姜楠楠,尹 佳
(中國醫(yī)學(xué)科學(xué)院 北京協(xié)和醫(yī)學(xué)院 北京協(xié)和醫(yī)院變態(tài)反應(yīng)科,北京 100730)
變應(yīng)原特異性免疫治療是唯一可以改變變態(tài)反應(yīng)疾病進(jìn)程的治療方法[1],不僅用于吸入變應(yīng)原引起的鼻炎和哮喘以及蜂毒所致的過敏性休克等疾病的治療[2],還能阻止過敏性鼻炎發(fā)展為哮喘[3]。治療機(jī)制主要包括阻斷抗體(IgG4、IgA等)的產(chǎn)生,誘導(dǎo)外周T細(xì)胞耐受以及抑制效應(yīng)細(xì)胞活化等[4]。傳統(tǒng)免疫治療應(yīng)用的變應(yīng)原提取液含有完整的變應(yīng)原分子,這些分子的B細(xì)胞表位結(jié)合導(dǎo)致效應(yīng)細(xì)胞(肥大細(xì)胞、嗜堿性粒細(xì)胞等)上變應(yīng)原特異性IgE橋聯(lián),導(dǎo)致不良反應(yīng)的發(fā)生,有些不良反應(yīng)甚至是致命的[1],這使傳統(tǒng)變應(yīng)原免疫治療的應(yīng)用存在局限性。目前已發(fā)表了多種為降低免疫治療制劑變應(yīng)原性,同時(shí)維持其免疫原性的方法,比如利用重組變應(yīng)原或其組分,合成T細(xì)胞或B細(xì)胞表位肽段,變應(yīng)原分子的物理修飾[與Toll樣受體(Toll-like rceptor,TLR)的配體偶聯(lián),與含有CpG基序的DNA片段的偶聯(lián)等]以及佐劑(單磷酰脂質(zhì)A、氫氧化鋁、碳水化合物基等)的使用,DNA疫苗等[5- 6]。近年來已有多項(xiàng)研究評(píng)估基于變應(yīng)原優(yōu)勢(shì)T細(xì)胞表位的合成肽段進(jìn)行免疫治療的療效,包括動(dòng)物實(shí)驗(yàn)和臨床研究[7]。本篇文章將對(duì)近年來發(fā)表的基于T細(xì)胞表位的合成肽段進(jìn)行免疫治療的文獻(xiàn)進(jìn)行綜述。
早期的肽段免疫治療(peptide immunotherapy)研究主要關(guān)注自身免疫疾病(自身免疫性腦膜炎[8]、關(guān)節(jié)炎[9]、系統(tǒng)性紅斑狼瘡[10]等),近年來在糖尿病[11]、惡性腫瘤[12]等領(lǐng)域也有研究。肽段免疫治療用于變態(tài)反應(yīng)性疾病治療的研究相對(duì)發(fā)展較晚,近年多種氣傳變應(yīng)原和食物變應(yīng)原主要致敏組分的T細(xì)胞表位已被鑒定,為變應(yīng)原特異性免疫治療奠定了基礎(chǔ)[13-14]。
同傳統(tǒng)特異性免疫治療機(jī)制相似,動(dòng)物實(shí)驗(yàn)中T細(xì)胞表位肽段免疫治療的主要機(jī)制包括誘導(dǎo)外周T細(xì)胞耐受以及抑制效應(yīng)細(xì)胞活化等。Hoyne等[15]用屋塵螨主要致敏組分Der p1致敏的小鼠,予鼻內(nèi)吸入低劑量包含其優(yōu)勢(shì)T細(xì)胞表位的肽段Der p1(氨基酸111~139)治療,體外變應(yīng)原刺激發(fā)現(xiàn)特異性T細(xì)胞增殖受到抑制,白細(xì)胞介素(Interleukin,IL)2和抗體產(chǎn)生量減少。Briner等[16]用來源貓毛主要致敏組分Fel d1的多肽(IPC-2)對(duì)Fel d1致敏的B6CBAF1小鼠進(jìn)行皮下脫敏治療,結(jié)果亦顯示IL-2和特異性IgG產(chǎn)生減少。