張麗波,周立君
· 綜述 ·
糖原合酶激酶-3β與心肌疾病的研究進展
張麗波1,周立君1
糖原合酶激酶3β(GSK-3β)是一種絲氨酸/蘇氨酸蛋白激酶,調(diào)節(jié)多種細胞功能,包括代謝、轉(zhuǎn)錄、翻譯、細胞生長和凋亡[1],GSK-3β在心肌細胞的生長與凋亡中也扮演著重要角色,參與調(diào)控心肌細胞肥大[2,3]、心力衰竭(HF)[4,5]、缺血再灌注損傷(I/R)[6-8]、心肌纖維化[9,10],本文就其與心臟疾病的發(fā)生、發(fā)展進行總結(jié)。
GSK-3是一種絲氨酸/蘇氨酸蛋白激酶,廣泛表達于多種細胞中,1980年首次被鑒定出參與調(diào)節(jié)糖原代謝,并且是糖原代謝的限速酶。1990年,基于部分多肽序列首次克隆出GSK-3基因[11]。GSK-3高度保守,從果蠅到人類GSK-3激酶結(jié)構(gòu)域序列上有90%以上的同源性[12]。GSK-3家族包括兩個亞型,即GSK-3α(51 kDa)和GSK-3β(47 kDa),二者的激酶結(jié)構(gòu)域有98%的同源性,主要區(qū)別在于N端和C端,GSK-3α包含一個功能不明的富含甘氨酸的N末端。所以這種在激酶結(jié)構(gòu)域異常高的同源性有可能阻礙研究異構(gòu)體小分子抑制劑的發(fā)展前景。兩種亞型既有重疊功能,又有各自的獨特性[13],例如:只有GSK-3β在Ser389/Thr390位點磷酸化;GSK-3β在AA-13具有神經(jīng)元特異性剪切位點;某些作用底物具有亞型特異性。此外,兩種亞型全基因刪除的生物表型亦有差異,在小鼠模型中,全基因刪除GSK-3β是胚胎致死性的,但缺失GSK-3α基因型的小鼠是正常的并能存活數(shù)年[13]。
GSK-3β參與很多生理或病理過程,包括細胞新陳代謝,細胞的增殖、凋亡、遷移、細胞周期的調(diào)節(jié),蛋白質(zhì)翻譯和基因轉(zhuǎn)錄等,是眾多細胞信號轉(zhuǎn)導(dǎo)途徑的交叉匯點,要完成如此多的功能,GSK-3β活性必然受到極其復(fù)雜且精細的調(diào)節(jié)[14]。
2.1GSK-3β的磷酸化調(diào)節(jié) GSK-3β N端的第9位絲氨酸(Ser 9)磷酸化可顯著抑制其活性,絲氨酸殘基的磷酸化使GSK-3β的N端自身變成假底物,從而占據(jù)真正底物的起始磷酸鹽保留的結(jié)合位點[15]。蛋白激酶B(PKB/Akt)/GSK-3β信號通路是最常見的磷酸化調(diào)節(jié)通路,Akt的激活常依賴于其上游分子磷脂酰肌醇-3激酶(PI3K)的活性,PI3K激活A(yù)kt,Akt磷酸化下游信號分子GSK-3β N-端的Ser9而抑制其活性,隨后激活下游靶點,發(fā)揮細胞調(diào)節(jié)作用[16]。此外,哺乳類雷帕霉素靶蛋白復(fù)合物-2(mTORC2)磷酸化Akt的第473位絲氨酸位點可完全激活A(yù)kt[17]。多條信號轉(zhuǎn)導(dǎo)途徑均經(jīng)過GSK-3β的Ser9磷酸化位點,例如蛋白激酶A(PKA)、蛋白激酶C(PKC)、核糖體S6激酶體系(p90RSK和p70S6K)等。近幾年有研究報道[18],p38絲裂原活化蛋白激酶(p38MAPK)通過磷酸化GSK-3β C末端Ser389和Thr390抑制其活性,具體機制尚未完全清楚。與N端絲氨酸磷酸化的抑制作用相反,磷酸化GSK-3β C端第216位酪氨酸殘基(Tyr216)可促進其活性[19]。
