250355 濟(jì)南,山東中醫(yī)藥大學(xué)基礎(chǔ)醫(yī)學(xué)院[趙海軍 王 媛 韓冰冰],針推學(xué)院(盧 巖),國(guó)際教育學(xué)院[王世軍(通信作者)];齊魯工業(yè)大學(xué)化學(xué)與制藥工程學(xué)院(李 燕)
?
星形膠質(zhì)細(xì)胞對(duì)神經(jīng)元能量代謝的影響
趙海軍李燕盧巖王媛韓冰冰王世軍
250355濟(jì)南,山東中醫(yī)藥大學(xué)基礎(chǔ)醫(yī)學(xué)院[趙海軍王媛韓冰冰],針推學(xué)院(盧巖),國(guó)際教育學(xué)院[王世軍(通信作者)];齊魯工業(yè)大學(xué)化學(xué)與制藥工程學(xué)院(李燕)
【DOI】10.3969/j.issn.1007-0478.2015.06.020
在神經(jīng)系統(tǒng)中膠質(zhì)細(xì)胞約占細(xì)胞總數(shù)的90%,其中星形膠質(zhì)細(xì)胞是其主要的組成部分,其數(shù)量約為神經(jīng)元數(shù)量的5倍。過去一直認(rèn)為大腦中只有神經(jīng)元具有傳遞和處理信息的功能,而星形膠質(zhì)細(xì)胞只對(duì)神經(jīng)元起營(yíng)養(yǎng)、支持、保護(hù)及絕緣的作用。但近年來的研究發(fā)現(xiàn),星形膠質(zhì)細(xì)胞在調(diào)節(jié)神經(jīng)元能量代謝等方面也起到了至關(guān)重要的作用,逐漸成為了神經(jīng)科學(xué)研究的熱點(diǎn)[1]。
1星形膠質(zhì)細(xì)胞對(duì)神經(jīng)元葡萄糖代謝的影響
大腦的能量需求非常旺盛,盡管只占體重的2%,腦組織卻消耗了20%的氧氣和25%的葡萄糖。在哺乳動(dòng)物葡糖糖是腦組織關(guān)鍵的能量來源。神經(jīng)元獲得的葡萄糖有兩個(gè)來源:一是從血液循環(huán)中直接獲??;另外是從星形膠質(zhì)細(xì)胞獲得的[2]。
超微結(jié)構(gòu)研究顯示,腦實(shí)質(zhì)內(nèi)所有的毛細(xì)血管都被星形膠質(zhì)細(xì)胞的終足包裹,這一結(jié)構(gòu)提示星形膠質(zhì)細(xì)胞是腦攝取血液葡萄糖的最初部位。雖然在生理?xiàng)l件下腦部產(chǎn)生的能量大部分(90%~95%)被神經(jīng)元所消耗,但是約80%的腦葡萄糖利用發(fā)生于星形膠質(zhì)細(xì)胞。
與其他組織中的代謝類似,葡萄糖被葡萄糖轉(zhuǎn)運(yùn)體(glucose transporters,GLUTs)攝入腦組織細(xì)胞,在毛細(xì)血管內(nèi)皮細(xì)胞和星形膠質(zhì)細(xì)胞的終足上表達(dá)的GLUT1以及在星形膠質(zhì)細(xì)胞其他部位表達(dá)的GLUT2能夠?qū)⒀簲y帶的葡萄糖轉(zhuǎn)運(yùn)至星形膠質(zhì)細(xì)胞中[3-4]。在神經(jīng)元的細(xì)胞膜上表達(dá)有GLUT3,經(jīng)由GLUT1和GLUT2轉(zhuǎn)運(yùn)至星形膠質(zhì)細(xì)胞的葡萄糖由GLUT3轉(zhuǎn)運(yùn)至神經(jīng)元,為其能量代謝提供底物。
為了滿足其能量需求,神經(jīng)元需要保持很高的氧化代謝水平[5]。但研究發(fā)現(xiàn),其糖酵解率與星形膠質(zhì)細(xì)胞相比水平較低。眾所周知,6-磷酸果糖激酶1是糖酵解過程中的關(guān)鍵酶,而由6-磷酸果糖激酶2催化生成的2,6-二磷酸果糖是該酶的最強(qiáng)激活劑。Herrero-Mendez A等人的研究表明,由于神經(jīng)元中存在細(xì)胞周期后期促進(jìn)復(fù)合物/周期小體(anaphase-promoting complex/cyclosome, APC/C),而APC/C與其共激活因子Cdh1共同組成E3泛素連接酶APC/C Cdh1,這導(dǎo)致了神經(jīng)元中6-磷酸果糖激酶2的泛素化降解和低水平表達(dá),進(jìn)而導(dǎo)致了其糖酵解水平相對(duì)較低[6]。
