì)藥物的外排能力增強(qiáng),從而導(dǎo)致細(xì)胞對(duì)阿霉素引起的細(xì)胞凋亡耐受。
上皮細(xì)胞向間質(zhì)細(xì)胞轉(zhuǎn)化 研究顯示腫瘤細(xì)胞的多藥耐藥與上皮細(xì)胞-間充質(zhì)轉(zhuǎn)化(epithelial-mesenchymal transition,EMT)相關(guān)。EMT是指上皮樣腫瘤細(xì)胞向間質(zhì)樣細(xì)胞表型轉(zhuǎn)化的過(guò)程,該過(guò)程中細(xì)胞發(fā)生了系列復(fù)雜的變化,其中形態(tài)學(xué)上獲得間質(zhì)樣細(xì)胞的特征,細(xì)胞極性消失,失去與基底膜的連接,從而獲得較高的遷移及轉(zhuǎn)移能力;另外分子水平上包括細(xì)胞黏附分子的改變,如E-鈣黏蛋白表達(dá)降低、N-鈣黏蛋白表達(dá)上調(diào)、基質(zhì)金屬蛋白酶- 2、基質(zhì)金屬蛋白酶- 9等分泌增加[44- 45],因此,EMT在惡性腫瘤的發(fā)生及發(fā)展中具有重要意義。腫瘤細(xì)胞對(duì)化療藥物5-FU、順鉑和阿霉素耐受與EMT相關(guān)分子盒式同源異形盒、Twist高表達(dá)呈正相關(guān),以及與上皮細(xì)胞表面標(biāo)志物E-鈣黏蛋白、上皮樣抗原和T細(xì)胞分化蛋白2呈負(fù)相關(guān)[46]。雖然胃癌中關(guān)于EMT與化療耐受的報(bào)道較少,但有報(bào)道EMT與胃癌的轉(zhuǎn)移及化療預(yù)后較差顯著相關(guān)[47- 51]。曲妥珠單抗耐受的胃癌細(xì)胞發(fā)生了典型的EMT,并在體內(nèi)、外的侵襲和轉(zhuǎn)移能力顯著增強(qiáng),進(jìn)一步的機(jī)制研究顯示耐曲妥珠單抗的胃癌細(xì)胞、Notch信號(hào)通路被激活、絲/氨酸激酶的磷酸化水平降低、白介素6的釋放增加從而激活STAT3;靶向抑制Notch通路以及STAT3的表達(dá)能夠逆轉(zhuǎn)胃癌細(xì)胞耐藥[47]。
缺氧及缺氧誘導(dǎo)因子- 1α 在實(shí)體性腫瘤中,缺氧是常見(jiàn)的現(xiàn)象,其與腫瘤患者的不良預(yù)后有關(guān)。缺氧能影響很多蛋白的異常表達(dá),其中最重要的是缺氧及缺氧誘導(dǎo)因子- 1α (hypoxia inducible factor- 1α,HIF- 1α),HIF- 1α與多數(shù)腫瘤的不良預(yù)后相關(guān)[52- 53]。胃癌中HIF- 1α通過(guò)抑制α5整合素和缺氧誘導(dǎo)的MGr1-Ag/37LRP(37KDa層黏連蛋白受體的前體蛋白同源蛋白,多藥耐藥相關(guān)抗原)的表達(dá),介導(dǎo)凋亡耐受,因此,MGr1-Ag/37LRP被認(rèn)為是一種促進(jìn)胃癌細(xì)胞耐藥的細(xì)胞膜蛋白[54- 55]。有報(bào)道靶向抑制HIF- 1α的表達(dá),P-糖蛋白、低密度脂蛋白受體及Bcl- 2的表達(dá)水平下調(diào),胃癌耐藥細(xì)胞對(duì)化療藥物的敏感性增強(qiáng)[56]。
微小RNA 微小RNA(microRNA,miRNA)是一類內(nèi)源的、長(zhǎng)度約為20 bp的非編碼RNA,主要參與轉(zhuǎn)錄后水平調(diào)控。近年來(lái),miRNA在多藥耐藥研究中越來(lái)越受到重視,胃癌耐藥方面也有一些新的發(fā)現(xiàn)。多藥耐藥胃癌細(xì)胞系SGC-7901/VCR與親本細(xì)胞系SGC-7901相比,miR-15b、miR-16、miR- 497和miR- 181b下調(diào),過(guò)表達(dá)miR- 15b或miR- 16能使耐藥細(xì)胞SGC- 7901/VCR對(duì)化療藥物敏感性增強(qiáng),而在親本細(xì)胞SGC- 7901中抑制miR- 15b或miR- 16表達(dá)能夠促進(jìn)細(xì)胞耐藥[57- 58]。