3.1GSK-3β在心肌缺血再灌注(I/R)損傷中的作用 缺血再灌注損傷是缺血組織器官在恢復(fù)血流后,其細胞代謝紊亂、功能障礙及結(jié)構(gòu)破壞反而加重的現(xiàn)象,近年來減輕I/R損傷以獲得更有效的心肌保護一直是心臟研究的一個主要方向。大量研究表明[24],GSK-3β Ser9磷酸化對于缺血預(yù)適應(yīng)的心肌保護作用是必須的。Juhaszova等[25]報道抑制GSK-3β活性會延遲線粒體通透性轉(zhuǎn)換孔(mPTP)的開放,這對心肌保護有重要影響。該研究團隊應(yīng)用小分子RNA干擾技術(shù)同樣證明了保護性信號通路主要是GSK-3β亞型介導(dǎo)的,而與GSK-3α無關(guān)。Ludovic等[26]用GSK-3β-Ser 9轉(zhuǎn)基因小鼠證明GSK-3β Ser9磷酸化對于缺血后的保護作用亦是重要的,并且通過一種非依賴親環(huán)蛋白D(cyclophilin-D,CypD)的模式抑制mPTP開放來產(chǎn)生這種作用。有報道[27]稱磷酸化GSK-3β在線粒體內(nèi)膜與腺嘌呤核苷酸移位酶(ANT)結(jié)合增加,使ANT和CypD的相互作用減少來升高mPTP的開放閾值發(fā)揮心肌保護作用。然而GSK-3β在線粒體通透性轉(zhuǎn)換孔調(diào)控靶點尚不清。
Woulfe等[28]應(yīng)用可誘導(dǎo)型的心肌細胞特異性的GSK-3β基因敲除小鼠模型證實心肌細胞GSK-3β的敲除對陳舊性心肌梗死有保護作用。GSK-3β敲除鼠模型(GSK-3β KO)可以減少心室重構(gòu)、保護左室和減輕心肌梗死后心臟擴張。這種保護作用并未通過減少GSK-3β KO模型心肌的梗死面積發(fā)揮,因為應(yīng)用的是永久性閉塞的心肌梗死模型,也就是梗死已經(jīng)完全形成后才敲除該基因。在GSK-3β KO心肌梗死模型中觀察到外層心肌的肥大更傾向于生理性而非病理性。
但有些研究發(fā)現(xiàn)GSK-3β對缺血性心肌的作用與前面研究結(jié)果大相徑庭。Webb等[29]建立持續(xù)激活GSK-3α和GSK-3β基因的雙植入(double KI)小鼠模型,結(jié)果顯示二者的持續(xù)活性對心肌梗死后慢性壓力重構(gòu)無影響,這說明局部心肌梗死后的左室重構(gòu)和GSK-3無關(guān)。最近Peiyong等[30]通過應(yīng)用GSK-3β轉(zhuǎn)基因小鼠驗證不管是單純延長缺血亦或再灌注后短暫的缺血GSK-3β在心臟中的作用,表明抑制GSK-3β會加重缺血損傷,但可以通過調(diào)節(jié)mTOR通路及自噬功能來對抗缺血再灌注損傷,即自噬功能改善缺血延長及再灌注時GSK-3β產(chǎn)生的心肌損傷作用。總結(jié)來說,現(xiàn)有的文獻表明GSK-3β調(diào)節(jié)心室功能的作用很復(fù)雜,該激酶過表達或過度激活是有害的,但若完全抑制其活性,同樣產(chǎn)生弊端。在GSK-3β抑制劑作為臨床治療缺血相關(guān)心臟病藥物之前,仍需深入的臨床研究作為保證。
3.2GSK-3β在心肌肥厚中的作用 作為終末分化細胞,心肌細胞通過代償性肥大來適應(yīng)各種生理或病理負荷,如:鍛煉、高血壓等。眾所周知,生理性的肥大可以通過增加耗氧量和搏出量來增強心功能,但病理性肥大多與心肌纖維化增加、細胞死亡和心功能不全有關(guān)且可致心力衰竭[31]。
