孫琪,李俊峽
? 綜述 ?
實(shí)時(shí)三維超聲心動(dòng)圖評(píng)價(jià)二尖瓣形態(tài)的研究進(jìn)展
孫琪1,李俊峽1
近年來(lái),實(shí)時(shí)三維超聲心動(dòng)圖(RT3DE)取得了革命性的發(fā)展。許多研究已證明RT3DE可實(shí)時(shí)采集、快速成像、同步顯示二尖瓣的立體解剖結(jié)構(gòu),尤其是三維經(jīng)食道超聲心動(dòng)圖(TEE)不受患者體位、肺內(nèi)氣體等因素影響,對(duì)二尖瓣立體結(jié)構(gòu)的顯示明顯優(yōu)于二維TEE[1]。目前,RT3DE已成為指導(dǎo)二尖瓣外科手術(shù)及導(dǎo)管介入治療的首選影像學(xué)檢查[2]。本文就RT3DE在二尖瓣疾病中應(yīng)用的研究進(jìn)展綜述如下。
1.1二尖瓣葉 正常二尖瓣為二葉,前葉比后葉大1.5倍,前葉與主動(dòng)脈瓣的纖維相連續(xù),后葉多呈新月形,前葉根部附著整個(gè)瓣環(huán)的前1/3,后葉根部附著后2/3。兩瓣葉交界處位于前外和后內(nèi)側(cè),稱為內(nèi)、外側(cè)聯(lián)合。通常根據(jù)Carpentier命名法對(duì)二尖瓣分區(qū)進(jìn)行定位診斷,前葉外側(cè)、中間部和內(nèi)側(cè)區(qū)分別命名為A1、A2、A3區(qū),后葉外側(cè)、中間部和內(nèi)側(cè)區(qū)分別命名P1、P2、P3區(qū),前外側(cè)交界命名為C1區(qū),后內(nèi)側(cè)交界命名為C2區(qū),共8個(gè)區(qū)域[3]。聯(lián)合處前后葉瓣緣至瓣環(huán)的距離在5 mm以上[4],同時(shí)兩瓣葉面積的總和大約是瓣環(huán)面積的140%,保證前后葉閉合時(shí)足夠接觸,有效防止收縮期二尖瓣反流[5]。
1.2二尖瓣瓣環(huán) 二尖瓣瓣環(huán)為一寬度長(zhǎng)于前后徑的橢圓形結(jié)構(gòu),與心臟的纖維骨架相連續(xù),瓣環(huán)結(jié)構(gòu)改變是引起二尖瓣反流的最主要原因之一。正常的二尖瓣瓣環(huán)前、后交界處位置較低,中點(diǎn)(瓣根處)位置較高,呈類似于馬鞍的非平面雙曲拋物面結(jié)構(gòu)[6]。此“馬鞍形”結(jié)構(gòu)在舒張期相對(duì)平坦,而在心室收縮期,馬鞍型結(jié)構(gòu)深度加深,并向心尖部移動(dòng),能更好地承受收縮期左心室施加的壓力,維持瓣葉的曲度,有利于瓣葉閉合[7,8]。研究證明,瓣環(huán)高度與寬度之比(AHCWR)在15%~25%范圍內(nèi)時(shí),瓣葉所受的應(yīng)力最低[5,6]。
1.3二尖瓣瓣下裝置 二尖瓣瓣下裝置包括腱索、乳頭肌及部分室壁組織。病理?xiàng)l件下,腱索可拉長(zhǎng)或斷裂,引起嚴(yán)重二尖瓣反流。左心室擴(kuò)大或變形時(shí),心室壁向外移位,向心尖及后方牽拉腱索及二尖瓣,也可能導(dǎo)致功能性二尖瓣反流[9]。
經(jīng)胸超聲心動(dòng)圖檢查時(shí),通常在心尖四腔切面采集二尖瓣的三維圖像,而TEE時(shí)采用食管中段切面[2]。采集模式有兩種:一是實(shí)時(shí)或動(dòng)態(tài)三維成像,為在一個(gè)心動(dòng)周期內(nèi)采集的金字塔型的容積數(shù)據(jù)集,通常顯示幀速率>20 幀/秒,最好是30 幀/秒,此種模式能夠減少心率及呼吸對(duì)數(shù)據(jù)采集的影響,但時(shí)間及空間分辨率偏低;二是門控多心動(dòng)周期三維顯像,為獲取若干心動(dòng)周期(2~7個(gè))的窄容積數(shù)據(jù),隨后拼接在一起合并為一個(gè)容積數(shù)據(jù)集。此種模式可以提供更高的分辨率圖像,但容易受呼吸運(yùn)動(dòng)、不規(guī)則心率的影響而產(chǎn)生圖像干擾。模式的選擇應(yīng)根據(jù)臨床需要,權(quán)衡空間-時(shí)間分辨率。