在另一胃癌耐藥細(xì)胞SGC- 7901/DDP中,miRNA- 200c通過(guò)E-鈣黏蛋白間接調(diào)節(jié)細(xì)胞凋亡,靶向抑制miRNA- 200c表達(dá)可以逆轉(zhuǎn)耐藥細(xì)胞耐藥,且能抑制細(xì)胞增殖,提示其參與了逆轉(zhuǎn)胃癌耐藥以及抑制細(xì)胞增殖的過(guò)程[59]。miR- 27a下調(diào)導(dǎo)致胃癌細(xì)胞里阿霉素的積累增加,釋放減少,從而增加胃癌細(xì)胞對(duì)藥物的敏感性[60]。miR- 508- 5p通過(guò)靶向抑制鋅指蛋白結(jié)構(gòu)域1與ABCB1的轉(zhuǎn)錄及表達(dá),從而調(diào)節(jié)胃癌細(xì)胞耐藥[61]。miR- 23b- 3p通過(guò)靶向抑制自噬相關(guān)蛋白12及高遷移率族蛋白盒2的表達(dá),抑制胃癌細(xì)胞的自噬,在體內(nèi)、外實(shí)驗(yàn)中均能提高胃癌細(xì)胞對(duì)化療藥物的敏感性[62]。miR- 218通過(guò)下調(diào)胃癌細(xì)胞中的卷曲蛋白類受體的表達(dá),阿霉素的外排減少,藥物引起的凋亡效應(yīng)增強(qiáng),從而達(dá)到增敏效果以及抑制胃癌細(xì)胞的多藥耐藥[63]。
其他 化療藥物在體內(nèi)的生物分布,顯著影響著腫瘤化療療效。然而,實(shí)體腫瘤并不是簡(jiǎn)單的腫瘤細(xì)胞聚集,他們?nèi)缤鞴僖粯?,具有?fù)雜的多像結(jié)構(gòu),其由鑲嵌在細(xì)胞外基質(zhì)和滋養(yǎng)血管網(wǎng)絡(luò)中的腫瘤細(xì)胞和基質(zhì)細(xì)胞組成。這些組成部分都可以在同一腫瘤中從一個(gè)位置轉(zhuǎn)移到另一位置,從而影響腫瘤的治療。因此也稱為耐藥的組織學(xué)機(jī)制。體外實(shí)驗(yàn)中,腫瘤細(xì)胞對(duì)化療藥物呈高敏感性,然而在體內(nèi)的低效性可能是由于藥物不能有效地達(dá)到腫瘤組織、藥物以非活性的代謝物滲透到腫瘤組織(腫瘤生物利用度下降)、腫瘤在組織水平上(細(xì)胞外基質(zhì)成分、結(jié)締組織和血管網(wǎng)絡(luò))形成了適應(yīng)性反應(yīng)[3]。腫瘤細(xì)胞與微環(huán)境產(chǎn)生的細(xì)胞外基質(zhì)、細(xì)胞因子和生長(zhǎng)因子成分的相互作用有助于形成耐藥性。其中,特別是血管生成的內(nèi)源性介質(zhì),在藥物化療的情況下,不僅通過(guò)血管生成的誘導(dǎo),也由于細(xì)胞內(nèi)信號(hào)級(jí)聯(lián)反應(yīng)的激活,抑制細(xì)胞凋亡和激活腫瘤細(xì)胞的遷移和侵襲活性,促進(jìn)腫瘤細(xì)胞生存和進(jìn)展[64]。
綜上,胃癌多藥耐藥的潛在分子機(jī)制解釋已經(jīng)取得相當(dāng)大的進(jìn)展,然而對(duì)胃癌多藥耐藥機(jī)制的認(rèn)識(shí)還不夠。盡管許多新的分子標(biāo)記物已被確定為能夠參與胃癌耐藥,然而,除了經(jīng)典的分子,如P-gp和MRP1,這些新的分子標(biāo)記物之間復(fù)雜的分子網(wǎng)絡(luò)機(jī)制仍不明確,因此仍未發(fā)現(xiàn)特異的化療耐受檢測(cè)系統(tǒng)預(yù)測(cè)胃癌多藥耐藥。
[1]Torre LA,Bray F,Siegel RL,et al. Global cancer statistics,2012 [J]. CA Cancer J Clin,2015,65(2):87- 108.