Haq等[32]和 Morisco等[33]首次發(fā)現(xiàn)GSK-3β是心臟肥大的負性調(diào)控因子。Antos等[34]研究發(fā)現(xiàn)腺病毒轉(zhuǎn)基因GSK-3β-Ser9突變模型的心肌細胞能顯著抑制心肌對腎上腺素及內(nèi)皮素-1刺激而引起的肥大反應(yīng)。該研究團隊還建立了轉(zhuǎn)基因小鼠模型,并在心臟特異性啟動子的控制下使GSK-3β持續(xù)激活,在壓力超負荷模型和慢性β腎上腺素刺激模型中心臟特異性表達活化的GSK-3β都能起到減弱心臟肥大的作用[34]。另外,有研究報道在心肌細胞過表達GSK-3β,GSK-3β的持續(xù)激活使正常出生后心肌細胞死亡增加,并導(dǎo)致心臟縮小及伴有收縮功能顯著異常[35],證明GSK-3β可以調(diào)節(jié)正常和病理狀態(tài)的心臟生長發(fā)育。這些研究證明了GSK-3β是心臟肥大信號通路的負性調(diào)節(jié)因子,提高心臟GSK-3β的活性可能在病理性肥大的治療中增加臨床獲益。
近年來有研究表明MicroRNA(miRNA)能從轉(zhuǎn)錄后水平調(diào)控GSK-3β的表達,miRNA是一組廣泛存在于真核生物中短小、不編碼蛋白質(zhì)的單鏈RNA。Nagalingam等[36]利用去氧腎上腺素(PE)刺激培養(yǎng)的原代心肌細胞,發(fā)現(xiàn)miRNA-378的過表達抑制PE誘導(dǎo)的Akt/GSK-3β的磷酸化,下調(diào)活化T細胞核因子(NFAT)核內(nèi)活性,抑制PE誘導(dǎo)的心肌肥厚。Li等[37]研究表明miRNA-145下調(diào)心肌轉(zhuǎn)錄因子6(GATA6)在核內(nèi)的表達和定位,抑制異丙腎上腺素(ISO)誘導(dǎo)的心肌肥厚,其對心臟的保護作用與抑制蛋白質(zhì)合成的多條信號通路有關(guān),包括Akt/GSK-3β、ERK1/2、JNK等,在基因水平抑制心肌肥厚。
3.3GSK-3β在心肌纖維化中的作用 纖維化可以影響機體大部分組織,嚴重的纖維化甚至導(dǎo)致器官功能障礙和死亡。心肌梗死后誘發(fā)心肌纖維化、心室擴張、心功能障礙等都與心肌成纖維細胞的過度激活有關(guān)。
已有研究報道[38,39],GSK-3β通路和成纖維細胞轉(zhuǎn)化成心肌纖維細胞及纖維化信號轉(zhuǎn)導(dǎo)均有關(guān),靶向抑制成纖維細胞中的GSK-3β證明缺失GSK-3β導(dǎo)致過度纖維化及不良的心肌梗死后心室重構(gòu)。GSK-3β調(diào)節(jié)心肌纖維化的機制可能有:①GSK-3β調(diào)節(jié)TGF-β1-SMAD-3信號通路,TGF-β是成纖維細胞激活的關(guān)鍵調(diào)節(jié)因子,TGF-β1與受體結(jié)合后作用于SMAD轉(zhuǎn)錄因子的C末端結(jié)構(gòu)域使其磷酸化和激活,GSK-3β通過負性調(diào)控SMAD-3活性而起到抗纖維化作用[40];②通過Wnt/β-catenin信號通路,β-catenin在系統(tǒng)性硬化中是纖維化發(fā)生的中心調(diào)節(jié)因子,抑制GSK-3β的活性,減少β-catenin的泛素化降解,導(dǎo)致眾多器官成纖維細胞激活和纖維化[41]。
3.4GSK-3β在心肌細胞凋亡中的作用 細胞凋亡是在多種生理性或病理性刺激下,為維持內(nèi)環(huán)境穩(wěn)定,細胞信號轉(zhuǎn)導(dǎo)通路激活啟動細胞凋亡蛋白酶級聯(lián)反應(yīng),導(dǎo)致細胞的程序化死亡。心肌細胞在受到缺血、缺氧、壓力超負荷、線粒體毒素、長期酒精攝入等刺激下,會引起心肌細胞凋亡,長期而持續(xù)的凋亡導(dǎo)致心室重構(gòu),進而發(fā)展為心力衰竭[42]。GSK-3β在細胞凋亡與生存調(diào)節(jié)中發(fā)揮重要作用。GSK-3β的激活促進線粒體途徑誘導(dǎo)的內(nèi)源性細胞凋亡,但是抑制由死亡受體(TNF-R1,F(xiàn)as,DR4,DR5)介導(dǎo)的外源性細胞凋亡[43]。線粒體凋亡通路起始于mPTP的開放,釋放細胞色素C于胞質(zhì)中,進而激活Caspase-9及下游半胱天冬蛋白酶的級聯(lián)反應(yīng),導(dǎo)致細胞凋亡,而mPTP的開放閾值隨著GSK-3β活性降低而升高[23]。
