杜秀娟,王從容
(上海交通大學(xué)附屬第六人民醫(yī)院內(nèi)分泌代謝科,上海市糖尿病研究所,上海市糖尿病重點(diǎn)實(shí)驗(yàn)室,上海市糖尿病臨床醫(yī)學(xué)中心,上海 200233)
糖尿病對人類健康造成的威脅日益嚴(yán)重。國際糖尿病聯(lián)盟(International Diabetes Federation,IDF)最新統(tǒng)計(jì)顯示,目前全球已有約4.15億成人糖尿病患者,另有約3.18億成人罹患糖耐量受損,其中發(fā)達(dá)國家有87%~91%的糖尿病患者被診斷為2型糖尿病(type 2 diabetes mellitus, T2DM)。如果這一趨勢不被有效遏制,到2040年預(yù)計(jì)將有6.42億人罹患糖尿病[1]。T2DM被普遍認(rèn)為是一種多因素導(dǎo)致的疾病,而糖尿病家族史是T2DM進(jìn)展過程中的重要獨(dú)立風(fēng)險因素之一[2],可以綜合反映遺傳易感性和共享環(huán)境因素對T2DM發(fā)病的影響[3]。本文將針對遺傳易感性和共享環(huán)境因素兩方面闡述糖尿病家族史與T2DM發(fā)病風(fēng)險的關(guān)聯(lián)性。
大量的流行病學(xué)研究證實(shí)糖尿病家族史與糖尿病患病風(fēng)險增加相關(guān)。有糖尿病家族史人群,其患病風(fēng)險比無糖尿病家族史人群高出1~7倍[4-7],而這種風(fēng)險與家族史里患病親屬人數(shù)及親緣關(guān)系相關(guān)[2,4]。Valdez等[4]對16 388名美國人的糖尿病家族史進(jìn)行風(fēng)險等級分層,發(fā)現(xiàn)與低危家族史(無一級親屬患糖尿病)人群相比,中危(僅有一代一級親屬患糖尿病)和高危(至少兩代一級親屬患糖尿病)家族史人群的糖尿病患病風(fēng)險分別增高了1.3倍和4.5倍。此外,父系糖尿病家族史、母系糖尿病家族史以及同胞糖尿病家族史對患病的影響也均有不同。如Zhang等[2]對9756例中國糖尿病高危人群的研究表明,同胞家族史人群的糖尿病患病風(fēng)險最高,且母系糖尿病家族史較父系糖尿病家族史對后代患病的影響更大。此外,有研究顯示在高加索人群中,與未患妊娠糖尿病(gestational diabetes mellitus, GDM)母親的子女相比,曾患GDM母親的子女中T2DM及糖尿病前期患病率更高[8]。提示部分母系糖尿病家族史對子代患病的影響可能與GDM有關(guān)。
在T2DM病程進(jìn)展過程中會發(fā)生胰島素敏感性和胰島素分泌功能下降的病理改變,但二者何為關(guān)鍵因素存在爭議。大量研究發(fā)現(xiàn)這兩種病理改變在不同人種中存在異質(zhì)性,且在T2DM患者及其親屬中均有不同程度的表現(xiàn)[2, 9-11]。例如Stadler等[10]對歐洲14個國家的706名受試者進(jìn)行口服葡萄糖耐量試驗(yàn)(oral glucose tolerance test, OGTT),發(fā)現(xiàn)相較于無家族史的受試者,一級親屬中存在T2DM患者的受試者同時出現(xiàn)了胰島素抵抗和胰島素分泌功能缺陷。Isomaa等[9]根據(jù)OGTT試驗(yàn)結(jié)果和家族史情況分析,發(fā)現(xiàn)在正常糖耐量(normal glucose tolerance, NGT)的芬蘭人群中,與糖尿病家族史陰性人群相比,家族史陽性人群表現(xiàn)出胰島素分泌功能下降,而兩組的胰島素敏感性在矯正了體質(zhì)量指數(shù)后無明顯差異。此外,家族中親緣關(guān)系差異可能對個體的胰島功能產(chǎn)生不同影響。如有研究根據(jù)一級親屬的患病人數(shù)將家族史進(jìn)行風(fēng)險分級,結(jié)果顯示在中國人群中隨著家族史風(fēng)險水平的增加(從低危水平到高危水平),后代的胰島素分泌和胰島素敏感性均呈逐級下降趨勢[11]。Zhang等[2]根據(jù)父系、母系及同胞家族史進(jìn)行分類分析發(fā)現(xiàn),在中國高危人群中,母系及同胞家族史的親屬均出現(xiàn)胰島素分泌功能下降,而三類家族史的親屬間胰島素敏感性未表現(xiàn)出明顯差異。