3.1二尖瓣脫垂 二維超聲心動(dòng)圖診斷二尖瓣脫垂的定義為:胸骨長(zhǎng)軸切面二尖瓣瓣葉脫向左心房,超過(guò)瓣環(huán)水平2 mm以上。由于瓣環(huán)呈馬鞍形狀,在心尖四腔心切面過(guò)多誤診了二尖瓣脫垂。而且,在胸骨旁左室長(zhǎng)軸切面主要顯示瓣葉的A2和P2區(qū),使得二維超聲心動(dòng)圖診斷瓣葉其它區(qū)域的脫垂受到限制。而在RT3DE,二尖瓣的顏色編碼參數(shù)提供了有關(guān)瓣葉6個(gè)節(jié)段相對(duì)于馬鞍形瓣環(huán)移位形態(tài)的數(shù)據(jù),大大提高了診斷的準(zhǔn)確性[5,18,19]。此外,三維量化二尖瓣可以更好識(shí)別其繼發(fā)病變,如二尖瓣裂(裂深度≥50%瓣葉高度)和亞裂(裂深度<50%瓣葉高度)[20]。Lee等[5]在分析二尖瓣脫垂患者的RT3DE時(shí)發(fā)現(xiàn):二尖瓣脫垂組瓣環(huán)前后徑、前外后內(nèi)徑、周長(zhǎng)、面積均較正常對(duì)照組顯著增大,且增大程度越大,反流程度越重;并首次發(fā)現(xiàn)二尖瓣脫垂組瓣環(huán)高度與AHCWR減低,提示瓣環(huán)扁平化與瓣葉冗長(zhǎng)、脫垂體積增加、腱索斷裂和有效返流口(ERO)增大強(qiáng)烈相關(guān)。重要的是,二尖瓣脫垂患者即使在沒(méi)有或輕度反流時(shí),瓣環(huán)高度和AHCWR也是減低的,表明二尖瓣脫垂患者存在原發(fā)性的瓣環(huán)異常。AHCWR<15%提示“馬鞍形瓣環(huán)結(jié)構(gòu)扁平化,是二尖瓣脫垂患者出現(xiàn)二尖瓣反流的獨(dú)立相關(guān)因素[5]。
3.2功能性或缺血性二尖瓣反流 功能性二尖瓣反流的定義為:無(wú)原發(fā)性二尖瓣異常時(shí)繼發(fā)于左心室重塑的二尖瓣反流。瓣環(huán)扁平和擴(kuò)張[21]、瓣葉牽拉[22]、左室壓力上升速率減低以及左室收縮不同步[23,24]所致二尖瓣葉對(duì)合不良都可導(dǎo)致功能性二尖瓣反流。目前已有一些研究應(yīng)用RT3DE的定量軟件,手動(dòng)或半自動(dòng)地探索功能性二尖瓣反流的瓣環(huán)運(yùn)動(dòng)機(jī)制[7,8,25,26]。Grewal等[7]和Levack等[25]已發(fā)現(xiàn)缺血性瓣環(huán)比正常瓣環(huán)運(yùn)動(dòng)減低,同時(shí)收縮期瓣環(huán)的收縮面積、前后徑縮短及馬鞍形加深程度也顯著減低。缺血性二尖瓣反流時(shí),缺血部位與非缺血部位間不對(duì)稱的牽拉二尖瓣導(dǎo)致瓣葉幾何形狀改變,不對(duì)稱牽拉與二尖瓣反流的嚴(yán)重程度相關(guān)[27]。RT3DE研究也發(fā)現(xiàn),繼發(fā)于缺血/梗死、擴(kuò)張型心肌病和慢性主動(dòng)脈瓣關(guān)閉不全原因所致的左心室重構(gòu),瓣葉會(huì)相應(yīng)擴(kuò)大[28,29]。這些研究挑戰(zhàn)了目前有關(guān)功能性二尖瓣反流僅僅與左心室重構(gòu)相關(guān)的概念。RT3DE是無(wú)創(chuàng)監(jiān)測(cè)和隨訪瓣葉病變的理想方法,期望為功能性二尖瓣反流提供新的預(yù)防及治療措施。