Mokhtari等[44]研究糖尿病大鼠在缺血再灌注條件下,給予曲克蘆丁150 mg/kg/天灌胃4周,發(fā)現(xiàn)曲克蘆丁通過增加GSK-3β的磷酸化抑制其活性,減少再灌注損傷時的細胞凋亡。Daniels等[45]在應(yīng)用ISO誘導(dǎo)的小鼠心肌重構(gòu)模型中發(fā)現(xiàn)β腎上腺素受體(β-AR)刺激可提高細胞外泛素化水平,可使Akt活性升高,隨之磷酸化GSK-3β-Ser9,抑制c-Jun氨基末端激酶(JNKs)的活性,減少心肌細胞凋亡,改善心室重構(gòu)。有研究發(fā)現(xiàn)在敲除乙醛脫氫酶-2小鼠模型中,急性乙醇攝入加重心肌細胞凋亡,心臟收縮功能障礙,這種損傷是通過蛋白磷酸酶2A介導(dǎo)的Akt/GSK-3β脫磷酸化作用[46]。由此,可以推斷GSK-3β的過表達可以促進細胞凋亡,抑制GSK-3β的活性有可能保護組織器官。
綜上所述,GSK-3β是細胞內(nèi)多條信號轉(zhuǎn)導(dǎo)通路的交叉點,其在心臟疾病的保護作用受到越來越多的關(guān)注,然而,目前關(guān)于GSK-3β的大多研究都集中于靶向基因敲除的細胞和實驗動物模型,尚未發(fā)現(xiàn)在人類心臟疾病的臨床研究中發(fā)揮同樣的保護作用。而且,GSK-3亞型具有高度同源性,阻礙了藥理學(xué)方面研究特異性的靶向分子抑制劑,期待將來能夠應(yīng)用RNA干擾方法或單克隆抗體方法研發(fā)具有活性靶向位點的小分子抑制劑。
[1] Hardt SE,Junichi S. Glycogen synthase kinase-3beta: a novel regulator of cardiac hypertrophy and development[J]. Circ Res,2002,90(10):1055-63.
[2] Antos CL,McKinsey TA,F(xiàn)rey N,et al. Activated glycogen synthase-3 beta supprsses cardiac hypertrophy in vivo[J]. Proc Natal Acad Sci,2002,99(2):907-12.
[3] Atsushi S,James G,Hanks MC,et al. Reengineering inducible cardiacspecific transgenesis with an attenuated myosin heavy chain promoter[J]. Circ Res,2003,92(6):609-16.
[4] Haq S,Choukroun G,Lim H,et al. Differential Activation of Signal Transduction Pathways in Human Hearts With Hypertrophy Versus Advanced Heart Failure[J]. Circulation,2001,103(5):670-7.
[5] Shinichi H,Peiyong Z,Hideharu T,et al. Inhibition of glycogen synthase kinase 3beta during heart failure is protective[J]. Circ Res,2007,101(11):1164-74.