Astori等[17]在蜂毒過敏的CBA/J小鼠模型中,給予鼻內(nèi)吸入涵蓋有磷脂酶A2(phospholipase A2,PLA2)全序列的三種長肽段混合物,可誘導(dǎo)小鼠對(duì)PLA2的特異性T細(xì)胞的免疫耐受,細(xì)胞免疫反應(yīng)顯示由Th2型向Th1型偏倚,特異性IgE水平降低,King等[18]對(duì)BALB/c小鼠分別皮下注射包含蜂毒T細(xì)胞表位的肽段Api m4(氨基酸7~19),Api m4致敏后,T細(xì)胞活化受到抑制,Api m4特異性IgE水平下降40%~65%,同樣品系的小鼠用胡蜂蜂毒的主要致敏原組分Dol m5(氨基酸41~60、141~160、176~195)三條肽段進(jìn)行皮下注射,隨后用Dol m5致敏,Dol m5 sIgE水平在免疫反應(yīng)的早期階段下降40%。而Campbell等[19]用Fel d1致敏小鼠轉(zhuǎn)基因表達(dá)人的HLA-DRB*0101分子后,以肽段 Fel d1(氨基酸29~45)治療,發(fā)現(xiàn)小劑量(1 μg)的肽段治療即可降低小鼠氣道高反應(yīng)性,減少Th2型細(xì)胞因子及特異性IgE的產(chǎn)生,黏液分泌和氣道嗜酸粒細(xì)胞浸潤減少,該研究還發(fā)現(xiàn)免疫治療不僅可誘導(dǎo)T細(xì)胞對(duì)該肽段產(chǎn)生耐受,也同時(shí)誘導(dǎo)T細(xì)胞對(duì)該分子的其他肽段產(chǎn)生耐受,T細(xì)胞耐受依賴于IL-10。Bauer等[20]用Bet v1 T細(xì)胞表位肽段(氨基酸139~152)皮下注射治療Bet v1致敏的CBA/J小鼠,可下調(diào)T細(xì)胞誘導(dǎo)的免疫反應(yīng)。Hiroi等[21]用表達(dá)柳杉主要致敏組分Cry j1和Cry j2優(yōu)勢(shì)T細(xì)胞表位的轉(zhuǎn)基因大米治療日本柳杉致敏的小鼠,可誘導(dǎo)小鼠對(duì)上述兩種致敏組分產(chǎn)生免疫耐受,在抗原激發(fā)后,小鼠鼻部癥狀減輕,外周血抗原特異性IgE水平降低,CD4+T細(xì)胞增殖受到抑制,Th2型的細(xì)胞因子(IL- 4、IL-5、IL-13)及組胺釋放減少。最近的一項(xiàng)研究顯示,Kawabe等[22]對(duì)柳杉致敏的小鼠進(jìn)行口服表達(dá)Cry j1優(yōu)勢(shì)T細(xì)胞表位的轉(zhuǎn)基因雞蛋白的治療后,Cry j1特異性IgE和總IgE水平降低。
除了吸入性變應(yīng)原的T細(xì)胞表位肽段免疫治療的研究,近年來,有研究開始關(guān)注食物變應(yīng)原的T細(xì)胞免疫治療,主要是雞蛋、花生、蝦等致敏組分的肽段免疫治療研究。Rupa等[23]對(duì)雞蛋卵類黏蛋白(ovomucoid,OVM)致敏小鼠進(jìn)行口服單個(gè)T細(xì)胞表位和多種T細(xì)胞表位免疫治療,結(jié)果顯示兩組小鼠免疫治療后臨床癥狀均得到改善,OVM血清特異性IgE降低而特異性IgA升高,Th2型的細(xì)胞因子IL- 4、IL-10濃度降低,單個(gè)T細(xì)胞表位治療組小鼠外周血CD4+Foxp3+T細(xì)胞和CD4+CD25+T細(xì)胞增多。Yang等[24]對(duì)雞蛋卵清蛋白(ovalbumin,OVA)致敏的小鼠用OVA的3個(gè)優(yōu)勢(shì)T細(xì)胞表位進(jìn)行皮下免疫治療,OVA激發(fā)后,3種T細(xì)胞表位的肽段混合治療的小鼠,臨床癥狀積分顯著下降,同時(shí)血清中組胺和OVA特異性IgE的濃度降低,小鼠脾臟細(xì)胞和小腸上皮細(xì)胞Th1型的細(xì)胞因子[干擾素γ(interferon-γ](IFN-γ)分泌減少,而Th2型細(xì)胞因子(IL- 4)分泌增多,同時(shí)轉(zhuǎn)化生長因子β(transforming grouth foutor-β,TGF-β)和Foxp3的mRNA表達(dá)增多,以上結(jié)果顯示黏膜局部的調(diào)節(jié)性T細(xì)胞在免疫耐受中起著重要作用。