出現(xiàn)應(yīng)激時(shí)神經(jīng)元的這種代謝特點(diǎn)并沒有改變,其攝取的葡萄糖并不能優(yōu)先進(jìn)入糖酵解途徑,而是優(yōu)先進(jìn)入了磷酸戊糖途徑(pentose-phosphate pathway, PPP)[7]。通過PPP代謝,神經(jīng)元可以獲得還原當(dāng)量NADPH,提高谷胱甘肽的儲(chǔ)備,從而有利于神經(jīng)元的抗氧化損傷能力[8]。
顯然,神經(jīng)元的這種能量代謝特點(diǎn)與其高氧化代謝率的特點(diǎn)相矛盾,其氧化代謝的底物從何而來?實(shí)際上在大腦中生成大量的葡萄糖中間代謝產(chǎn)物來參與腦組織的能量代謝。而Pellerin L與Magistretti PJ等人發(fā)現(xiàn),神經(jīng)元的氧化代謝更傾向于以星形膠質(zhì)細(xì)胞生成的乳酸作為底物[9-10]。
2星形膠質(zhì)細(xì)胞對(duì)神經(jīng)元乳酸利用的影響
研究發(fā)現(xiàn),盡管星形膠質(zhì)細(xì)胞的能量消耗只占到了全腦的5%~15%,但其對(duì)葡萄糖的攝取量與其能量的消耗并不成比例[11]。實(shí)驗(yàn)研究顯示,除了可能滿足自身的能量需求外,星形膠質(zhì)細(xì)胞中的葡萄糖分解之后生成大量乳酸并釋放入細(xì)胞外[12, 13]。星形膠質(zhì)細(xì)胞具有在有氧條件下代謝葡萄糖生成乳酸的特性,稱為有氧糖酵解。因此,星形膠質(zhì)細(xì)胞在生理水平能夠生成并釋放大量的乳酸,這種作用在腦活動(dòng)增強(qiáng)時(shí)以及某些病理情況下得到加強(qiáng)[14-15]。
由于神經(jīng)元自身的糖酵解能力較低,其乳酸主要來自于星形膠質(zhì)細(xì)胞,在星形膠質(zhì)細(xì)胞與神經(jīng)元之間存在星形膠質(zhì)細(xì)胞-神經(jīng)元乳酸穿梭(astrocyte-neuron lactate shuttle,ANLS)[16]。另外,在神經(jīng)元的細(xì)胞膜上特異性的表達(dá)有單羧酸轉(zhuǎn)運(yùn)體2(monocarboxylate transporter2, MCT2)[17]。MCT2負(fù)責(zé)轉(zhuǎn)運(yùn)乳酸進(jìn)入神經(jīng)元內(nèi)及線粒體內(nèi)。神經(jīng)元內(nèi)還存在乳酸脫氫酶1(lactate dehydrogenase1, LDH1),從而利于神經(jīng)元中乳酸的利用。由此可見,神經(jīng)元和星形膠質(zhì)細(xì)胞協(xié)同參與了腦能量代謝循環(huán)。
以上的腦部能量代謝方式稱之為ANLS假說[16](圖1)。在腦卒中時(shí)由于缺血缺氧,腦組織中有大量的乳酸生成[4]。腦缺血過程中葡萄糖通過無氧酵解的方式產(chǎn)生少量ATP;同時(shí)丙酮酸經(jīng)LDH催化還原生成乳酸。腦內(nèi)能量耗竭的刺激導(dǎo)致胞外谷氨酸濃度升高,星形膠質(zhì)細(xì)胞通過高親和力的轉(zhuǎn)運(yùn)體攝取谷氨酸,同時(shí)伴隨著Na+的內(nèi)流,兩者分別激活星形膠質(zhì)細(xì)胞內(nèi)谷氨酰胺合成酶和Na+,K+-ATP酶。Na+,K+-ATP酶的激活使ATP消耗增多,進(jìn)一步激活星形膠質(zhì)細(xì)胞內(nèi)的糖酵解相關(guān)酶,導(dǎo)致無氧糖酵解加劇,大量乳酸生成。此過程中攝取1個(gè)谷氨酸分子伴隨著3個(gè)Na+進(jìn)入細(xì)胞內(nèi);酵解1個(gè)葡萄糖分子產(chǎn)生2分子ATP,并釋放2分子乳酸[18]。
圖1 星形膠質(zhì)細(xì)胞-神經(jīng)元乳酸穿梭假說[19]