3.3風(fēng)濕性二尖瓣膜病 對(duì)于風(fēng)濕性二尖瓣狹窄(MS)患者二尖瓣口面積的測(cè)量,目前認(rèn)為三維超聲比二維更準(zhǔn)確[30]。三維超聲心動(dòng)圖可以直視下準(zhǔn)確評(píng)估瓣膜聯(lián)合部的融合和鈣化情況,而二維超聲心動(dòng)圖常低估,低估率約1/5[31,32]。RT3DE研究已發(fā)現(xiàn)除瓣口面積外,瓣膜形狀對(duì)過(guò)瓣的血流動(dòng)力學(xué)也有潛在影響。Gilon等[33]使用3DE與激光色譜法證實(shí),二尖瓣三維構(gòu)型的變化導(dǎo)致壓力梯度的變化,解剖面積和流量相同時(shí),平坦瓣葉與“漏斗”狀瓣膜相比,壓力梯度差別可達(dá)40%以上,其研究結(jié)果表明僅用RT3DE形態(tài)定量就可以明確心臟結(jié)構(gòu)、壓力和血流之間的關(guān)系。風(fēng)濕性二尖瓣關(guān)閉不全患者的瓣環(huán)面積及前、后葉均大于正常人,瓣環(huán)前后徑越大、后葉角度越小,風(fēng)濕性二尖瓣反流程度越嚴(yán)重[34]。乳頭肌排列紊亂及腱索間角度狹小也會(huì)導(dǎo)致風(fēng)濕性二尖瓣反流[35]。
RT3DE不受二尖瓣環(huán)非平面特性的限制,可動(dòng)態(tài)顯示與外科手術(shù)視野方位一致的圖像,明確術(shù)前病變、建立解剖模型、制定適宜的修補(bǔ)策略、提高手術(shù)成功率是三維影像學(xué)檢查的最終目標(biāo)。RT3DE定量技術(shù)可以精確計(jì)算瓣葉角度、面積、穹窿容積、瓣環(huán)結(jié)構(gòu)、面積和乳頭肌間距離[36]。從外科觀點(diǎn)看,二尖瓣修補(bǔ)術(shù)使用馬鞍形的瓣環(huán)成形更利于瓣葉對(duì)合[37,38],保證足夠的二尖瓣閉合面積是體現(xiàn)手術(shù)近遠(yuǎn)期療效的關(guān)鍵[15]。定量測(cè)量二尖瓣病變瓣膜脫垂或梿枷樣運(yùn)動(dòng)部分瓣葉的高度和局部容積,可以幫助外科醫(yī)師擬定瓣膜成形術(shù)手術(shù)方案,選擇楔形切除瓣膜抑或折疊瓣體,且可根據(jù)這兩項(xiàng)參數(shù)確定切除或折疊的范圍,達(dá)到滿意的手術(shù)效果[5,39,40]。fattouch等[41]報(bào)道,術(shù)前建立“截?cái)噱F體(truncated cone)”模型,可以提前計(jì)算出達(dá)到足夠瓣葉閉合的乳頭肌頭部的新位置。
Anwar等[42]提出了一種應(yīng)用RT3DE在經(jīng)皮導(dǎo)管二尖瓣成形術(shù)(PTMV)前,二尖瓣瓣葉厚度、不動(dòng)度、鈣化和瓣下結(jié)構(gòu)的半定量評(píng)分。應(yīng)用此評(píng)分隨訪PTMV患者1年后,二尖瓣再狹窄率、重度二尖瓣反流率及再干預(yù)率為17%,而應(yīng)用Wilkins評(píng)分的患者則高達(dá)48%[42]。因此,使用RT3DE評(píng)分可幫助識(shí)別更多不宜行PTMV的患者。對(duì)于需要使用MitraClip系統(tǒng)經(jīng)皮二尖瓣修補(bǔ)術(shù)的患者,三維TEE準(zhǔn)確定量瓣葉脫垂部位、脫垂高度、寬度和容積對(duì)于選擇應(yīng)用是必要的[43]。介入治療后,RT3DE更可作為一種多普勒的輔助評(píng)價(jià)工具,定量雙口面積、評(píng)估有無(wú)狹窄[44]。
目前,應(yīng)用RT3DE在二尖瓣定量成像中的主要限制是在常規(guī)臨床應(yīng)用中耗時(shí)偏長(zhǎng),而且人工手動(dòng)輸入解剖標(biāo)志往往會(huì)產(chǎn)生偏差、測(cè)量誤差與變異。未來(lái)的研究目標(biāo)應(yīng)該提高智能化,自動(dòng)識(shí)別解剖形態(tài)并準(zhǔn)確量化,使二尖瓣的建模過(guò)程最大化地適用于日常診斷,并且確定出作為臨床決策、影響患者預(yù)后的的參數(shù)正常值[45]。
[1] Lee AP,F(xiàn)ang F,Jin CN,et al. Quantification of mitral valve morphology with three-dimensional echocardiography-Can measurement lead to better management[J]. Circ J,2014,78(5):1029-37.