Su等[25]對(duì)OVA致敏的小鼠用OVA單個(gè)優(yōu)勢(shì)T細(xì)胞表位(氨基酸323~339)八聚體進(jìn)行皮下免疫治療后,小鼠外周血、縱隔淋巴結(jié)以及脾臟中CD4+CD25+Foxp3+的調(diào)節(jié)性T細(xì)胞增多,肺泡灌洗液中IL-10水平增高,肺組織中IL-10、TGF-β以及Foxp3的表達(dá)上調(diào),同時(shí)肺泡灌洗液中OVA特異性IgE水平降低,嗜酸性粒細(xì)胞和淋巴細(xì)胞浸潤減少,而在同樣的動(dòng)物模型中用單一包含有T細(xì)胞表位OVA肽段進(jìn)行免疫治療則沒有上述改變,顯示肽段的多聚體比單一肽段在免疫調(diào)節(jié)方面可能更有優(yōu)勢(shì)。Wai等[26]鑒定了蝦的主要致敏組分Met e1 T細(xì)胞表位,并用T細(xì)胞表位肽段口服治療蝦過敏的模型小鼠,臨床癥狀明顯改善,Th2免疫反應(yīng)受抑制,特異性IgE水平下降,同時(shí)IgG2a水平升高,Th2型細(xì)胞因子(IL- 4、IL-5、IL-13)水平下降。
肽段免疫治療在臨床的研究進(jìn)展相對(duì)較慢,目前已開展在多發(fā)性硬化病、1型糖尿病[27]、類風(fēng)濕性關(guān)節(jié)炎[28-29]等領(lǐng)域的臨床研究。在變態(tài)反應(yīng)性疾病領(lǐng)域內(nèi)肽段免疫治療還僅局限于貓毛過敏和蜂毒過敏,其他變應(yīng)原的肽段免疫治療的臨床試驗(yàn)正在進(jìn)行中(http://www.circassia.co.uk)。
1993年,Briner等[16]鑒定出貓毛的致敏組分Fel d1的T細(xì)胞表位,隨后研制出第一個(gè)應(yīng)用于臨床的肽段疫苗(Allervax Cat),Allervax Cat由兩條包含有Fel d1 T細(xì)胞表位的27個(gè)氨基酸的肽段組成(IPC-1和IPC-2),多項(xiàng)研究對(duì)其治療的有效性和安全性進(jìn)行了評(píng)價(jià)。1996年,Norman等[30]發(fā)表了第一個(gè)隨機(jī)對(duì)照研究,將95例貓毛過敏的患者按劑量不同隨機(jī)分為4組(安慰劑組、7.5 μg、75 μg、750 μg),患者共注射4次,每周1次,治療結(jié)束6周后,75 μg和750 μg治療組肺和鼻部癥狀積分均有降低。Pene等[31]的研究中,25例貓毛過敏的患者接受6周(每周1次)Allervax Cat(7.5、75、750 μg)的皮下注射,治療結(jié)束6周后用Fel d1進(jìn)行支氣管激發(fā)試驗(yàn),75 μg和750 μg組PD20 FEV1與基線相比有顯著差異,750 μg組血清IL- 4的水平下降。Marcotte等[32]對(duì)8例75 μg和7例750 μg治療患者的T細(xì)胞進(jìn)行體外刺激,發(fā)現(xiàn)治療后肽段特異性T細(xì)胞系產(chǎn)生IL- 4量減少,并呈現(xiàn)劑量效應(yīng)關(guān)系。Maguire等[33]通過多中心隨機(jī)雙盲安慰劑對(duì)照的研究評(píng)價(jià)Allervax Cat的有效性,治療組(75、750 μg)對(duì)貓毛耐受明顯增強(qiáng),接受高劑量(750 μg/次)皮下注射的個(gè)體在治療3周后肺功能得到顯著改善。但Simons等[34]研究顯示,治療組接受4次250 μg Allervax Cat治療后,貓毛誘發(fā)的皮膚速發(fā)和遲發(fā)反應(yīng)并未減輕,且治療后外周血單個(gè)核細(xì)胞分泌IL- 4、IL-10、IFN-γ水平未發(fā)生改變,提示肽段免疫治療并未減輕貓毛誘導(dǎo)的速發(fā)和遲發(fā)的皮膚反應(yīng),且不能誘導(dǎo)貓毛特異性Th1型細(xì)胞因子的產(chǎn)生。