雙生子研究曾評估過遺傳和環(huán)境因素在T2DM發(fā)病過程中的相對重要性。如芬蘭1項(xiàng)基于雙生子人群的研究運(yùn)用閾值模型分析(threshold modeling techniques)評估并比較了遺傳因素、共享環(huán)境因素及非共享環(huán)境因素對T2DM發(fā)病的潛在影響。最適模型顯示,遺傳因素、共享環(huán)境因素及非共享環(huán)境因素作用分別占46.5%、15.0%和38.5%[12]。
已有證據(jù)表明遺傳易感性是T2DM的重要風(fēng)險因素。Framingham Offspring研究表明,雙親中有一人患T2DM,其子代患 T2DM的風(fēng)險會增加2.4~2.5倍,而當(dāng)雙親均為T2DM患者時,其子代患T2DM的風(fēng)險會增加5.1倍[7]。
家系連鎖分析、候選基因關(guān)聯(lián)研究以及全基因組關(guān)聯(lián)研究(Genome-Wide Association Studies,GWAS)已經(jīng)明確了將近70個T2DM易感基因位點(diǎn)[13],這些位點(diǎn)的發(fā)現(xiàn)進(jìn)一步促進(jìn)了T2DM發(fā)病機(jī)制的研究。
2.1.1 家系連鎖分析、候選基因關(guān)聯(lián)研究 家系連鎖分析不僅在探索基于家系的單基因疾病(如MODY、新生兒線粒體糖尿病)方面頗有價值,其在發(fā)現(xiàn)T2DM遺傳機(jī)制方面也有應(yīng)用[14, 15]。1項(xiàng)2006年的研究通過連鎖分析,在冰島人群中發(fā)現(xiàn)TCF7L2是T2DM的關(guān)鍵遺傳因子[16]。這一發(fā)現(xiàn)隨后在歐洲裔及其他人種(如美國人、日本人等)中逐步得到印證[17-19]。TCF7L2被認(rèn)為是迄今為止白種人中最顯著的T2DM易感基因。近年來,連鎖分析研究已報道過許多與T2DM發(fā)病相關(guān)的染色體區(qū)域,并且在CAPN10[20],HNF4A[21]和ACDC[22]等上陸續(xù)發(fā)現(xiàn)了可能會致病的基因突變,但多數(shù)研究結(jié)果不具有重復(fù)性。
另一方面,在首次發(fā)現(xiàn)了PPARγ Pro12Ala多態(tài)性之后的幾十年,候選基因關(guān)聯(lián)研究僅發(fā)現(xiàn)了少量與T2DM發(fā)病風(fēng)險相關(guān)的基因位點(diǎn)[23]。PPARγ是在脂肪細(xì)胞分化過程中起核心作用的轉(zhuǎn)錄因子。有研究顯示在普通人群中,PPARγ Pro12Ala突變與胰島素敏感性增加相關(guān),從而防止糖尿病的發(fā)生[24]。
2.1.2 全基因組關(guān)聯(lián)研究(Genome-Wide Association Studies,GWAS) GWAS給T2DM遺傳基礎(chǔ)的探索帶來了新突破。2007年的6項(xiàng)GWAS研究將已確立的T2DM易感基因位點(diǎn)增加至9個(PPARγ,KCNJ11,TCF7L2,CDKAL1,CDKN2A/B,IGF2BP2,HHEX/IDE,FTO和SLC30A8)[25-30]。隨后,大樣本被應(yīng)用到不同人群來發(fā)現(xiàn)新的基因位點(diǎn)。2010年的1項(xiàng)針對歐洲裔人群的薈萃分析發(fā)現(xiàn)12個與T2DM相關(guān)的基因位點(diǎn)[31]。2011年針對東亞人群的薈萃分析又在GLIS3,PEPD,FITM2-R3HDML-HNF4A,KCNK16,MAEA,GCC1-PAX4,PSMD6和ZFAND上或附近發(fā)現(xiàn)了8個新位點(diǎn)[32]。