[2]陳萬(wàn)青,張思維,曾紅梅,等.中國(guó)2010年惡性腫瘤發(fā)病與死亡[J].中國(guó)腫瘤,2014,23(1):1- 10.
[3]Sasako M. Surgery and adjuvant chemotherapy [J]. Int J Clin Oncol,2008,13(3):193- 195.
[4]Wong R,Cunningham D. Optimising treatment regimens for the management of advanced gastric cancer [J]. Ann Oncol,2009,20(4):605- 608.
[5]Zheng L,Tan W,Zhang J,et al. Combining trastuzumab and cetuximab combats trastuzumab-resistant gastric cancer by effective inhibition of EGFR/ErbB2 heterodimerization and signaling [J]. Cancer Immunol Immunother,2014,63(6):581- 586.
[6]Geng R,Li J. Apatinib for the treatment of gastric cancer [J]. Expert Opin Pharmacother,2015,16(1):117- 122.
[7]Zhao Y,You H,Liu F,et al. Differentially expressed gene profiles between multidrug resistant gastric adenocarcinoma cells and their parental cells [J]. Cancer Lett,2002,185(2):211- 218.
[8]Wangpaichitr M,Sullivan EJ,Theodoropoulos G,et al. The relationship of thioredoxin- 1 and cisplatin resistance:its impact on ROS and oxidative metabolism in lung cancer cells [J]. Mol Cancer Ther,2012,11(3):604- 615.
[9]Wu XM,Shao XQ,Meng XX,et al. Genome-wide analysis of microRNA and mRNA expression signatures in hydroxycamptothecin-resistant gastric cancer cells [J]. Acta Pharmacol Sin,2011,32(2):259- 269.
[10]Huang S,Chen M,Shen Y,et al. Inhibition of activated Stat3 reverses drug resistance to chemotherapeutic agents in gastric cancer cells [J]. Cancer Lett,2012,315(2):198- 205.
[11]Subhash VV,Tan SH,Tan WL,et al. GTSE1 expression represses apoptotic signaling and confers cisplatin resistance in gastric cancer cells [J]. BMC Cancer,2015,15:550.
[12]Kim HK,Choi IJ,Kim CG,et al. A gene expression signature of acquired chemoresistance to cisplatin and fluorouracil combination chemotherapy in gastric cancer patients [J]. PLoS One,2011,6(2):e16694.
[13]Koizumi W,Okayasu I,Hyodo I,et al. Prediction of the effect of capecitabine in gastric cancer by immunohistochemical staining of thymidine phosphorylase and dihydropyrimidine dehydrogenase [J]. Anticancer Drugs,2008,19(8):819- 824.
[14]Shen XM,Zhou C,Lian L,et al. Relationship between the DPD and TS mRNA expression and the response to S- 1-based chemotherapy and prognosis in patients with advanced gastric cancer [J]. Cell Biochem Biophys,2014,71(3):1653- 1661.
[15]Mitani Y,Oue N,Matsumura S,et al. Reg Ⅳ is a serum biomarker for gastric cancer patients and predicts response to 5-fluorouracil-based chemotherapy [J]. Oncogene,2007,26(30):4383- 4393.
[16]Zheng Z,Liu B,Wu X. RhoGDI2 up-regulates P-glycoprotein expression via Rac1 in gastric cancer cells [J]. Cancer Cell Int,2015,15:41.