[6] Haiyan T,Kenichi I,Charles S,et al. Phosphorylation of glycogen synthase kinase-3beta during preconditioning through a phosphatidylinositol-3-kinase—dependent pathway is cardioprotective[J]. Circ Res,2002,90(4):377-9.
[7] Juhaszova M,Zorov DB,Kim SH,et al. Glycogen synthase kinase-3beta mediates convergence of protection signaling to inhibit the mitochondrial permeability transition pore[J]. J Clini Invest,2004,113 (11):1535-49.
[8] Murphy E,Steenbergen C. Inhibition of GSK-3beta as a target for cardioprotection: the importance of timing, location, duration and degree of inhibition[J]. Expert Opin Ther Targets, 2005,9(9):447-56.
[9] Christina B,Alfiya A,Clara D,et al. Inhibition of glycogen synthase kinase 3β induces dermal fibrosis by activation of the canonical Wnt pathway[J]. Ann Rheum Dis,2011,70(70):2191-8.
[10] Caraci F,Gili E,Calafiore M,et al. TGF-beta1 targets the GSK-3beta/beta-catenin pathway via ERK activation in the transition of human lung fibroblasts into myofibroblasts[J]. Pharmaco Res,2008,57(4):274282.
[11] Woodgett JR. Molecular cloning and expression of glycogen synthase kinase-3/factor A[J]. Embo J,1990,9(8):2431-8.
[12] Hughes K,Nikolakaki E,Plyte SE,et al. Modulation of the glycogensyn thase kinase-3 family by tyrosine phosphorylation[J]. Embo J,1993,12(2):803-8.
[13] Thomas F,Woodgett JR. Unique and overlapping functions of GSK-3 isoforms in cell differentiation and proliferation and cardiovascular development[J]. J Biol Chem,2009,284(15):9643-7.
[14] Dolma K,Iacobucci GJ,Hong Zheng K,et al. Presenilin influences glycogen synthase kinase-3 β (GSK-3β) for kinesin-1 and dynein function during axonal transport[J]. Hum Mol Genet,2014,23(5):1121-33.
[15] Stamos JL,Chu ML,Enos MD,et al. Structural basis of GSK-3 inhibition by N-terminal phosphorylation and by the Wnt receptor LRP6[J]. Elife Sciences,2014,3(6):648-64.
[16] Simon D,Herva ME,Benitez MJ,et al. Dysfunction of the PI3KAkt-GSK-3 pathway is a common feature in cell culture and in vivo models of prion disease[J]. Neuropathol Appl Neur,2014,40(3):311-26.
[17] Lee SL,Chou CC,Chuang HC,et al. Functional Role of mTORC2 versus Integrin-Linked Kinase in Mediating Ser473-Akt Phosphorylation in PTEN-Negative Prostate and Breast Cancer Cell Lines[J]. PloS One,2013,8(6):e67149.
[18] Thornton TM,Gustavo PA,Bin D,et al. Phosphorylation by p38 MAPK as an alternative pathway for GSK3beta inactivation[J]. Science,2008, 320(5876):667-70.
[19] Beurel E,Grieco SF,Jope RS. Glycogen synthase kinase-3 (GSK3): Regulation, actions, and diseases[J]. Pharmacol Ther,2015,148:114-31.
[20] Chiurillo MA. Role of the Wnt/β-catenin pathway in gastric cancer:An indepth literature review[J]. World J Exp Med,2015,5(2):84-102. [21] Wantae K,Minseong K,Eek-Hoon J. Wnt/β-catenin signalling: from plasma membrane to nucleus[J]. Biochem J,2013,450(1):9-21.
[22] Paloma GO,Lucas JJ,Jesús A,et al. N-terminal cleavage of GSK-3 by calpain: a new form of GSK-3 regulation[J]. J Biol Chem,2007,282(31):22406-13.
[23] Shanshan M,Shaojun L,Qiaoying H,et al. Site-specific phosphorylation protects glycogen synthase kinase-3β from calpain-mediated truncation of its N and C termini[J]. J Biol Chem,2012, 287(27):22521-32.
[24] Ludovic G,Mélanie P,Hélène T,et al. Inhibition of GSK3beta by postconditioning is required to prevent opening of the mitochondrial permeability transition pore during reperfusion[J]. Circulation,2008,1 17(21):2761-8.