[2] Lang RM,Badano LP,Tsang W,et al. EAE/ASE Recommendations for Image Acquisition and Display Using Three-Dimensional Echocardiography[J]. J Am Soc Echocardiogr,2012,25(1):3-46.
[3] Agricola E,Oppizzi M,De Bonis,et al. Multiplane transesophageal echocardiography performed according to the Guidelines of the American Society of Echocardiography in patients with mitral prolapsed, flail, and endocarditis: diagnostic accuracy in the identification of mitral regurgitant defects by correlation with surgical findings[J]. J Am Soc Echocardiogr,2003,16(1):61-6.
[4] Looi JL,Lee AP,Wan S. Diagnosis of cleft mitral valve using realtime 3-dimensional transesophageal echocardiography[J]. Int J Cardiol,2013,168(2):1629-30.
[5] Lee AP,Hsiung MC,Salgo IS,et al. Quantitative analysis of mitral valve morphology in mitral valve prolapsed with real-time 3-dimensional echocardiography: Importance of annular saddle shape in the pathogenesis of mitral regurgitation[J]. Circulation,2013,127(7):832-41.
[6] Grewal J,Suri R,Mankad S,et al. Mitral annular dynamics in myxomatous valve disease: New insights with real-time 3-dimensional echocardiography[J]. Circulation,2010,121(12): 1423-31.
[7] Khabbaz KR,Mahmood F,Shakil O,et al. Dynamic 3-dimensional echocardiographic assessment of mitral annular geometry in patients with functional mitral regurgitation[J]. Ann Thorac Surg,2013,95(1):105-10.
[8] 周文艷,陳昕,楊軍,等. 實(shí)時(shí)三維經(jīng)食管超聲心動(dòng)圖定量分析正常二尖瓣立體結(jié)構(gòu)動(dòng)態(tài)的變化[J]. 中國(guó)醫(yī)學(xué)影像與技術(shù),2014,30(12):1814-17.
[9] Lee AP,Acker M,Kubo SH,et al. Mechanisms of recurrent functional mitral regurgitation after mitral valve repair in nonischemic dilated cardiomyopathy: Importance of distal anterior leaflet tethering[J]. Circulation,2009,119(19):2606-14.
[10] Jassar AS,Brinster CJ,Vergnat M,et al. Quantitative mitral valve modeling using real-time three-dimensional echocardiography: Technique and repeatability[J]. Ann Thorac Surg, 2011,91(1):165-71.
[11] Andrawes MN,F(xiàn)einman JW. 3-dimensional echocardiography and its role in preoperative mitral valve evaluation[J]. Cardiol Clin,2013,31(2):271-85.
[12] Metaxas D,Axel L. Functional imaging and modeling of the heart[M]. Springer Berlin Heidelberg,2011:215-22.
[13] Pouch A,Wang H,Takabe M,et al. Fully automatic segmentation of the mitral leaflets in 3D transesophageal echocardiographic images using multi-atlas joint label fusion and deformable medial modeling[J]. Med Image Anal,2014,18:118-29.
[14] Sprouse C,Mukherjee R,Burlina P. Mitral valve closure predictionwith 3D personalized anatomical models and anisotropic hyperelastic tissue assumptions[J]. IEEE Trans Biomed Eng,2013,60(11):3238-47.
[15] Ahmed S,Nanda NC,Miller AP,et al. Usefulness of transesophageal three-dimensional echocardiography in the identification of individual segment/scallop prolapsed of the mitral valve[J]. Echocard iography,2003,20(2):203-9.
[16] Camara O,Mansi T,Pop M,et al. Statistical atlases and computational models of the heart. Imaging and modelling challenges[M]. Springer Berlin Heidelberg,2014:162-70.
[17] Fichtinger G,Martel A,Peters T. Medical image computing and computer-assisted intervention-MICCAI 2011[M]. Springer,Berlin,2011:504-11.