腦缺血/缺氧后神經(jīng)元更傾向于利用乳酸而不是葡萄糖。由乳酸形成丙酮酸不需要能量,而且1分子丙酮酸可以產(chǎn)生18個(gè)分子的ATP進(jìn)入三羧酸循環(huán),以啟動(dòng)和支持腦的有氧代謝[2]。因此,對(duì)于腦缺血患者乳酸的生成不僅僅是局部缺氧時(shí)的標(biāo)志,同時(shí)也是神經(jīng)元在缺血/缺氧狀態(tài)下能量代謝的重要代償機(jī)制。
但也有人認(rèn)為這一假說并不完全正確[20]。該觀點(diǎn)認(rèn)為,盡管ANLS假說從提出至今已有20年的歷史,但一直無法在未受損的大腦中找到乳酸穿梭存在的直接證據(jù),且乳酸的細(xì)胞來源也不得而知。而相對(duì)于基礎(chǔ)研究,來自于臨床的學(xué)者則更看重乳酸的酸性效應(yīng),即乳酸堆積導(dǎo)致的酸中毒可通過不同的病理生理途徑對(duì)神經(jīng)元造成損傷[21]。
基于模式研究,另外一些學(xué)者提出神經(jīng)元具有與星形膠質(zhì)細(xì)胞相比更高的葡萄糖攝取能力[22-23]。按照這種預(yù)測(cè),神經(jīng)元主要依靠葡萄糖攝取來滿足靜息狀態(tài)和活動(dòng)狀態(tài)下的能量需求,而不是依靠從星形膠質(zhì)細(xì)胞攝取乳酸。
3星形膠質(zhì)細(xì)胞糖原對(duì)神經(jīng)元的影響
相對(duì)于機(jī)體其他部位而言,腦組織中的糖原含量比較少[22]。星形膠質(zhì)細(xì)胞是腦內(nèi)唯一具有糖原儲(chǔ)備的細(xì)胞,其從毛細(xì)血管攝取葡萄糖一部分用于有氧酵解,而多余的葡萄糖在星形膠質(zhì)細(xì)胞中以糖原的形式貯存起來。研究顯示,腦內(nèi)的糖原酵解氧化生成ATP除與谷氨酸的攝取有關(guān)外[23],還與谷氨酸攝取后向谷氨酰胺的轉(zhuǎn)化有關(guān)[24]。星形膠質(zhì)細(xì)胞中的糖原降解酵解形成的丙酮酸要么參與谷氨酸/谷氨酰胺在細(xì)胞內(nèi)的從頭合成外[25],要么生成乳酸,轉(zhuǎn)入神經(jīng)元被氧化分解[26]。如前所述,這為神經(jīng)元提供葡萄糖外的更多能量底物及還原當(dāng)量[27](圖2)。
圖2 星形膠質(zhì)細(xì)胞糖原對(duì)神經(jīng)元能量及神經(jīng)遞質(zhì)代謝穩(wěn)態(tài)的作用[24]
星形膠質(zhì)細(xì)胞中的糖原不僅在病理生理?xiàng)l件下作為一種能量底物,還與神經(jīng)元諸如學(xué)習(xí)行為和記憶的鞏固等功能有關(guān)。研究發(fā)現(xiàn),感官刺激和識(shí)別記憶等認(rèn)知需求可以增加星形膠質(zhì)細(xì)胞的數(shù)量,且與該細(xì)胞內(nèi)的糖原分解有關(guān)[28]。Suh等人對(duì)大鼠在空間記憶工作的評(píng)估顯示,星形膠質(zhì)細(xì)胞糖原酵解是有選擇性地增加長(zhǎng)期而不是短期記憶[29]。腦特異性糖原合成酶基因敲除小鼠的長(zhǎng)期記憶形成受損的實(shí)驗(yàn)結(jié)果也可顯示星形膠質(zhì)細(xì)胞內(nèi)糖原對(duì)維持神經(jīng)元功能具有重要意義[30]。
4結(jié)束語(yǔ)與展望
隨著對(duì)腦組織能量代謝的深入研究,人們逐漸認(rèn)識(shí)到腦缺血時(shí)僅保護(hù)神經(jīng)元的療效并不顯著。這種情況下研究星形膠質(zhì)細(xì)胞對(duì)神經(jīng)元代謝的影響則顯得尤為重要。神經(jīng)元在不同狀態(tài)下的能量代謝是值得深入研究的課題,這對(duì)于在腦梗死等病理?xiàng)l件下如何更好地保護(hù)神經(jīng)元、最終保護(hù)腦功能具有重要的理論意義和臨床價(jià)值。
參考文獻(xiàn)
1Seth P, Koul N. Astrocyte, the star avatar: redefined. J Biosci, 2008, 33(3): 405-421.