盡管在上述研究顯示Allervax Cat治療有效,但治療相關(guān)不良反應(yīng)發(fā)生率較高。Norman等[30]的研究發(fā)現(xiàn),750 μg治療組的患者中,16例(67%)在第一次注射后出現(xiàn)了遲發(fā)型哮喘樣反應(yīng)(late-asthmatic reactions,LAR)。同樣,Maguire等[33]的研究發(fā)現(xiàn),750 μg治療組患者,44例(83%)出現(xiàn)了不同程度的不良反應(yīng),其中30例(56%)表現(xiàn)為LAR,9例(17%)出現(xiàn)了全身嚴(yán)重不良反應(yīng),不良反應(yīng)的發(fā)生率隨著注射次數(shù)的增多而降低。Simons等[34]等研究顯示,250 μg治療組中有16例(76%)出現(xiàn)了鼻炎、哮喘和皮膚瘙癢等不良反應(yīng)。
第二種貓毛肽段免疫治療的疫苗是包含F(xiàn)el d1 T細(xì)胞表位的11~12個(gè)重疊肽段的混合物[35- 41]。Oldfield等[35]對(duì)24例貓毛過敏的哮喘患者皮內(nèi)注射不同劑量(1、2.5、5 μg)的疫苗,8例患者接受單次5 μg治療2周后,皮下注射貓毛全變應(yīng)原提取液,皮膚遲發(fā)反應(yīng)明顯減輕,而速發(fā)反應(yīng)無明顯改善,皮膚反應(yīng)的改善與特異性T細(xì)胞增殖的減少和Th1、Th2型細(xì)胞因子釋放減少相關(guān)。該課題組隨后對(duì)這24例患者進(jìn)行了一項(xiàng)雙盲安慰劑對(duì)照的臨床研究[36],其中治療組16例,對(duì)照組8例,治療組每3~4 d接受1次遞增劑量的肽段治療,共4次(5、10、15、20 μg),治療結(jié)束后4~8周和3~9個(gè)月分別進(jìn)行隨訪。在兩個(gè)隨訪階段,治療組對(duì)貓毛和Fel d1 的皮膚遲發(fā)反應(yīng)均明顯減輕,在第二個(gè)隨訪階段,治療組皮膚對(duì)Fel d1速發(fā)反應(yīng)明顯減輕,但對(duì)貓毛的速發(fā)反應(yīng)沒有明顯改善。體外試驗(yàn)顯示,治療組3~9個(gè)月后外周特異性外周血單個(gè)核細(xì)胞增殖與基線組相比明顯減弱,IL- 4、IL-13、IFN-γ水平降低,同時(shí)調(diào)節(jié)性細(xì)胞因子IL-10分泌增多。治療過程中未發(fā)生急性的治療相關(guān)不良事件,4例患者在第一次注射后出現(xiàn)了LAR,再次注射后該不良反應(yīng)消失。Alexander等[38]的研究中,患者每兩周接受一次遞增劑量的皮下注射(0.1、1、5、10、25 μg),治療結(jié)束后氣道反應(yīng)性降低,皮膚遲發(fā)型反應(yīng)受到抑制,這可能與皮膚中的CD4+IFN-γ+T細(xì)胞與CD4+CD25+T細(xì)胞增多相關(guān)。
與Allervax Cat相比,第二種疫苗治療過程中不良反應(yīng)發(fā)生率降低,LAR最為常見,未發(fā)生急性的治療相關(guān)不良事件。Oldfield等[35]研究中,4例(25%)在第一次注射后出現(xiàn)了LAR,再次注射后未發(fā)生LAR。Alexander等[38]研究中患者并未出現(xiàn)LAR,可能是與該研究免疫治療的起始治療劑量較低有關(guān)。
第三種貓毛肽段免疫治療疫苗為包含有Fel d1 7個(gè) T細(xì)胞表位的肽段疫苗(Toleranceomune Cat?)。Patel等[42]評(píng)價(jià)了該疫苗的治療有效性,研究顯示接受4次6 nmol該疫苗治療后的效果優(yōu)于接受8次3 nmol治療。Haselden等[41]通過36例貓毛過敏的個(gè)體通過皮內(nèi)注射或者皮下注射不同劑量(0.3~20 nmol)的肽段疫苗來評(píng)價(jià)其安全性。結(jié)果顯示患者對(duì)該疫苗耐受良好,無嚴(yán)重過敏反應(yīng)發(fā)生。皮內(nèi)注射3 nmol的疫苗能最大程度抑制皮膚遲發(fā)反應(yīng)。
