黃 旭,陳韻岱,曹 豐
(解放軍總醫(yī)院心血管內(nèi)科,北京 100853)
預(yù)防和治療心血管疾病盡管取得了重大進步,但其仍然是全世界人口死亡的主要原因[1]。動脈粥樣硬化(atherosclerosis,AS)是心血管疾病最常見的病因[2],粥樣易損斑塊破裂是導(dǎo)致急性心肌梗死、心絞痛、卒中、外周血管病等的重要因素[3]。導(dǎo)致AS的危險因素包括高血脂、高血壓、肥胖和糖尿病,以及不良生活習(xí)慣如長期壓力大、吸煙等。目前研究人員認(rèn)為,AS發(fā)生的主要病理機制是慢性血管炎癥反應(yīng)、平滑肌細(xì)胞增殖與遷移、細(xì)胞凋亡及新血管形成等[4],因此許多與炎癥相關(guān)的標(biāo)志物被作為監(jiān)測AS和心血管疾病風(fēng)險的新靶點[5],其中白細(xì)胞介素6(interleukin-6,IL-6)家族被不斷深入地研究,抑瘤素M(oncostatin M, OSM)作為家族成員,在
AS發(fā)生中的作用逐漸受到重視。OSM是一種多肽細(xì)胞因子,分子結(jié)構(gòu)和功能與白血病抑制因子(leukemia inhibitory factor, LIF)最相似,27%的序列是相同的[6],最初通過佛波醇-12-肉豆蔻酸鹽-13-乙酸酯(phorbol-12-myristate-13-acetate,PMA)刺激人組織型淋巴瘤U937細(xì)胞系后,從上清液分離提取出來[7],在體內(nèi)由巨噬細(xì)胞、T淋巴細(xì)胞、嗜酸性粒細(xì)胞、中性粒細(xì)胞、卡波西肉瘤細(xì)胞分泌[6]。現(xiàn)已證實OSM除了在黑色素瘤、肝臟再生和慢性炎癥如風(fēng)濕性關(guān)節(jié)炎、肺和皮膚炎癥疾病中具有生物效應(yīng),在AS疾病中也發(fā)揮作用[8]。同時,OSM也可作為納米探針的靶向?qū)S易損斑塊進行早期診斷和治療,本文對OSM在AS發(fā)生發(fā)展中的作用進行了綜述。
AS的發(fā)生發(fā)展是一個多因素參與的復(fù)雜炎癥過程[9]。積聚在內(nèi)皮下的脂蛋白尤其是低密度脂蛋白被氧化后,可誘發(fā)內(nèi)皮細(xì)胞損傷,激活內(nèi)皮細(xì)胞分泌炎癥介質(zhì),炎癥介質(zhì)進一步促進內(nèi)皮細(xì)胞分泌細(xì)胞活素和一些黏附分子。細(xì)胞活素和黏附分子可促進白細(xì)胞如單核細(xì)胞、巨噬細(xì)胞和T淋巴細(xì)胞等黏附到內(nèi)皮,增強血管內(nèi)皮的滲透性,使得低密度脂蛋白到達(dá)血管外,隨后白細(xì)胞由管腔運行到內(nèi)皮下。隨著損害加重,單核細(xì)胞分化的巨噬細(xì)胞攝取大量脂質(zhì)形成泡沫細(xì)胞,分泌血小板衍生生長因子(platelet derived growth factor,PDGF)和成纖維細(xì)胞生長因子(fibroblast growth factor,F(xiàn)GF)促進平滑肌細(xì)胞遷移和增殖,還可促使平滑肌細(xì)胞表型轉(zhuǎn)換,由合成型轉(zhuǎn)換成分泌型。平滑肌細(xì)胞由中膜遷移到內(nèi)皮下吞噬脂質(zhì),合成和分泌膠原纖維包裹脂質(zhì),導(dǎo)致?lián)p傷部位擴大和重構(gòu)。此外,被氧化的低密度脂蛋白還可使細(xì)胞和組織壞死,巨噬細(xì)胞可分泌細(xì)胞活素加重炎癥反應(yīng),增強平滑肌細(xì)胞凋亡和基質(zhì)金屬蛋白酶(matrix metalloproteinases,MMP)的活性,從而使斑塊不穩(wěn)定性增加。不穩(wěn)定斑塊破裂后,形成血栓的風(fēng)險大大增加[10-12]。