不僅改變的DNA 序列可以在家系中遺傳,飲食習(xí)慣、生活習(xí)慣以及暴露于特定的環(huán)境因素也可以在家族成員間(尤其是父母和子女)互相影響(即共享)。Van’t Riet等[33]通過對美國護(hù)士健康研究項(xiàng)目的73 227名女性的信息進(jìn)行分析,并對其中5101例T2DM患者進(jìn)行了20年的隨訪,發(fā)現(xiàn)BMI(21.1%)、進(jìn)食紅肉(1.1%)、酒精蓄積(4.8%)及飲用含糖飲料(2.8%)的生活習(xí)慣可以部分解釋糖尿病家族史與T2DM患病風(fēng)險之間的關(guān)聯(lián)性。歐洲的1項(xiàng)前瞻性研究表明,父系糖尿病和母系糖尿病家族史均與T2DM的患病風(fēng)險增加獨(dú)立相關(guān),但后者的相關(guān)性略高于前者,產(chǎn)生這種差異的原因可能與母系糖尿病患者的飲食、體脂、性別、年齡以及生活方式對后代的影響相關(guān)[34]。
此外,若母親曾患GDM,其子代在胎兒時期就可能因受子宮內(nèi)環(huán)境影響而表現(xiàn)為胰島素抵抗和成年發(fā)病型糖尿病[35]。1項(xiàng)基于高加索人群的研究發(fā)現(xiàn),患GDM女性和未患GDM女性的后代,T2DM和糖尿病前期患病率分別為21%和12%;而與普通女性的后代相比,患GDM女性的后代,其子代T2DM或糖尿病前期患病風(fēng)險增加了6.76倍。提示在高加索人群中,妊娠期子宮高糖的內(nèi)環(huán)境可能參與了子代T2DM或糖尿病前期的發(fā)病[8]。
環(huán)境因素可以通過表觀遺傳學(xué)修飾參與T2DM發(fā)病。表觀遺傳可以在不改變基因組序列的前提下調(diào)節(jié)基因表達(dá),反映環(huán)境調(diào)控糖耐量的共同機(jī)制。通常,DNA 特定位點(diǎn)發(fā)生甲基化修飾,DNA相關(guān)蛋白(組蛋白)發(fā)生翻譯后乙酰化、甲基化修飾,進(jìn)而調(diào)節(jié)基因轉(zhuǎn)錄。已有動物實(shí)驗(yàn)研究表明某些DNA甲基化改變可以在減數(shù)分裂中穩(wěn)定地保存下來并傳給后代。如有研究報道母代小鼠高脂飲食習(xí)慣可引起子代胰島素敏感性降低,且此后的連續(xù)兩代均表現(xiàn)出胰島素抵抗,提示暴露于高脂飲食這一環(huán)境因素會在連續(xù)的后代中穩(wěn)定地重新編碼表觀基因組[36]。因此,母親的營養(yǎng)狀態(tài)可通過表觀遺傳機(jī)制影響子代的代謝狀況。母體妊娠期的宮腔環(huán)境也是影響后代代謝狀況的重要因素,其中母體宮腔營養(yǎng)不良與T2DM相關(guān)。如有研究顯示,荷蘭冬天大饑荒及二戰(zhàn)期間挨餓的孕婦所產(chǎn)下的子代表現(xiàn)出明顯的出生低體質(zhì)量及較高的T2DM發(fā)病風(fēng)險[37,38]。這種“節(jié)儉表型”可用β細(xì)胞內(nèi)的表觀修飾和線粒體DNA減少等機(jī)制來解釋[39,40]。其次,暴露于高糖環(huán)境的母體宮腔可致子代患糖尿病的患病風(fēng)險增高。如1項(xiàng)基于Pima印第安人的家系研究顯示,與母親患糖尿病前出生的子代相比,母親患糖尿病后出生的同胞,其T2DM患病風(fēng)險可增加2.7倍[41]。這一現(xiàn)象可能與環(huán)境因素通過甲基化改變影響β細(xì)胞功能相關(guān)。1項(xiàng)體外研究證實(shí),暴露于棕櫚酸酯的人胰島細(xì)胞會發(fā)生DNA甲基化改變,影響包括TCF7L2和GLIS3在內(nèi)的290個基因的差異性表達(dá),最終導(dǎo)致胰島素分泌減少[42]。
糖尿病家族史是T2DM的重要獨(dú)立危險因素之一,可以綜合反映遺傳易感性和共享環(huán)境因素對T2DM發(fā)病的影響。因此,針對糖尿病家族史陽性的高危人群開展適當(dāng)?shù)纳罘绞街笇?dǎo),可能會有助于預(yù)防或延緩糖尿病的發(fā)生。
【參考文獻(xiàn)】
[1] International Diabetes Federation. International Diabetes Federation’s 7th edition of the Diabetes Atlas. Available from http://www.idf.org/. Accessed on 1 December 2015.