[18] Addetia K,Mor-Avi V,Weinert L,et al. A new definition for an old entity: Improved definition of mitral valve prolapsed using threedimensional echocardiography and color-coded parametric models[J]. J Am Soc Echocardiogr,2014,27(1):8-16.
[19] Chandra S,Salgo IS,Sugeng L,et al. Characterization of degenerative mitral valve disease using morphologic analysis of real-time threedimensional echocardiographic images: Objective insight into complexity and planning of mitral valve repair[J]. Circ Cardiovasc Imaging,2011,4(1):24-32.
[20] La Canna G,Arendar I,Maisano F,et al. Real-time three-dimensional transesophageal echocardiography for assessment of mitral valve functional anatomy in patients with prolapse-related regurgitation[J]. Am J Cardiol,2011,107(9):1365-74.
[21] Topilsky Y,Vaturi O,Watanabe N,et al. Real-time 3-dimensional dynamics of functional mitral regurgitation: A prospective quantitative and mechanistic study[J]. J Am Heart Assoc,2013,2(3):e000039.
[22] 黃丹青,張連仲. 經(jīng)食管實(shí)時(shí)三維超聲心動(dòng)圖在二尖瓣疾病中應(yīng)用研究進(jìn)展[J]. 中華實(shí)用診斷與治療雜志,2015,29(9):835-9.
[23] Levine RA,Schwammenthal E. Ischemic mitral regurgitation on the threshold of a solution: From paradoxes to unifying concepts[J]. Circulation,2005,112(5):745-58.
[24] Liang YJ,Zhang Q,F(xiàn)ang F,et al. Incremental value of global systolic dyssynchrony in determining the occurrence of functional mitral regurgitation in patients with left ventricular systolic dysfunction[J]. Eur Heart J,2013,34(10):767-74.
[25] Levack MM,Jassar AS,Shang EK,et al. Three-dimensional echocardiographic analysis of mitral annular dynamics: Implication for annuloplasty selection[J]. Circulation,2012,126 (11 Suppl1): S183-8.
[26] Bartels K,Thiele RH,Phillips-Bute B,et al. Dynamic indices of mitral valve function using perioperative three-dimensional transesophageal echocardiography[J]. J Cardiothorac Vasc Anesth,2014,28(1):18-24.
[27] Zeng X,Nunes MC,Dent J,et al. Asymmetric versus symmetric tethering patterns in ischemic mitral regurgitation: Geometric differences from three-dimensional transesophageal echocardiography[J]. J Am Soc Echocardiogr,2014,27(4):367-75.
[28] Saito K,Okura H,Watanabe N,et al. Influence of chronic tethering of the mitral valve on mitral leafletsize and coaptation in functional mitral regurgitation[J]. JACC Cardiovasc Imaging,2012,5(4):337-45.
[29] Beaudoin J,Handschumacher MD,Zeng X,et al. Mitral valve enlargement in chronic aortic regurgitation as a compensatory mechanism to prevent functional mitral regurgitation in the dilated left ventricle[J]. J Am Coll Cardiol,2013,61(17):1809-16.
[30] de Agustin JA,Mejia H,Viliani D,et al. Proximal flow convergence method by three-dimensional color Doppler echocardiography for mitral valve area assessment in rheumatic mitral stenosis[J]. J Am Soc Echocardiogr,2014,27(8):838-45.
[31] Schlosshan D,Aggarwal G,Mathur G,et al. Realtime 3D transesophageal echocardiography for the evaluation of rheumatic mitral stenosis[J]. JACC Cardiovasc Imaging,2011,4(6):580-8.
[32] 馬寧,李治安,楊婭. 經(jīng)食管二維與實(shí)時(shí)三維超聲結(jié)合在風(fēng)濕性二尖瓣病變成形術(shù)中的應(yīng)用[J]. 臨床心血管病雜志,2011,27(12):890-3.
[33] Gilon D,Cape EG,Handschumacher MD,et al. Insights from threedimensional echocardiographic laser stereolithography: Effect of leaflet funnel geometry on the coefficient of orifice contraction,pressure loss, and the Gorlin formula in mitralstenosis[J]. Circulation,1996,94(3):452-9.
[34] Song JM,Jung YJ,Ji HW,et al. Three dimensional remodeling of mitral valve in patients with significant regurgitation secondary to rheumatic versus prolapse etiology[J]. Am J Cardiol, 2013,111(11):1631-7.