[25] Juhaszova M,Zorov DB,Kim SH,et al. Glycogen synthase kinase-3β mediates convergence of protection signaling to inhibit the mitochondrial permeability transition pore[J]. J Clin Invest,2004,113(11):1535-49.
[26] Ludovic G,Mélanie P,Hélène T,et al. Inhibition of GSK3beta by postconditioning is required to prevent opening of the mitochondrial permeability transition pore during reperfusion[J]. Circulation,2008,117(21):2761-8.
[27] Samarjit D,Renee W,Nishadi R,et al. Glycogen Synthase Kinase 3 Inhibition Slows Mitochondrial Adenine Nucleotide Transport and Regulates Voltage-Dependent Anion Channel Phosphorylation[J]. Circ Res,2008,103(9):983-91.
[28] Woulfe KC,Erhe G,Hind L,et al. Glycogen synthase kinase-3beta regulates post-myocardial infarction remodeling and stressinduced cardiomyocyte proliferation in vivo[J]. Circ Res,2010,106(10):1635-45.
[29] Webb IG,Pierre S,Clark JE,et al. Myocardial stress remodelling after regional infarction is independent of glycogen synthase kinase-3 inactivation[J]. J Mol Cell Cardiol,2010, 49(5):897-900.
[30] Peiyong Z,Sebastiano S,Jonathan G,et al. Differential roles of GSK-3β during myocardial ischemia and ischemia/reperfusion[J]. Circ Res,2011,109(5):502-11.
[31] Bernardo BC,Weeks KL,Pretorius L,et al. Molecular distinction between physiological and pathological cardiac hypertrophy:experimental findings and therapeutic strategies[J]. Pharmaco Ther,2010,128(1):191-227.
[32] Haq S,Choukroun G,Kang ZB,et al. Glycogen synthase kinase-3beta is a negative regulator of cardiomyocyte hypertrophy[J]. J Cell Biol,2000,151(1):117-29.
[33] Morisco C,Zebrowski D,Condorelli G,et al. The Akt-Glycogen Synthase Kinase 3β Pathway Regulates Transcription of Atrial Natriuretic Factor Induced by β-Adrenergic Receptor Stimulation in Cardiac Myocytes[J]. J Biol Chem,2000,275(19):14466-75.
[34] Antos CL,McKinsey TA,F(xiàn)rey N,et al. Activated glycogen synthase-3 beta suppresses cardiac hypertrophy in vivo.[J]. Proc Natl Acad Sci U S A,2002,99(2):907-12.
[35] Ashour M,Syed H,Xin C,et al. Glycogen synthase kinase-3beta regulates growth, calcium homeostasis, and diastolic function in the heart[J]. J Biol Chem,2004,279(20):21383-93.
[36] Nagalingam RS,Sundaresan NR,Gupta MP,et al. A Cardiac-enriched MicroRNA, miR-378, Blocks Cardiac Hypertrophy by Targeting Ras Signaling[J]. J Biol Chem,2013,288(16):11216-32.
[37] Li R,Yan G,Zhang Q,et al. miR-145 inhibits isoproterenolinduced cardiomyocyte hypertrophy by targeting the expression and localization of GATA6[J]. Febs Letters,2013,587(12):1754-61.
[38] Christina B,Alfiya A,Clara D,et al. Inhibition of glycogen synthase kinase 3β induces dermal fibrosis by activation of the canonical Wnt pathway[J]. Ann Rheum Dis,2011,70(12):2191-8.
[39] Caraci F,Gili E,Calafiore M,et al. TGF-beta1 targets the GSK-3beta/beta-catenin pathway via ERK activation in the transition of human lung fibroblasts into myofibroblasts[J]. Pharmaco Res,2008,57(4):274-82.
[40] Lal H. Cardiac Fibroblast GSK-3β Regulates Ventricular Remodeling and Dysfunction in Ischemic Heart[J]. Circulation,2014,130(5):419-30.
[41] Lam AP,Gottardi CJ. β-catenin signaling: a novel mediator of fibrosis and potential therapeutic target[J]. Curr Opin Rheumatol,2011,23(6):562-7.