OSM是分子量為28ku的分泌型糖蛋白單體,由4個α螺旋和3個反螺旋區(qū)構(gòu)成。人、牛、小鼠和大鼠的OSM基因已經(jīng)被克隆[13],它與編碼LIF的基因位置極其相似,都位于22q12染色體上,編碼區(qū)包括3個外顯子和2個內(nèi)含子[14]。不同種屬的OSM肽鏈的氨基酸殘基數(shù)量不同。人源OSM多肽含252個氨基酸殘基,N-末端是由25個氨基酸殘基構(gòu)成的信號肽,C-末端由32個氨基酸殘基構(gòu)成,分別被蛋白水解酶和胰蛋白酶裂解后,成熟的OSM由195個氨基酸構(gòu)成[15],含有兩個N-糖基化位點、一個O-糖基化位點和5個半胱氨酸殘基(cysteine,Cys),分別位于C6、C49、C80、C27、C167位。其中C6~C127和C49~C167形成分子內(nèi)部的兩對二硫鍵,研究表明C49~C167對生物活性起重要作用,而另一個則沒有太大作用[6,16-18]。
IL-6家族成員共用一個信號轉(zhuǎn)導(dǎo)體gp130,實際上gp130是受體的一個亞單位,所以它們的生物學(xué)效應(yīng)極為相似[19]。但OSM的受體除了含有g(shù)p130還有特異成分,與gp130低親和力結(jié)合,所以它既具有和IL-6家族成員相似的生物學(xué)功能,又有特異性。OSM受體有兩種類型,Ⅰ型受體是gp130和LIF 受體β亞單位組成的異源二聚體,Ⅱ型受體由gp130和OSM受體β亞單位組成,但OSM不和β亞單位特異性結(jié)合,而是低親和力結(jié)合gp130后結(jié)合β亞單位,這種結(jié)合可促使gp130和OSM受體β亞單位高親和力地結(jié)合為受體復(fù)合物[6,20]。人源OSM可與Ⅰ型和Ⅱ型受體結(jié)合,而小鼠OSM只與Ⅱ型受體特異結(jié)合[21],人源OSM在鼠的體內(nèi)只和鼠的Ⅰ型受體結(jié)合,而不和Ⅱ型受體結(jié)合[6]。OSM受體β單位的存在使得OSM具有了其他IL-6家族成員不具有的特異性,研究表明它可促進肺癌細(xì)胞生長和增殖、減少肥胖和攝食量、肝脂肪變性和胰島素抵抗等代謝性疾病,但可導(dǎo)致原發(fā)性皮膚淀粉樣病[22-25]。
OSM和受體結(jié)合后通過細(xì)胞內(nèi)信號轉(zhuǎn)導(dǎo)通路發(fā)揮生物學(xué)作用,主要有兩條信號通路,一條是非受體酪氨酸激酶-信號轉(zhuǎn)導(dǎo)子和轉(zhuǎn)錄激活子(just another kinase-signal transducer and activator transcription,JAK-STAT)信號通路,另一條是Ras-Raf-絲裂活化蛋白激酶(Ras-Raf-mitogen-activated protein kinases, Ras-Raf-MAPK)信號通路。(1)JAK-STAT信號通路: OSM和gp130/OSM受體β亞單位復(fù)合體結(jié)合后導(dǎo)致受體復(fù)合體二聚體化和相互磷酸化,激活JAK激酶,從而催化gp130胞漿區(qū)酪氨酸殘基磷酸化,后者使STAT被JAK激酶磷酸化,形成同源和異源二聚體。成為二聚體后的STAT易位到細(xì)胞核內(nèi)引發(fā)基因表達(dá)[26,27]。(2) Ras-Raf-MAPK信號通路:gp130酪氨酸殘基磷酸化后也可募集酪氨酸磷酸酶(protein tyrosine phosphatase,SHP2),SHP2為接頭蛋白生長因子受體結(jié)合蛋白2(growth factor receptor-bound protein,Grb2)提供對接靶點,使Grb2連接SOS蛋白(son of sevenless,SOS),復(fù)合物促進Ras結(jié)合GTP從而激活Ras,啟動MAPK級聯(lián)反應(yīng)[27,28]