目前僅有3項(xiàng)研究關(guān)注蜂毒過敏的個(gè)體肽段免疫治療。3項(xiàng)研究均為小樣本,且不是雙盲安慰劑對(duì)照研究,但目前的數(shù)據(jù)支持Api m1 T細(xì)胞表位治療蜂毒過敏患者的有效性。1993年,Carballido等[43]鑒定出了蜂毒過敏的主要致敏蛋白Api m1優(yōu)勢(shì)T細(xì)胞表位。Müller等[44]用PLA2 3個(gè)T細(xì)胞表位的混合物(氨基酸45~62、82~92、113~124)皮下注射治療5例蜂毒過敏的患者,患者每周接受1次遞增劑量的皮下注射,初始劑量為0.1 μg,維持劑量為100 μg,總劑量為397.1 μg,治療結(jié)束1周后5例患者對(duì)皮下注射10 μg磷脂酶A能耐受,2周后有3例能耐受,其他2例發(fā)生了輕度的局部不良反應(yīng)。體外試驗(yàn)顯示,3例治療成功患者的外周血單個(gè)核細(xì)胞的磷脂酶A和肽段增殖反應(yīng)均受到抑制,Th2型(IL- 4、IL-5、IL-13)和Th1型(INF-γ、IL-2)的細(xì)胞因子水平均下降,肽段治療60 d后特異性IgE和IgG4的水平均有不同程度的下降。
Texier等[45]研究發(fā)現(xiàn)Api m1(氨基酸81~97)含有多個(gè)HLA分子結(jié)合的活性區(qū)域,能與不同的HLA-DR分子結(jié)合,可以作為免疫治療的候選肽段,它也是Müller等[44]用于治療的三條肽段之一。Tarzi等[46]用此肽段治療重度蜂毒過敏的患者,12例蜜蜂蜂毒過敏的患者接受9次皮下免疫治療,治療組蜂毒和PLA2激發(fā)后皮膚遲發(fā)型反應(yīng)明顯減弱,PLA2刺激后外周血單個(gè)核細(xì)胞(peripheral blood mononuclear cell,PBMC)增殖減弱,IL-13、IFN-γ分泌減少,產(chǎn)生IL-10的水平增加。
Fellrath等[47]對(duì)蜂毒過敏的患者采用快速脫敏治療的方式,治療應(yīng)用3段長的合成肽段覆蓋了Api m1的全序列。初始劑量為0.1 μg,受試者每30 min接受增量為250 μg的治療。在免疫治療的第4、7、14、42和70天接受維持劑量為100 μg或300 μg的治療,抗原特異性T細(xì)胞的增殖增多,同時(shí)還有IFN-γ和IL-10水平增多,但是Th2細(xì)胞因子未發(fā)現(xiàn)。
包含變應(yīng)原致敏組分的T細(xì)胞表位短合成肽段能夠降低抗原特異性IgE橋聯(lián),因此基于T細(xì)胞表位的肽段免疫治療是一種可降低變應(yīng)原抗原性的治療手段,這種低變應(yīng)原性使免疫治療安全性增加。肽段特異性免疫治療誘導(dǎo)產(chǎn)生了一群調(diào)節(jié)性T細(xì)胞或抑制性T細(xì)胞,從而調(diào)節(jié)了很多抗原暴露的癥狀,如:變應(yīng)原激發(fā)后皮膚反應(yīng),非特異性氣道高反應(yīng)性,癥狀積分,生活質(zhì)量和對(duì)自然變應(yīng)原暴露的耐受。
[1]Cox L,Calderon M,Pfaar O.Subcutaneous allergen immunotherapy for allergic disease:examining efficacy,safety and cost-effectiveness of current and novel formulations[J].Immunotherapy,2012,4:601- 616.
[2]Pipe A,Botturi K,Pinot D,et al.Allergen-specific immunotherapy in allergic rhinitis and asthma.Mechanisms and proof of efficacy[J].Respir Med,2009,103:800- 812.