[17]DeGorter MK,Xia CQ,Yang JJ,et al. Drug transporters in drug efficacy and toxicity [J]. Annu Rev Pharmacol Toxicol,2012,52:249- 273.
[18]Ni Z,Bikadi Z,Rosenberg MF,et al. Structure and function of the human breast cancer resistance protein (BCRP/ABCG2) [J]. Curr Drug Metab,2010,11(7):603- 617.
[19]Xu HW,Xu L,Hao JH,et al. Expression of P-glycoprotein and multidrug resistance-associated protein is associated with multidrug resistance in gastric cancer [J]. J Int Med Res,2010,38(1):34- 42.
[20]Ross DD,Yang W,Abruzzo LV,et al. Atypical multidrug resistance:breast cancer resistance protein messenger RNA expression in mitoxantrone-selected cell lines [J]. J Natl Cancer Inst,1999,91(5):429- 433.
[21]Lagas JS,F(xiàn)an L,Wagenaar E,et al. P-glycoprotein (P-gp/Abcb1),Abcc2,and Abcc3 determine the pharmacokinetics of etoposide [J]. Clin Cancer Res,2010,16(1):130- 140.
[22]Bonotto M,Bozza C,Di Loreto C,et al. Making capecitabine targeted therapy for breast cancer:which is the role of thymidine phosphorylase? [J]. Clin Breast Cancer,2013,13(3):167- 172.
[23]Kosuri KV,Wu X,Wang L,et al. An epigenetic mechanism for capecitabine resistance in mesothelioma [J]. Biochem Biophys Res Commun,2010,391(3):1465- 1470.
[24]Menon V,Povirk L. Involvement of p53 in the repair of DNA double strand breaks:multifaceted roles of p53 in homologous recombination repair (HRR) and non-homologous end joining (NHEJ) [J]. Subcell Biochem,2014,85:321- 336.
[25]Matsuhashi N,Saio M,Matsuo A,et al. The evaluation of gastric cancer sensitivity to 5-FU/CDDP in terms of induction of apoptosis:time-and p53 expression-dependency of anti-cancer drugs [J]. Oncol Rep,2005,14(3):609- 615.
[26]Cascinu S,Graziano F,Del Ferro E,et al. Expression of p53 protein and resistance to preoperative chemotherapy in locally advanced gastric carcinoma [J]. Cancer,1998,83(9):1917- 1922.
[27]Nitiss JL. Targeting DNA topoisomerase Ⅱ in cancer chemotherapy [J]. Nat Rev Cancer,2009,9(5):338- 350.
[28]Ning H,Li T,Zhao L,et al. TRF2 promotes multidrug resistance in gastric cancer cells[J]. Cancer Biol Ther,2006,5(8):950- 956.
[29]Li X,Liu W,Wang H,et al. Rap1 is indispensable for TRF2 function in etoposide-induced DNA damage response in gastric cancer cell line [J]. Oncogenesis,2015,4:e144.
[30]Han Z,Hong L,Han Y,et al. Phospho Akt mediates multidrug resistance of gastric cancer cells through regulation of P-gp,Bcl- 2 and Bax [J]. J Exp Clin Cancer Res,2007,26(2):261- 268.
[31]Oki E,Baba H,Tokunaga E,et al. Akt phosphorylation associates with LOH of PTEN and leads to chemoresistance for gastric cancer [J]. Int J Cancer,2005,117(3):376- 380.
[32]Yu HG,Ai YW,Yu LL,et al. Phosphoinositide 3-kinase/Akt pathway plays an important role in chemoresistance of gastric cancer cells against etoposide and doxorubicin induced cell death [J]. Int J Cancer,2008,122(2):433- 443.
[33]Zhang Y,Qu X,Hu X,et al. Reversal of P-glycoprotein-mediated multi-drug resistance by the E3 ubiquitin ligase Cbl-b in human gastric adenocarcinoma cells [J]. J Pathol,2009,218(2):248- 255.
[34]Mi YJ,Liang YJ,Huang HB,et al. Apatinib (YN968D1) reverses multidrug resistance by inhibiting the efflux function of multiple ATP-binding cassette transporters [J]. Cancer Res,2010,70(20):7981- 7991.