OSM對于細(xì)胞分化、增殖、造血、免疫、炎癥網(wǎng)絡(luò)等都可發(fā)揮功效。如OSM是一種促進肝再生因子,可促進卵原細(xì)胞分化成肝細(xì)胞,發(fā)揮潛在治療作用。同時在肝細(xì)胞中可調(diào)節(jié)低密度脂蛋白受體(low density lipoprotein receptor,LDLR),參與膽固醇代謝。它可調(diào)節(jié)鐵調(diào)素,減少血清鐵,從而誘發(fā)貧血;可調(diào)節(jié)關(guān)節(jié)滑膜和軟骨的重構(gòu),這可能和JAK-STAT通路和軟骨細(xì)胞的抗氧化應(yīng)激能力增加后減少其凋亡有關(guān)[29]。OSM可抑制黑色素瘤細(xì)胞、肺癌細(xì)胞、卡波西肉瘤細(xì)胞等多種癌細(xì)胞的生長。在中樞神經(jīng)系統(tǒng)中,它可通過增強少突膠質(zhì)細(xì)胞前體的活性發(fā)揮修復(fù)作用[8]。
眾所周知,巨噬細(xì)胞在早期AS斑塊進展和晚期斑塊破裂中都至關(guān)重要,是斑塊微環(huán)境中OSM的主要來源[8]。OSM通過刺激斑塊內(nèi)皮細(xì)胞表達(dá)黏附分子如P選擇素、L選擇素、血管細(xì)胞黏附分子-1(vascular cell adhesion molecule-1,VCAM-1),增強中性粒細(xì)胞對內(nèi)皮細(xì)胞的黏附。此外,OSM通過環(huán)氧合酶2(cycloxygenase-2,COX-2)和血管生成素2(angiopoietin-2)刺激斑塊內(nèi)微血管內(nèi)皮細(xì)胞的血管新生[30]。OSM與受體結(jié)合可激活JAK-STAT信號通路,促進血管平滑肌細(xì)胞增殖、遷移、表型轉(zhuǎn)化和合成纖維連接蛋白(cellular fibronectin,cFN)。它還通過刺激MMP活性增加斑塊的不穩(wěn)定性[8,31,32]。OSM在心肌缺血和心室重構(gòu)中的作用很復(fù)雜,它通過刺激心肌細(xì)胞表達(dá)基質(zhì)金屬蛋白酶抑制劑-1(inhibitors of matrix metalloproteinase,IMMP-1)、基質(zhì)細(xì)胞衍生因子-1(stromal cell-derived factor-1,SDF-1)預(yù)防心肌梗死,但對擴張性心肌病卻有害[33]。
總體來說,OSM是一種具有多種生物學(xué)作用的細(xì)胞因子,它可出現(xiàn)在AS早期,巨噬細(xì)胞和平滑肌細(xì)胞分泌后刺激血管內(nèi)皮發(fā)生炎癥反應(yīng),促進血管新生、平滑肌細(xì)胞遷移和表型轉(zhuǎn)換。另外,已有文獻報道斑塊內(nèi)巨噬細(xì)胞高表達(dá)的骨橋蛋白(osteopontin,OPN)可以通過分子影像技術(shù)早期診斷斑塊[34],也許將來OSM也可作為分子靶向達(dá)到成像效果,進而用于早期診斷AS。
【參考文獻】
[1] Salvatore P, Zullo A, Sommese L,etal. Infections and cardiovascular disease: isBartonellahenselaecontributing to this matter[J]. J Med Microbiol, 2015, 64(8): 799-809.