[3]Fiocchi A,F(xiàn)ox AT.Preventing progression of allergic rhinitis:the role of specific immunotherapy[J].Arch Dis Child Educ Pract Ed,2011,96:91-100.
[4]Jutel M,Akdis CA.Immunological mechanisms of allergen-specific immunotherapy[J].Allergy,2011,66:725-732.
[5]Larche M,Akdis CA,Valenta R.Immunological mechanisms of allergen-specific immunotherapy[J].Nat Rev Immunol,2006,6:761-771.
[6]Larche M.Peptide immunotherapy for allergic diseases[J].Allergy,2007,62:325-331.
[7]Prickett SR,Rolland JM,O’Hehir RE.Immunoregulatory T cell epitope peptides:the new frontier in allergy therapy[J].Clin Exp Immunol,2015,45:1015-1026.
[8]Gaur A,Wiers B,Liu A,et al.Amelioration of autoimmune encephalomyelitis by myelin basic-protein synthetic peptide induced allergy[J].Science,1992,258:1491-1494.
[9]Kamphuis S,Kuis W,De Jager W,et al.Tolerogenic immune responses to novel T-cell epitopes from heat-shock protein 60 in juvenile idiopathic arthritis[J].Lancet,2005,366:50-56.
[10] Cava A.Immunotherapy with Peptides in Systemic Lupus Erythematosus[J].Curr Med Chem,2009,16:1482-1488.
[11] Fierabracci A.Peptide Immunotherapies in Type 1 Diabetes:Lessons from Animal Models[J].Curr Med Chem,2011,18:577-586.
[12] Belnoue E,Guettier C,Kayibanda M,et al.Regression of established liver tumor induced by monoepitopic peptide-based immunotherapy[J].J Immunol,2004,173(8):4882- 4888.
[13] Bohle B.T-cell epitopes of food allergens[J].Clin Rev Allergy Immunol,2006,30:97-108.
[14] Letz AG,Calabria CW.T-cell epitopes of aeroallergens[J].Ann Allergy Asthma Immunol,2009,102:445- 452.
[15] Hoyne GF,Ohehir RE,Wraith DC,et al.Inhibition of T cell and antibody responses to house dust mite allergen by inhalation of the dominant T cell epitope in na?ve and sensitized mice[J].J Exp Med,1993,178:1783-1788.