[2] Zhang Y, Chen H, Lu H,etal. Prevalence and risk of diabetes based on family history in the Shanghai High-Risk Diabetic Screen (SHiDS) study[J]. Diabet Med, 2015 Oct 29. doi: 10.1111/dme.13013.[Epub ahead of print]
[3] Yoon PW, Scheuner MT, Khoury MJ. Research priorities for evaluating family history in the prevention of common chronic diseases[J]. Am J Prev Med, 2003, 24(2): 128-135.
[4] Valdez R, Yoon PW, Liu T,etal. Family history and prevalence of diabetes in the U.S. population: the 6-year results from the National Health and Nutrition Examination Survey (1999-2004)[J]. Diabetes Care, 2007, 30(10): 2517-2522.
[5] Dagenais GR, Gerstein HC, Zhang X,etal. Variations in diabetes prevalence in low-, middle-, and high-income countries: results from the prospective urban and rural epidemiology study[J]. Diabetes Care, 2016, 39(5): 780-787.
[6] Hariri S, Yoon PW, Qureshi N,etal. Family history of type 2 diabetes: a population-based screening tool for prevention[J]? Genet Med, 2006, 8(2): 102-108.
[7] Meigs JB, Cupples LA, Wilson PW. Parental transmission of type 2 diabetes: the Framingham Offspring Study[J]. Diabetes, 2000, 49(12): 2201-2207.
[8] Clausen TD, Mathiesen ER, Hansen T,etal. High prevalence of type 2 diabetes and pre-diabetes in adult offspring of women with gestational diabetes mellitus or type 1 diabetes: the role of intra-uterine hyperglycemia[J]. Diabetes Care, 2008, 31(2): 340-346.
[9] Isomaa B, Forsen B, Lahti K,etal. A family history of diabetes is associated with reduced physical fitness in the Prevalence, Prediction and Prevention of Diabetes (PPP)-Botnia study[J]. Diabetologia, 2010, 53(8): 1709-1713.
[10] Stadler M, Pacini G, Petrie J,etal. Beta cell (dys)function in non-diabetic offspring of diabetic patients[J]. Diabetologia, 2009, 52(11): 2435-2444.
[11] Zhang J, Yang Z, Xiao J,etal. Association between family history risk categories and prevalence of diabetes in Chinese population[J]. PLoS One, 2015,10(2):e117044.
[12] Kaprio J, Tuomilehto J, Koskenvuo M,etal. Concordance for type 1 (insulin-dependent) and type 2 (non-insulin-dependent) diabetes mellitus in a population-based cohort of twins in Finland[J]. Diabetologia, 1992, 35(11): 1060-1067.
[13] Sun X, Yu W, Hu C. Genetics of type 2 diabetes: insights into the pathogenesis and its clinical application[J]. Biomed Res Int, 2014, 2014: 926713.
[14] Barroso I. Genetics of type 2 diabetes[J]. Diabet Med, 2005, 22(5): 517-535.
[15] Vaxillaire M, Froguel P. Monogenic diabetes in the young, pharmacogenetics and relevance to multifactorial forms of type 2 diabetes[J]. Endocr Rev, 2008, 29(3): 254-264.
[16] Grant SF, Thorleifsson G, Reynisdottir I,etal. Variant of transcription factor 7-like 2 (TCF7L2) gene confers risk of type 2 diabetes[J]. Nat Genet, 2006, 38(3): 320-323.
[17] Horikoshi M, Hara K, Ito C,etal. A genetic variation of the transcription factor 7-like 2 gene is associated with risk of type 2 diabetes in the Japanese population[J]. Diabetologia, 2007, 50(4): 747-751.
[18] Groves CJ, Zeggini E, Minton J,etal. Association analysis of 6736 U.K. subjects provides replication and confirms TCF7L2 as a type 2 diabetes susceptibility gene with a substantial effect on individual risk[J]. Diabetes, 2006, 55(9): 2640-2644.
[19] Zhang C, Qi L, Hunter DJ,etal. Variant of transcription factor 7-like 2 (TCF7L2) gene and the risk of type 2 diabetes in large cohorts of U.S. women and men[J]. Diabetes, 2006, 55(9): 2645-2648.
[20] Horikawa Y, Oda N, Cox NJ,etal. Genetic variation in the gene encoding calpain-10 is associated with type 2 diabetes mellitus[J]. Nat Genet, 2000, 26(2): 163-175.
[21] Silander K, Mohlke KL, Scott LJ,etal. Genetic variation near the hepatocyte nuclear factor-4 alpha gene predicts susceptibility to type 2 diabetes[J]. Diabetes, 2004, 53(4): 1141-1149.