[35] Wong S,F(xiàn)rench R,Bolson E,et al. Morphologic features of the rheumatic mitral regurgitant valve by three-dimensional echocardiography[J]. Am Heart J,2001,142(5):897-907.
[36] Fattouch K,Castrovinci S,Murana G,et al. Multiplane twodimensional versus real time three-dimensional transesophageal echocardiography in ischemic mitral regurgitation[J]. Echocardiograp hy,2011,28(10):1125-32.
[37] Jensen MO,Jensen H,Levine Ra,et al. Saddle-shaped mitral valve annuloplasty rings improve leaflet coaptation geometry[J]. J Thorac Cardiovasc Surg,2011,142(3):697-703.
[38] Jensen MO,Jensen H,Smerup M,et al. Saddle-shaped mitral valve annuloplasty rings experience lower forces compared with flat ring[J]. Circulation,2008,118 (14Suppl):S250-5.
[39] Drake DH,Zimmerman KG,Hepner AM,et al. Echo-Guided Mitral Repair[J]. Circ Cardiovasc Imaging,2014,7(1):132-41.
[40] 胡麗艷. 經(jīng)食管三維超聲心動(dòng)圖對(duì)二尖瓣脫垂成形術(shù)的臨床分析[J]. 中華全科醫(yī)學(xué),2015,13(9):1497-9.
[41] Fattouch K,Castrovinci S,Murana G,et al. Relocation of papillary muscles for ischemic mitral valve regurgitation: The role of threedimensional transesophagealechocardiography[J]. Innovations (Phila),2014,9(1):54-9.
[42] Anwar AM,Attia WM,Nosir YFM,et al. Validation of a new score for the assessment of mitral stenosis using real-time three-dimensional echocardiography[J]. J Am Soc Echocardiogr,2010,23(1):13-22.
[43] Feldman T,Kar S,Elmariah S,et al. Randomized Comparison of Percutaneous Repair and Surgery for Mitral Regurgitation: 5-Year Results of EVEREST II[J]. J Am Coll Cardiol,2015,66(25):2844-54.
[44] Biaggi P,F(xiàn)elix C,Gruner C,et al. Assessment of mitral valve area during percutaneous mitral valve repair using the MitraClip system: Comparison of different echocardiographic methods[J]. Circ Cardiovasc Imaging, 2013,6(6):1032-40.
[45] Noack T,Kiefer P,Ionasec R,et al. New concepts for mitral valve imaging[J]. Ann Cardiothorac Surg,2013,2(6):787-95.
本文編輯:阮燕萍
R540.45 【文獻(xiàn)標(biāo)志碼】A
1674-4055(2016)05-0635-03
1100700 北京,陸軍總醫(yī)院心血管疾病研究所二區(qū)
孫琪,E-mail:18611984100@163.com
10.3969/j.issn.1674-4055.2016.05.40
目前,最常見(jiàn)的用于分析二尖瓣的兩套軟件系統(tǒng)是MVN A.I.(舊版本叫MVQ,美國(guó)Philips公司)和 4D-MV評(píng)價(jià)軟件(德國(guó)TomTec影像公司)[10,11],可手動(dòng)或半自動(dòng)檢測(cè)主要的解剖標(biāo)志,隨后使用幾何網(wǎng)格曲面建立二尖瓣的形態(tài)模型。二維超聲心動(dòng)圖是評(píng)價(jià)二尖瓣的常用方法,由于二尖瓣環(huán)的馬鞍形結(jié)構(gòu),需要多個(gè)切面連續(xù)掃查,且對(duì)操作者依賴性強(qiáng),探頭輕微偏轉(zhuǎn)、左心增大及左室發(fā)生幾何重塑時(shí),都會(huì)影響結(jié)果的判斷。RT3DE不受二尖瓣環(huán)非平面特性的限制,可以動(dòng)態(tài)顯示與外科手術(shù)視野方位一致的圖像,同時(shí),局部放大成像模式可進(jìn)行二尖瓣環(huán)及瓣葉局部放大,對(duì)圖像進(jìn)行旋轉(zhuǎn)、切割以及增益的調(diào)節(jié),較清晰顯示瓣葉的整體形態(tài)。目前,應(yīng)用RT3DE可較準(zhǔn)確地自動(dòng)定量分析瓣環(huán)和瓣葉的形狀及其運(yùn)動(dòng)[12-14],而自動(dòng)分析瓣葉聯(lián)合部、腱索和乳頭肌這些結(jié)構(gòu)目前技術(shù)上仍有困難[15-17]。