[16] Briner TJ,Kuo MC,Keating KM,et al.Peripheral T-cell tolerance induced in na?ve and primed mice by subcutaneous injection of peptides from the major cat allergen Fel d1[J].Proc Natl Acad Sci USA,1993,90:7608-7612.
[17] Astori M,Von Garnier C,Kettner A,et al.Inducing tolerance by intranasal administration of long peptides in naive and primed CBAJ mice[J].J Immunol,2000,165:3497-3505.
[18] King TP,Lu G,Agosto H.Antibody responses to bee melittin (Api m 4) and hornet antigen 5 (Dol m 5) in mice treated with the dominant T-cell epitope peptides[J].J Allergy Clin Immunol,1998,101:397- 403.
[19] Campbell JD,Buckland KF,Mcmillan SJ,et al.Peptide immunotherapy in allergic asthma generates IL-10-dependent immunological tolerance associated with linked epitope suppression[J].J Exp Med,2009,206(7):1535-1547.
[20] Bauer L,Bohle B,Jahnschmid B,et al.Modulation of the allergic immune response in BALBc mice by subcutaneous injection of high doses of the dominant T cell epitope from the major birch pollen allergen Bet v 1[J].Clin Exp Immunol,1997,107:536-541.
[21] Hiroi T,Takaiwa F.Peptide immunotherapy for allergic diseases using a rice-based edible vaccine[J].Curr Opin Allergy Clin Immunol,2006,6:455- 460.
[22] Kawabe Y,Hayashida Y,Numata K,et al.Oral Immunotherapy for Pollen Allergy Using T-Cell Epitope-Containing Egg White Derived from Genetically Manipulated Chickens[J].PLoS One,2012,7:e48512.
[23] Rupa P,Mine Y.Oral immunotherapy with immunodominant T-cell epitope peptides alleviates allergic reactions in a Balbc mouse model of egg allergy[J].Allergy,2012,67:74- 82.
[24] Yang M,Yang C,Mine Y.Multiple T cell epitope peptides suppress allergic responses in an egg allergy mouse model by the elicitation of forkhead box transcription factor 3-and transforming growth factor-beta-associated mechanisms[J].Clin Exp Allergy,2010,40:668- 678.
[25] Su W,Zhong WW,Zhang YJ,et al.Synthesized OVA(323-339)MAP octamers mitigate OVA-induced airway inflammation by regulating Foxp3 T regulatory cells[J].BMC Immunol,2012,13:34.
[26] Wai CY,Leung NY,Leung PS,et al.T Cell Epitope Immunotherapy Ameliorates Allergic Responses in a Murine Model of Shrimp Allergy[J].Clin Exp Allergy,2016,46:491-503.
[27] Thrower SL,James L,Hall W,et al.Proinsulin peptide immunotherapy in type 1 diabetes:report of a first-in-man Phase Ⅰ safety study[J].Clin Exp Immunol,2009,155:156-165.
[28] Prakken BJ,Samodal R,Le TD,et al.Epitope-specific immunotherapy induces immune deviation of proinflammatory T cells in rheumatoid arthritis[J].Proc Natl Acad Sci USA,2004,101:4228- 4233.
[29] Koffeman EC,Genovese M,Amox D,et al.Epitope-Specific Immunotherapy of Rheumatoid Arthritis Clinical Responsiveness Occurs With Immune Deviation and Relies on the Expression of a Cluster of Molecules Associated With T Cell Tolerance in a Double-Blind,Placebo-Controlled,Pilot Phase Ⅱ Trial[J].Arthritis Rheum,2009,60:3207-3216.
[30] Norman PS,Ohman JL,Long AA,et al.Treatment of cat allergy with T-cell reactive peptides[J].Am J Respir Critical Care Med,1996,154:1623-1628.
[31] Pene J,Desroches A,Paradis L,et al.Immunotherapy with Fel d 1 peptides decreases IL- 4 release by peripheral blood T cells of patients allergic to cats[J].J Allergy Clin Immunol,1998,102:571-578.