[2] Ho SS. Current status of carotid ultrasound in atherosclerosis[J]. Quant Imaging Med Surg, 2016, 6(3): 285-296.
[3] Torac E, Gaman L, Atanasiu V. The regulator of calcineurin (RCAN1) an important factor involved in atherosclerosis and cardiovascular diseases development[J]. J Med Life, 2014, 7(4): 481-487.
[4] Otsuka F, Yasuda S, Noguchi T,etal. Pathology of coronary atherosclerosis and thrombosis[J]. Cardiovasc Diagn Ther, 2016, 6(4): 396-408.
[5] Soeki T, Sata M. Inflammatory biomarkers and atherosclerosis[J]. Int Heart J, 2016, 57(2): 134-139.
[6] Morikawa Y. Oncostatin M in the development of the nervous system[J]. Anat Sci Int, 2005, 80(1): 53-59.
[7] Zarling JM, Shoyab M, Marquardt H,etal. Oncostatin M: a growth regulator produced by differentiated histiocytic lymphoma cells[J]. Proc Natl Acad Sci USA, 1986, 83(24): 9739-9743.
[8] Richards CD. The enigmatic cytokine oncostatin M and roles in disease[J]. ISRN Inflamm, 2013, 2013: 512103.
[9] Rafieian-Kopaei M, Setorki M, Doudi M,etal. Atherosclerosis: process, indicators, risk factors and new hopes[J]. Int J Prev Med, 2014, 5(8): 927-946.
[10] Sakakura K, Nakano M, Otsuka F,etal. Pathophysiology of atherosclerosis plaque progression[J]. Heart Lung Circ, 2013, 22(6): 399-411.
[11] Bennett MR, Sinha S, Owens GK. Vascular smooth muscle cells in atherosclerosis[J]. Circ Res, 2016, 118(4): 692-702.
[12] Tabas I, Bornfeldt KE. Macrophage phenotype and function in different stages of atherosclerosis[J]. Circ Res, 2016, 118(4): 653-667.
[13] Okaya A, Kitanaka J, Kitanaka N,etal. Oncostatin M inhibits proliferation of rat oval cells, OC15-5, inducing differentiation into hepatocytes[J]. Am J Pathol, 2005, 166(3): 709-719.
[14] Janssens K, Slaets H, Hellings N. Immunomodulatory properties of the IL-6 cytokine family in multiple sclerosis[J]. Ann N Y Acad Sci, 2015, 1351: 52-60.
[15] Hermanns HM. Oncostatin M and interleukin-31: cytokines, receptors, signal transduction and physiology[J]. Cytokine Growth Factor Rev, 2015, 26(5): 545-558.
[16] Linsley PS, Kallestad J, Ochs V,etal. Cleavage of a hydrophilic C-terminal domain increases growth-inhibitory activity of oncostatin M[J].Mol Cell Biol, 1990, 10(5): 1882-1890.
[17] Malik N, Kallestad JC, Gunderson NL,etal. Molecular cloning, sequence analysis, and functional expression of a novel growth regulator, oncostatin M[J]. Mol Cell Biol, 1989, 9(7): 2847-2853.
[18] Tanaka M, Miyajima A. Oncostatin M, a multifunctional cytokine[J]. Rev Physiol Biochem Pharmacol, 2003, 149: 39-52.
[19] Kishimoto T, Akira S, Narazaki M,etal. Interleukin-6 family of cytokines and gp130[J]. Blood, 1995, 86(4): 1243-1254.
[20] Heinrich PC, Behrmann I, Muller-Newen G,etal. Interleukin-6-type cytokine signalling through the gp130/Jak/STAT pathway[J]. Biochem J, 1998, 334(Pt 2): 297-314.
[21] Mosley B, De Imus C, Friend D,etal. Dual oncostatin M (OSM) receptors. Cloning and characterization of an alternative signaling subunit conferring OSM-specific receptor activation[J]. J Biol Chem, 1996, 271(51): 32635-32643.