2Newman LA, Korol DL, Gold PE. Lactate produced by glycogenolysis in astrocytes regulates memory processing. PLoS One, 2011, 6(12): e28427.
3Benarroch EE. Neuron-astrocyte interactions: partnership for normal function and disease in the central nervous system. Mayo Clin Proc, 2005, 80(10): 1326-1338.
4Dong JH, Chen X, Cui M, et al. Beta2-Adrenergic Receptor and Astrocyte Glucose Metabolism. J Mol Neurosci, 2012, 48(2): 456-463.
5Boumezbeur F, Petersen KF, Cline GW, et al. The contribution of blood lactateto brain energy metabolism in humans measured by dynamic 13C nuclear magnetic resonance spectroscopy. J Neurosci, 2010, 30(42): 13983-13991.
6Herrero-Mendez A, Almeida A, Fern ndez E, et al. The bioenergetic and antioxidant status of neurons is controlled by continuous degradation of a key glycolytic enzyme by APC/C-Cdh1. Nat Cell Biol, 2009, 11(6): 747-752.
7Bola os JP, Almeida A. The pentose-phosphate pathway in neuronal survival against nitrosative stress. IUBMB Life, 2010, 62(1): 14-18.
8Celsi F, Pizzo P, Brini M, et al. Mitochondria, calcium and cell death: a deadly triad in neurodegeneration. Biochim Biophys Acta, 2009, 1787(5): 335-344.
9Pellerin L. Food for thought: the importance of glucose and other energy substrates for sustaining brain function under varying levels of activity. Diabetes Metab, 2010, 36 (Suppl 3): S59-63.
10Rodriguez-Rodriguez P, Fernandez E, Almeida A, et al. Excitotoxic stimulus stabilizes PFKFB3 causing pentose-phosphate pathway to glycolysis switch and neurodegeneration. Cell Death Differ, 2012, 19(10): 1582-1589.
11Wyss MT, Jolivet R, Buck A, et al. In vivo evidence for lactate as a neuronal energy source. J Neurosci, 2011, 31(20): 7477-7485.
12Barros LF, Courjaret R, Jakoby P, et al. Preferential transport and metabolism of glucose in Bergmann glia over Purkinje cells: a multiphoton study of cerebellar slices. Glia, 2009, 57(9): 962-970.
13Sickmann HM, Walls AB, Schousboe A, et al. Functional significance of brain glycogen in sustaining glutamatergic neurotransmission. J Neurochem, 2009, 109 (Suppl 1): 80-86.
14Walls AB, Heimburger CM, Bouman SD, et al. Robust glycogen shunt activity in astrocytes: effects of glutamatergic and adrenergic agents. Neuroscience, 2009, 158(1): 284-292.
15Vaishnavi SN, Vlassenko AG, Rundle MM, et al. Regional aerobic glycolysis in the human brain. Proc Natl Acad Sci U S A, 2010, 107(41): 17757-17762.