[35]Moitra K,Lou H,Dean M. Multidrug efflux pumps and cancer stem cells:insights into multidrug resistance and therapeutic development [J]. Clin Pharmacol Ther,2011,89(4):491- 502.
[36]Todaro M,Alea MP,Di Stefano AB,et al. Colon cancer stem cells dictate tumor growth and resist cell death by production of interleukin- 4 [J]. Cell Stem Cell,2007,1(4):389- 402.
[37]Creighton CJ,Li X,Landis M,et al. Residual breast cancers after conventional therapy display mesenchymal as well as tumor-initiating features [J]. Proc Natl Acad Sci U S A,2009,106(33):13820- 13825.
[38]Chen J,Li Y,Yu TS,et al. A restricted cell population propagates glioblastoma growth after chemotherapy [J]. Nature,2012,488(7412):522- 526.
[39]Allan AL,Vantyghem SA,Tuck AB,et al. Tumor dormancy and cancer stem cells:implications for the biology and treatment of breast cancer metastasis [J]. Breast Dis,2006,26:87- 98.
[40]Zhu L,Gibson P,Currle DS,et al. Prominin 1 marks intestinal stem cells that are susceptible to neoplastic transformation [J]. Nature,2009,457(7229):603- 607.
[41]Barker N,Ridgway RA,van Es JH,et al. Crypt stem cells as the cells-of-origin of intestinal cancer [J]. Nature,2009,457(7229):608- 611.
[42]Zhao Y,F(xiàn)eng F,Zhou YN. Stem cells in gastric cancer [J]. World J Gastroenterol,2015,21(1):112- 123.
[43]Xu M,Gong A,Yang H,et al. Sonic hedgehog-glioma associated oncogene homolog 1 signaling enhances drug resistance in CD44/Musashi- 1 gastric cancer stem cells [J]. Cancer Lett,2015,369(1):124- 133.
[44]Thiery JP,Acloque H,Huang RY,et al. Epithelial-mesenchymal transitions in development and disease [J]. Cell,2009,139(5):871- 890.
[45]Donnenberg VS,Donnenberg AD. Stem cell state and the epithelial-to-mesenchymal transition:implications for cancer therapy [J]. J Clin Pharmacol,2015,55(6):603- 619.
[46]Arumugam T,Ramachandran V,F(xiàn)ournier KF,et al. Epithelial to mesenchymal transition contributes to drug resistance in pancreatic cancer [J]. Cancer Res,2009,69(14):5820- 5828.
[47]Yang Z,Guo L,Liu D,et al. Acquisition of resistance to trastuzumab in gastric cancer cells is associated with activation of IL- 6/STAT3/Jagged- 1/Notch positive feedback loop [J]. Oncotarget,2015,6(7):5072- 5087.
[48]Zhang B,Yang Y,Shi X,et al. Proton pump inhibitor pantoprazole abrogates adriamycin-resistant gastric cancer cell invasiveness via suppression of Akt/GSK-beta/beta-catenin signaling and epithelial-mesenchymal transition [J]. Cancer Lett,2015,356(2 Pt B):704- 712.
[49]Zang M,Zhang B,Zhang Y,et al. CEACAM6 promotes gastric cancer invasion and metastasis by inducing epithelial-mesenchymal transition via PI3K/AKT signaling pathway [J]. PLoS One,2014,9(11):e112908.
[50]Han RF,Ji X,Dong XG,et al. An epigenetic mechanism underlying doxorubicin induced EMT in the human BGC- 823 gastric cancer cell [J]. Asian Pac J Cancer Prev,2014,15(10):4271- 4274.
[51]Cho HJ,Park SM,Kim IK,et al. RhoGDI2 promotes epithelial-mesenchymal transition via induction of snail in gastric cancer cells [J]. Oncotarget,2014,5(6):1554- 1564.
[52]Zhu H,Luo SF,Wang J,et al. Effect of environmental factors on chemoresistance of HepG2 cells by regulating hypoxia-inducible factor-1alpha [J]. Chin Med J (Engl),2012,125(6):1095- 1103.
[53]Min L,Chen Q,He S,et al. Hypoxia-induced increases in A549/CDDP cell drug resistance are reversed by RNA interference of HIF- 1alpha expression [J]. Mol Med Rep,2012,5(1):228- 232.