[22] Vasseur F, Helbecque N, Dina C,etal. Single-nucleotide polymorphism haplotypes in the both proximal promoter and exon 3 of the APM1 gene modulate adipocyte-secreted adiponectin hormone levels and contribute to the genetic risk for type 2 diabetes in French Caucasians[J]. Hum Mol Genet, 2002, 11(21): 2607-2614.
[23] Altshuler D, Hirschhorn JN, Klannemark M,etal. The common PPARgamma Pro12Ala polymorphism is associated with decreased risk of type 2 diabetes[J]. Nat Genet, 2000, 26(1): 76-80.
[24] Deeb SS, Fajas L, Nemoto M,etal. A Pro12Ala substitution in PPARγ2 associated with decreased receptor activity, lower body mass index and improved insulin sensitivity[J]. Nat Genet, 1998, 20(3): 284-287.
[25] Genome-wide association study of 14 000 cases of seven common diseases and 3000 shared controls[J]. Nature, 2007, 447(7145): 661-678.
[26] Sladek R, Rocheleau G, Rung J,etal. A genome-wide association study identifies novel risk loci for type 2 diabetes[J]. Nature, 2007, 445(7130): 881-885.
[27] Steinthorsdottir V, Thorleifsson G, Reynisdottir I,etal. A variant in CDKAL1 influences insulin response and risk of type 2 diabetes[J]. Nat Genet, 2007, 39(6): 770-775.
[28] Zeggini E, Weedon MN, Lindgren CM,etal. Replication of genome-wide association signals in UK samples reveals risk loci for type 2 diabetes[J]. Science, 2007, 316(5829): 1336-1341.
[29] Saxena R, Voight BF, Lyssenko V,etal. Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels[J]. Science, 2007, 316(5829): 1331-1336.
[30] Scott LJ, Mohlke KL, Bonnycastle LL,etal. A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants[J]. Science, 2007, 316(5829): 1341-1345.
[31] Voight BF, Scott LJ, Steinthorsdottir V,etal. Twelve type 2 diabetes susceptibility loci identified through large-scale association analysis[J]. Nat Genet, 2010, 42(7): 579-589.
[32] Cho YS, Chen CH, Hu C,etal. Meta-analysis of genome-wide association studies identifies eight new loci for type 2 diabetes in east Asians[J]. Nat Genet, 2011, 44(1): 67-72.
[33] van’t Riet E, Dekker JM, Sun Q,etal. Role of adiposity and lifestyle in the relationship between family history of diabetes and 20-year incidence of type 2 diabetes in U.S. women[J]. Diabetes Care, 2010, 33(4): 763-767.
[34] Abbasi A, Corpeleijn E, van der Schouw YT,etal. Maternal and paternal transmission of type 2 diabetes: influence of diet, lifestyle and adiposity[J]. J Intern Med, 2011, 270(4): 388-396.
[35] Dabelea D, Pettitt DJ, Hanson RL,etal. Birth weight, type 2 diabetes, and insulin resistance in Pima Indian children and young adults[J]. Diabetes Care, 1999, 22(6): 944-950.
[36] Dunn GA, Bale TL. Maternal high-fat diet effects on third-generation female body sizeviathe paternal lineage[J]. Endocrinology, 2011, 152(6): 2228-2236.
[37] Ravelli AC, van der Meulen JH, Michels RP,etal. Glucose tolerance in adults after prenatal exposure to famine[J]. Lancet, 1998, 351(9097): 173-177.
[38] Hales CN, Barker DJ. Type 2 (non-insulin-dependent) diabetes mellitus: the thrifty phenotype hypothesis[J]. Diabetologia, 1992, 35(7): 595-601.
[39] Park JH, Stoffers DA, Nicholls RD,etal. Development of type 2 diabetes following intrauterine growth retardation in rats is associated with progressive epigenetic silencing of Pdx1[J]. J Clin Invest, 2008, 118(6): 2316-2324.
[40] Lee YY, Park KS, Pak YK,etal. The role of mitochondrial DNA in the development of type 2 diabetes caused by fetal malnutrition[J]. J Nutr Biochem, 2005, 16(4): 195-204.
[41] Dabelea D, Hanson RL, Lindsay RS,etal. Intrauterine exposure to diabetes conveys risks for type 2 diabetes and obesity: a study of discordant sibships[J]. Diabetes, 2000, 49(12): 2208-2211.
[42] Hall E, Volkov P, Dayeh T,etal. Effects of palmitate on genome-wide mRNA expression and DNA methylation patterns in human pancreatic islets[J]. BMC Med, 2014, 12: 103.