[32] Marcotte GV,Braun CM,Norman PS,et al.Effects of peptide therapy onexvivoT-cell responses[J].J Allergy Clin Immunol,1998,101:506-513.
[33] Maguire P,Nicodemus C,Robinson D,et al.The safety and efficacy of ALLERVAX CAT in cat allergic patients[J].Clin Immunol,1999,93:222-231.
[34] Simons FE,Imada M,Li Y,et al.Fel d 1 peptides:Effect on skin tests and cytokine synthesis in cat-allergic human subjects[J].Int Immunol,1996,8:1937-1945.
[35] Oldfield WL,Kay AB,Larche M.Allergen-derived T cell peptide-induced late asthmatic reactions precede the induction of antigen-specific hyporesponsiveness in atopic allergic asthmatic subjects[J].J Immunol,2001,167:1734-1739.
[36] Oldfield WL,Larche M,Kay AB.Effect of T-cell peptides derived from Fel d 1 on allergic reactions and cytokine production in patients sensitive to cats:a randomised controlled trial[J].Lancet,2002,360:47-53.
[37] Alexander C,Tarzi M,Larche M,et al.The effect of Fel d 1-derived T-cell peptides on upper and lower airway outcome measurements in cat-allergic subjects[J].Allergy,2005,60:1269-1274.
[38] Alexander C,Ying S,Kay AB,et al.Fel d 1-derived T cell peptide therapy induces recruitment of CD4(+)CD25(+);CD4(+) interferon-gamma(+) T helper type 1 cells to sites of allergen-induced late-phase skin reactions in cat-allergic subjects[J].Clin Exp Allergy,2005,35:52-58.
[39] Smith TRF,Alexander C,Kay AB,et al.Cat allergen peptide immunotherapy reduces CD4(+) T cell responses to cat allergen but does not alter suppression by CD4(+) CD25(+) T cells:a double-blind placebo-controlled study[J].Allergy,2004,59:1097-1101.
[40] Verhoef A,Alexander C,Kay AB,et al.T cell epitope immunotherapy induces a CD4+T cell population with regulatory activity[J].PLoS Med,2005,2:253-261.
[41] Haselden BM,Syrigou E,Jones M,et al.Proliferation and release of IL-5 and IFN-gamma by peripheral blood mononuclear cells from cat-allergic asthmatics and rhinitics,non-cat-allergic asthmatics,and normal controls to peptides derived from Fel d 1 chain 1[J].J Allergy Clin Immunol,2001,108:349-356.
[42] Patel D,Couroux P,Hickey P,et al.Fel d 1-derived peptide antigen desensitization shows a persistent treatment effect 1 year after the start of dosing:A randomized,placebo-controlled study[J].J Allergy Clin Immunol,2013,131:103-109.
[43] Carballido JM,Carballidoperrig N,Kagi MK,et al.T-cell epitope specificity in human allergic and nonallergic subjects to bee venom phospholipase-A2[J].J Immunol,1993,150:3582-3591.
[44] Müller U,Akdis CA,F(xiàn)ricker M,et al.Successful immunotherapy with T-cell epitope peptides of bee venom phospholipase A2 induces specific T-cell anergy in patients allergic to bee venom[J].J Allergy Clin Immunol,1998,101:747-754.
[45] Texier C,Pouvelle S,Busson M,et al.HLA-DR restricted peptide candidates for bee venom immunotherapy[J].J Immunol,2000,164:3177-3184.
[46] Tarzi M,Klunker S,Texier C,et al.Induction of interleukin-10 and suppressor of cytokine signalling-3 gene expression following peptide immunotherapy[J].Clin Exp Allergy,2006,36:465- 474.
[47] Fellrath JM,Kettner A,Dufour N,et al.Allergen-specific T-cell tolerance induction with allergen-derived long synthetic peptides:Results of a phase Ⅰ trial[J].J Allergy Clin Immunol,2003,111:854- 861.