[22] Lauber S, Wong S, Cutz JC,etal. Novel function of oncostatin M as a potent tumour-promoting agent in lung[J]. Int J Cancer, 2015, 136(4): 831-843.
[23] Komori T, Tanaka M, Senba E,etal. Deficiency of oncostatin M receptor beta (OSMRbeta) exacerbates high-fat diet-induced obesity and related metabolic disorders in mice[J]. J Biol Chem, 2014, 289(20): 13821-13837.
[24] Komori T, Tanaka M, Senba E,etal. Lack of oncostatin M receptor beta leads to adipose tissue inflammation and insulin resistance by switching macrophage phenotype[J]. J Biol Chem, 2013, 288(30): 21861-21875.
[25] Wang WH, Li LF, Huang ES,etal. A new c.1845A→T of oncostatin M receptor-beta mutation and slightly enhanced oncostatin M receptor-beta expression in a Chinese family with primary localized cutaneous amyloidosis[J]. Eur J Dermatol, 2012, 22(1): 29-33.
[26] Thoma B, Bird TA, Friend DJ,etal. Oncostatin M and leukemia inhibitory factor trigger overlapping and different signals through partially shared receptor complexes[J]. J Biol Chem, 1994, 269(8): 6215-6222.
[27] Taga T, Kishimoto T. Gp130 and the interleukin-6 family of cytokines[J]. Annu Rev Immunol, 1997, 15: 797-819.
[28] Stancato LF, Sakatsume M, David M,etal. Beta interferon and oncostatin M activate Raf-1 and mitogen-activated protein kinase through a JAK1-dependent pathway[J]. Mol Cell Biol, 1997, 17(7): 3833-3840.
[29] Liu J, Zhen P, Li XS,etal.JAK2/STAT3 signaling pathway mediates metabolism and anti-oxidative stress in chondrocytes of osteoarthritis mice[J]. Chin J Mult Organ Dis Elerly, 2015, 14(7): 540-546.[劉 軍, 甄 平, 李旭升, 等. JAK2/STAT3信號通路介導(dǎo)小鼠骨性關(guān)節(jié)炎中軟骨細(xì)胞代謝和抗氧化應(yīng)激的研究[J]. 中華老年多器官疾病雜志, 2015, 14(7): 540-546.]
[30] Rychli K, Kaun C, Hohensinner PJ,etal. The inflammatory mediator oncostatin M induces angiopoietin 2 expression in endothelial cellsinvitroandinvivo[J]. J Thromb Haemost, 2010, 8(3): 596-604.
[31] Nagata T, Kai H, Shibata R,etal. Oncostatin M, an interleukin-6 family cytokine, upregulates matrix metalloproteinase-9 through the mitogen-activated protein kinase kinase-extracellular signal-regulated kinase pathway in cultured smooth muscle cells[J]. Arterioscler Thromb Vasc Biol, 2003, 23(4): 588-593.
[32] Albasanz-Puig A, Murray J, Preusch M,etal. Oncostatin M is expressed in atherosclerotic lesions: a role for oncostatin M in the pathogenesis of atherosclerosis[J]. Atherosclerosis, 2011, 216(2): 292-298.
[33] Hohensinner PJ, Kaun C, Rychli K,etal. The inflammatory mediator oncostatin M induces stromal derived factor-1 in human adult cardiac cells[J]. FASEB J, 2009, 23(3): 774-782.
[34] Qiao HY, Wang YB, Gao L,etal. Molecular imaging of atherosclerotic plaquesviaosteopontin targeted Fe3O4nanoparticles[J]. Chin J Mult Organ Dis Elderly, 2016, 15(4): 283-288.[喬紅玉, 王亞斌, 高 磊, 等. 骨橋蛋白靶向磁性納米探針對動脈斑塊的分子成像[J]. 中華老年多器官疾病雜志, 2016, 15(4): 283-288.]