16Pellerin L, Pellegri G, Bittar PG, et al. Evidence supporting the existence of an activity-dependent astrocyte-neuron lactate shuttle. Dev Neurosci, 1998, 20(4-5): 291-299.
17Hertz L, Dienel GA. Lactate transport and transporters: general principles and functional roles in brain cells. J Neurosci Res, 2005, 79(1-2): 11-18.
18Kreft M, Bak LK, Waagepetersen HS, et al. Aspects of astrocyte energy metabolism, amino acid neurotransmitter homoeostasis and metabolic compartmentation. ASN Neuro, 2012, 4(3): 187-199.
19Jordan TN, Richard AH, Robert CC. Reevaluating Metabolism in Alzheimer's Disease from the Perspective of the Astrocyte-Neuron Lactate Shuttle Model. J Neurodegener Dis, 2013,2013(2013):1-13.
20Dienel GA. Lactate shuttling and lactate use as fuel after traumatic brain injury: metabolic considerations. J Cereb Blood Flow Metab, 2014, 34(11): 1736-1748.
21Marcoux J, McArthur DA, Miller C, et al. Persistent metabolic crisis as measured by elevated cerebral microdialysis lactate-pyruvate ratio predicts chronic frontal lobe brain atrophy after traumatic brain injury. Crit Care Med, 2008, 36(10): 2871-2877.
22DiNuzzo M, Mangia S, Maraviglia B, et al. Changes in glucose uptake rather than lactate shuttle take center stage in subserving neuroenergetics: evidence from mathematical modeling. J Cereb Blood Flow Metab, 2010, 30(3): 586-602.
23Mangia S, Simpson IA, Vannucci SJ, et al. The in vivo neuron-to-astrocyte lactate huttle in human brain: evidence from modeling of measured lactate levels during visual stimulation. J Neurochem, 2009, 109 (Suppl 1): 55-62.
24Brown AM. Brain glycogen re-awakened. J Neurochem, 2004, 89(3): 537-552.
25Sickmann HM, Walls AB, Schousboe A, et al. Functional significance of brain glycogen in sustaining glutamatergic neurotransmission. J Neurochem, 2009, 109 (Suppl 1): 80-86.
26Sickmann HM, Waagepetersen HS. Effects of diabetes on brain metabolism - is brain glycogen a significant player? Metab Brain Dis, 2015, 30(1): 335-343.
27Sickmann HM, Waagepetersen HS, Schousboe A, et al. Brain glycogen and its role in supporting glutamate and GABA homeostasis in a type 2 diabetes rat model. Neurochem Int, 2012, 60(3): 267-275.
28Tarczyluk MA, Nagel DA, O'Neil JD, et al. Functional astrocyte-neuron lactate shuttle in a human stemcell-derived neuronal network. J Cereb Blood Flow Metab, 2013, 33(9): 1386-1393.
29Dinuzzo M, Mangia S, Maraviglia B, et al. The role of astrocytic glycogen in supporting the energetics of neuronal activity. Neurochem Res, 2012, 37(11): 2432-2438.
30Dienel GA, Cruz NF. Contributions of glycogen to astrocytic energetics during brain activation. Metab Brain Dis, 2015, 30(1): 281-298.
31Suh SWA, Bergher JP, Anderson CM, et al. strocyte glycogen sustains neuronal activity during hypoglycemia: studies with the glycogen phosphorylase inhibitor CP-316,819 ([R-R*,S*]-5-chloro-N-[2-hydroxy-3-(methoxymethylamino)-3-oxo -1-(phenylmethyl)propyl]-1H-indole-2-carboxamide). J Pharmacol Exp Ther, 2007, 321(1):45-50.
32Duran J, Saez I, Gruart A, et al. Impairment in long-term memory formation and learning-dependent synaptic plasticity in mice lacking glycogen synthase in the brain. J Cereb Blood Flow Metab, 2013, 33(4): 550-556.
(2015-01-26收稿)
【中圖分類號(hào)】Q954.67 R741
【文獻(xiàn)標(biāo)識(shí)碼】A
【文章編號(hào)】1007-0478(2015)06-0382-03
基金項(xiàng)目:國(guó)家自然科學(xué)基金(No81102652, 81373723, 81303053);中國(guó)博士后科學(xué)基金資助項(xiàng)目(No2014M561959)