[54]Rohwer N,Welzel M,Daskalow K,et al. Hypoxia-inducible factor 1alpha mediates anoikis resistance via suppression of alpha5 integrin [J]. Cancer Res,2008,68(24):10113- 10120.
[55]Liu L,Sun L,Zhang H,et al. Hypoxia-mediated up-regulation of MGr1-Ag/37LRP in gastric cancers occurs via hypoxia-inducible-factor 1-dependent mechanism and contributes to drug resistance [J]. Int J Cancer,2009,124(7):1707- 1715.
[56]Zhao Q,Li Y,Tan BB,et al. HIF- 1alpha induces multidrug resistance in gastric cancer cells by inducing MiR- 27a [J]. PLoS One,2015,10(8):e0132746.
[57]Matuszcak C,Haier J,Hummel R,et al. MicroRNAs:promising chemoresistance biomarkers in gastric cancer with diagnostic and therapeutic potential [J]. World J Gastroenterol,2014,20(38):13658- 13666.
[58]Hong L,Han Y,Yang JJ,et al. MicroRNAs in gastrointestinal cancer:prognostic significance and potential role in chemoresistance [J]. Expert Opin Biol Ther,2014,14(8):1103- 1111.
[59]Chen Y,Zuo J,Liu Y,et al. Inhibitory effects of miRNA- 200c on chemotherapy-resistance and cell proliferation of gastric cancer SGC7901/DDP cells [J]. Chin J Cancer,2010,29(12):1006- 1011.
[60]Zhao XH,Yang L,Hu JG. Down-regulation of miR-27a might inhibit proliferation and drug resistance of gastric cancer cells [J]. J Exp Clin Cancer Res,2011,30:55.
[61]Shang Y,Zhang Z,Liu Z,et al. miR- 508- 5p regulates multidrug resistance of gastric cancer by targeting ABCB1 and ZNRD1 [J]. Oncogene,2014,33(25):3267- 3276.
[62]An Y,Zhang Z,Shang Y,et al. miR- 23b- 3p regulates the chemoresistance of gastric cancer cells by targeting ATG12 and HMGB2 [J]. Cell Death Dis,2015,6:e1766.
[63]Zhang XL,Shi HJ,Wang JP,et al. miR- 218 inhibits multidrug resistance (MDR) of gastric cancer cells by targeting Hedgehog/smoothened [J]. Int J Clin Exp Pathol,2015,8(6):6397- 6406.
[64]Cao YH,Cao RH,Hedlund EM. Regulation of tumor angiogenesis and metastasis by FGF and PDGF signaling pathways [J]. J Mol Med (Berl),2008,86(7):785- 789.
Research Advances in the Mechanisms of Gastric Cancer Multidrug Resistance
HUANG Hao,YANG Xing-jiu,GAO Ran
Institute of Laboratory Animal Science,Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College,Beijing 100021,China
GAO Ran Tel:010- 67776529,E-mail:gaoran@cnilas.org
Gastric cancer is one of the most common human malignancies and the third cause of death from cancer in China and worldwide. Chemotherapy is still one of the major treatment options for advanced gastric cancer. However,the efficacy of chemotherapy for gastric cancer remains poor due to its insensitivity and the development of multidrug resistance (MDR). While many molecules and mechanisms have been found to be associated with the development of gastric cancer MDR,the specific mechanisms remains unclear. In our current article,we reviews the identification of MDR-related molecules and mechanisms,with an attempt to a better understand the specific mechanisms of gastric cancer MDR and thus provide new insights into the fight against gastric cancer MDR.
gastric cancer;chemotherapy;multidrug resistance
中央級(jí)公益性科研院所基本科研業(yè)務(wù)費(fèi)(2016ZX310032)和協(xié)和青年科研基金(3332016078) Supported by the Central Public-interest Scientific Institution Basal Research Fund (2016ZX310032),and the Union Youth Science & Research Fund (3332016078)
高 苒 電話:010- 67776529,電子郵件:gaoran@cnilas.org
R735.2
A
1000- 503X(2016)06- 0739- 07
10.3881/j.issn.1000- 503X.2016.06.020
2015- 09- 29)