[42] Miura T,Miki T. GSK-3beta,a therapeutic target for car-diomyocyte protection.Circulation Journal. 2009Miura T,Miki T.GSK-3beta,a therapeutic target for cardiomyocyte protection[J]. Circ J,2009,73(7):1184-92.
[43] Song L,Zhou T,Jope RS. Lithium facilitates apoptotic signaling induced by activation of the Fas death domain-containing receptor[J]. Bmc Neurosci,2004,5(21):20.
[44] Mokhtari B,Badalzadeh R,Alihemmati A,et al. Phosphorylation of GSK-3β and reduction of apoptosis as targets of troxerutin effect on reperfusion injury of diabetic myocardium[J]. Eur J Pharmacol,2015,765:316-21.
[45] Daniels CR,F(xiàn)oster CR,Yakoob S,et al. Exogenous ubiquitin modulates chronic β-adrenergic receptor-stimulated myocardial remodeling:role in Akt activity and matrix metalloproteinase expression[J]. Am J Phy Heart Circ Physi,2012,303(12):H1459-68.
[46] Heng M,Lu Y,Byra EA,et al. Aldehyde dehydrogenase 2 knockout accentuates ethanol-induced cardiac depression: role of protein phosphatases[J]. J Mole Cell Cardiol,2010,49(2):322-9.
本文編輯:姚雪莉
R541 【文獻標志碼】A
1674-4055(2016)04-0507-04
1150001 哈爾濱,哈爾濱醫(yī)科大學(xué)附屬第一醫(yī)院
周立君,E-mail:Zhoulj0451@126.com
10.3969/j.issn.1674-4055.2016.04.38
2.2Wnt信號通路的調(diào)節(jié) Wnt信號通路是在物種進化過程中高度保守的信號通路,在動物胚胎的早期發(fā)育、器官形成、細胞的增殖和凋亡、腫瘤的生長和轉(zhuǎn)移等過程中,發(fā)揮至關(guān)重要的作用[20]。GSK-3β結(jié)合蛋白復(fù)合體包括:骨架蛋白、GSK-3β、β連環(huán)蛋白、腺瘤性結(jié)腸息肉蛋白(APC)等,GSK-3β是Wnt信號通路中的關(guān)鍵蛋白,其激活與抑制決定細胞的命運,主要靶目標是β連環(huán)蛋白[21]。簡單來說,在沒有Wnt信號刺激時,GSK-3β以活性形式磷酸化β-catenin 的Thr41、Ser37和Ser33,導(dǎo)致其泛素化降解,阻斷β-catenin介導(dǎo)的蛋白質(zhì)合成。然而,生長因子結(jié)合Wnt受體觸發(fā)脂蛋白受體相關(guān)蛋白(LRP5和LRP6)的磷酸化,從而激活蓬亂蛋白1(Dvl),進而促進GSK-3β與β-catenin的解聚,β-catenin轉(zhuǎn)移至細胞核內(nèi)并與核基因TCF /LEF相互作用發(fā)揮調(diào)控基因轉(zhuǎn)錄作用。
2.3Calpain介導(dǎo)的GSK-3β片段化調(diào)節(jié) GSK-3β活性不僅受到磷酸化、結(jié)合蛋白的調(diào)節(jié),近年研究報道[22],鈣激活中性蛋白酶對GSK-3β N端的片段化可導(dǎo)致GSK-3β的抑制結(jié)構(gòu)域喪失,并將GSK-3β分解為兩個分子量為40kDa 和30kDa具有激酶活性的片段,即Calpain的激活可片段化GSK-3β并使其活性升高。Shanshan Ma等[23]研究發(fā)現(xiàn),Calpain還可使GSK-3β的C末端分解為幾個片段,導(dǎo)致活性升高,并證實其片段化位點在Thr-38-Thr-39和Ile-384-Gln-385,Ser-9/Ser-389位點磷酸化可使Calpain介導(dǎo)的GSK-3β片段化作用減弱。目前Calpain對GSK-3β片段化調(diào)節(jié)機制尚未完全清楚,還需進一步研究。